1FPGA Region Device Tree Binding
2
3Alan Tull 2016
4
5 CONTENTS
6 - Introduction
7 - Terminology
8 - Sequence
9 - FPGA Region
10 - Supported Use Models
11 - Device Tree Examples
12 - Constraints
13
14
15Introduction
16============
17
18FPGA Regions represent FPGA's and partial reconfiguration regions of FPGA's in
19the Device Tree.  FPGA Regions provide a way to program FPGAs under device tree
20control.
21
22This device tree binding document hits some of the high points of FPGA usage and
23attempts to include terminology used by both major FPGA manufacturers.  This
24document isn't a replacement for any manufacturers specifications for FPGA
25usage.
26
27
28Terminology
29===========
30
31Full Reconfiguration
32 * The entire FPGA is programmed.
33
34Partial Reconfiguration (PR)
35 * A section of an FPGA is reprogrammed while the rest of the FPGA is not
36   affected.
37 * Not all FPGA's support PR.
38
39Partial Reconfiguration Region (PRR)
40 * Also called a "reconfigurable partition"
41 * A PRR is a specific section of a FPGA reserved for reconfiguration.
42 * A base (or static) FPGA image may create a set of PRR's that later may
43   be independently reprogrammed many times.
44 * The size and specific location of each PRR is fixed.
45 * The connections at the edge of each PRR are fixed.  The image that is loaded
46   into a PRR must fit and must use a subset of the region's connections.
47 * The busses within the FPGA are split such that each region gets its own
48   branch that may be gated independently.
49
50Persona
51 * Also called a "partial bit stream"
52 * An FPGA image that is designed to be loaded into a PRR.  There may be
53   any number of personas designed to fit into a PRR, but only one at at time
54   may be loaded.
55 * A persona may create more regions.
56
57FPGA Bridge
58 * FPGA Bridges gate bus signals between a host and FPGA.
59 * FPGA Bridges should be disabled while the FPGA is being programmed to
60   prevent spurious signals on the cpu bus and to the soft logic.
61 * FPGA bridges may be actual hardware or soft logic on an FPGA.
62 * During Full Reconfiguration, hardware bridges between the host and FPGA
63   will be disabled.
64 * During Partial Reconfiguration of a specific region, that region's bridge
65   will be used to gate the busses.  Traffic to other regions is not affected.
66 * In some implementations, the FPGA Manager transparantly handles gating the
67   buses, eliminating the need to show the hardware FPGA bridges in the
68   device tree.
69 * An FPGA image may create a set of reprogrammable regions, each having its
70   own bridge and its own split of the busses in the FPGA.
71
72FPGA Manager
73 * An FPGA Manager is a hardware block that programs an FPGA under the control
74   of a host processor.
75
76Base Image
77 * Also called the "static image"
78 * An FPGA image that is designed to do full reconfiguration of the FPGA.
79 * A base image may set up a set of partial reconfiguration regions that may
80   later be reprogrammed.
81
82    ----------------       ----------------------------------
83    |  Host CPU    |       |             FPGA               |
84    |              |       |                                |
85    |          ----|       |       -----------    --------  |
86    |          | H |       |   |==>| Bridge0 |<==>| PRR0 |  |
87    |          | W |       |   |   -----------    --------  |
88    |          |   |       |   |                            |
89    |          | B |<=====>|<==|   -----------    --------  |
90    |          | R |       |   |==>| Bridge1 |<==>| PRR1 |  |
91    |          | I |       |   |   -----------    --------  |
92    |          | D |       |   |                            |
93    |          | G |       |   |   -----------    --------  |
94    |          | E |       |   |==>| Bridge2 |<==>| PRR2 |  |
95    |          ----|       |       -----------    --------  |
96    |              |       |                                |
97    ----------------       ----------------------------------
98
99Figure 1: An FPGA set up with a base image that created three regions.  Each
100region (PRR0-2) gets its own split of the busses that is independently gated by
101a soft logic bridge (Bridge0-2) in the FPGA.  The contents of each PRR can be
102reprogrammed independently while the rest of the system continues to function.
103
104
105Sequence
106========
107
108When a DT overlay that targets a FPGA Region is applied, the FPGA Region will
109do the following:
110
111 1. Disable appropriate FPGA bridges.
112 2. Program the FPGA using the FPGA manager.
113 3. Enable the FPGA bridges.
114 4. The Device Tree overlay is accepted into the live tree.
115 5. Child devices are populated.
116
117When the overlay is removed, the child nodes will be removed and the FPGA Region
118will disable the bridges.
119
120
121FPGA Region
122===========
123
124FPGA Regions represent FPGA's and FPGA PR regions in the device tree.  An FPGA
125Region brings together the elements needed to program on a running system and
126add the child devices:
127
128 * FPGA Manager
129 * FPGA Bridges
130 * image-specific information needed to to the programming.
131 * child nodes
132
133The intended use is that a Device Tree overlay (DTO) can be used to reprogram an
134FPGA while an operating system is running.
135
136An FPGA Region that exists in the live Device Tree reflects the current state.
137If the live tree shows a "firmware-name" property or child nodes under a FPGA
138Region, the FPGA already has been programmed.  A DTO that targets a FPGA Region
139and adds the "firmware-name" property is taken as a request to reprogram the
140FPGA.  After reprogramming is successful, the overlay is accepted into the live
141tree.
142
143The base FPGA Region in the device tree represents the FPGA and supports full
144reconfiguration.  It must include a phandle to an FPGA Manager.  The base
145FPGA region will be the child of one of the hardware bridges (the bridge that
146allows register access) between the cpu and the FPGA.  If there are more than
147one bridge to control during FPGA programming, the region will also contain a
148list of phandles to the additional hardware FPGA Bridges.
149
150For partial reconfiguration (PR), each PR region will have an FPGA Region.
151These FPGA regions are children of FPGA bridges which are then children of the
152base FPGA region.  The "Full Reconfiguration to add PRR's" example below shows
153this.
154
155If an FPGA Region does not specify a FPGA Manager, it will inherit the FPGA
156Manager specified by its ancestor FPGA Region.  This supports both the case
157where the same FPGA Manager is used for all of a FPGA as well the case where
158a different FPGA Manager is used for each region.
159
160FPGA Regions do not inherit their ancestor FPGA regions' bridges.  This prevents
161shutting down bridges that are upstream from the other active regions while one
162region is getting reconfigured (see Figure 1 above).  During PR, the FPGA's
163hardware bridges remain enabled.  The PR regions' bridges will be FPGA bridges
164within the static image of the FPGA.
165
166Required properties:
167- compatible : should contain "fpga-region"
168- fpga-mgr : should contain a phandle to an FPGA Manager.  Child FPGA Regions
169	inherit this property from their ancestor regions.  A fpga-mgr property
170	in a region will override any inherited FPGA manager.
171- #address-cells, #size-cells, ranges : must be present to handle address space
172	mapping for child nodes.
173
174Optional properties:
175- firmware-name : should contain the name of an FPGA image file located on the
176	firmware search path.  If this property shows up in a live device tree
177	it indicates that the FPGA has already been programmed with this image.
178	If this property is in an overlay targeting a FPGA region, it is a
179	request to program the FPGA with that image.
180- fpga-bridges : should contain a list of phandles to FPGA Bridges that must be
181	controlled during FPGA programming along with the parent FPGA bridge.
182	This property is optional if the FPGA Manager handles the bridges.
183        If the fpga-region is  the child of a fpga-bridge, the list should not
184        contain the parent bridge.
185- partial-fpga-config : boolean, set if partial reconfiguration is to be done,
186	otherwise full reconfiguration is done.
187- external-fpga-config : boolean, set if the FPGA has already been configured
188	prior to OS boot up.
189- region-unfreeze-timeout-us : The maximum time in microseconds to wait for
190	bridges to successfully become enabled after the region has been
191	programmed.
192- region-freeze-timeout-us : The maximum time in microseconds to wait for
193	bridges to successfully become disabled before the region has been
194	programmed.
195- child nodes : devices in the FPGA after programming.
196
197In the example below, when an overlay is applied targeting fpga-region0,
198fpga_mgr is used to program the FPGA.  Two bridges are controlled during
199programming: the parent fpga_bridge0 and fpga_bridge1.  Because the region is
200the child of fpga_bridge0, only fpga_bridge1 needs to be specified in the
201fpga-bridges property.  During programming, these bridges are disabled, the
202firmware specified in the overlay is loaded to the FPGA using the FPGA manager
203specified in the region.  If FPGA programming succeeds, the bridges are
204reenabled and the overlay makes it into the live device tree.  The child devices
205are then populated.  If FPGA programming fails, the bridges are left disabled
206and the overlay is rejected.  The overlay's ranges property maps the lwhps
207bridge's region (0xff200000) and the hps bridge's region (0xc0000000) for use by
208the two child devices.
209
210Example:
211Base tree contains:
212
213	fpga_mgr: fpga-mgr@ff706000 {
214		compatible = "altr,socfpga-fpga-mgr";
215		reg = <0xff706000 0x1000
216		       0xffb90000 0x20>;
217		interrupts = <0 175 4>;
218	};
219
220	fpga_bridge0: fpga-bridge@ff400000 {
221		compatible = "altr,socfpga-lwhps2fpga-bridge";
222		reg = <0xff400000 0x100000>;
223		resets = <&rst LWHPS2FPGA_RESET>;
224		clocks = <&l4_main_clk>;
225
226		#address-cells = <1>;
227		#size-cells = <1>;
228		ranges;
229
230		fpga_region0: fpga-region0 {
231			compatible = "fpga-region";
232			fpga-mgr = <&fpga_mgr>;
233		};
234	};
235
236	fpga_bridge1: fpga-bridge@ff500000 {
237		compatible = "altr,socfpga-hps2fpga-bridge";
238		reg = <0xff500000 0x10000>;
239		resets = <&rst HPS2FPGA_RESET>;
240		clocks = <&l4_main_clk>;
241	};
242
243Overlay contains:
244
245/dts-v1/ /plugin/;
246/ {
247	fragment@0 {
248		target = <&fpga_region0>;
249		#address-cells = <1>;
250		#size-cells = <1>;
251		__overlay__ {
252			#address-cells = <1>;
253			#size-cells = <1>;
254
255			firmware-name = "soc_system.rbf";
256			fpga-bridges = <&fpga_bridge1>;
257			ranges = <0x20000 0xff200000 0x100000>,
258				 <0x0 0xc0000000 0x20000000>;
259
260			gpio@10040 {
261				compatible = "altr,pio-1.0";
262				reg = <0x10040 0x20>;
263				altr,gpio-bank-width = <4>;
264				#gpio-cells = <2>;
265				clocks = <2>;
266				gpio-controller;
267			};
268
269			onchip-memory {
270				device_type = "memory";
271				compatible = "altr,onchipmem-15.1";
272				reg = <0x0 0x10000>;
273			};
274		};
275	};
276};
277
278
279Supported Use Models
280====================
281
282In all cases the live DT must have the FPGA Manager, FPGA Bridges (if any), and
283a FPGA Region.  The target of the Device Tree Overlay is the FPGA Region.  Some
284uses are specific to a FPGA device.
285
286 * No FPGA Bridges
287   In this case, the FPGA Manager which programs the FPGA also handles the
288   bridges behind the scenes.  No FPGA Bridge devices are needed for full
289   reconfiguration.
290
291 * Full reconfiguration with hardware bridges
292   In this case, there are hardware bridges between the processor and FPGA that
293   need to be controlled during full reconfiguration.  Before the overlay is
294   applied, the live DT must include the FPGA Manager, FPGA Bridges, and a
295   FPGA Region.  The FPGA Region is the child of the bridge that allows
296   register access to the FPGA.  Additional bridges may be listed in a
297   fpga-bridges property in the FPGA region or in the device tree overlay.
298
299 * Partial reconfiguration with bridges in the FPGA
300   In this case, the FPGA will have one or more PRR's that may be programmed
301   separately while the rest of the FPGA can remain active.  To manage this,
302   bridges need to exist in the FPGA that can gate the buses going to each FPGA
303   region while the buses are enabled for other sections.  Before any partial
304   reconfiguration can be done, a base FPGA image must be loaded which includes
305   PRR's with FPGA bridges.  The device tree should have a FPGA region for each
306   PRR.
307
308Device Tree Examples
309====================
310
311The intention of this section is to give some simple examples, focusing on
312the placement of the elements detailed above, especially:
313 * FPGA Manager
314 * FPGA Bridges
315 * FPGA Region
316 * ranges
317 * target-path or target
318
319For the purposes of this section, I'm dividing the Device Tree into two parts,
320each with its own requirements.  The two parts are:
321 * The live DT prior to the overlay being added
322 * The DT overlay
323
324The live Device Tree must contain an FPGA Region, an FPGA Manager, and any FPGA
325Bridges.  The FPGA Region's "fpga-mgr" property specifies the manager by phandle
326to handle programming the FPGA.  If the FPGA Region is the child of another FPGA
327Region, the parent's FPGA Manager is used.  If FPGA Bridges need to be involved,
328they are specified in the FPGA Region by the "fpga-bridges" property.  During
329FPGA programming, the FPGA Region will disable the bridges that are in its
330"fpga-bridges" list and will re-enable them after FPGA programming has
331succeeded.
332
333The Device Tree Overlay will contain:
334 * "target-path" or "target"
335   The insertion point where the the contents of the overlay will go into the
336   live tree.  target-path is a full path, while target is a phandle.
337 * "ranges"
338    The address space mapping from processor to FPGA bus(ses).
339 * "firmware-name"
340   Specifies the name of the FPGA image file on the firmware search
341   path.  The search path is described in the firmware class documentation.
342 * "partial-fpga-config"
343   This binding is a boolean and should be present if partial reconfiguration
344   is to be done.
345 * child nodes corresponding to hardware that will be loaded in this region of
346   the FPGA.
347
348Device Tree Example: Full Reconfiguration without Bridges
349=========================================================
350
351Live Device Tree contains:
352	fpga_mgr0: fpga-mgr@f8007000 {
353		compatible = "xlnx,zynq-devcfg-1.0";
354		reg = <0xf8007000 0x100>;
355		interrupt-parent = <&intc>;
356		interrupts = <0 8 4>;
357		clocks = <&clkc 12>;
358		clock-names = "ref_clk";
359		syscon = <&slcr>;
360	};
361
362	fpga_region0: fpga-region0 {
363		compatible = "fpga-region";
364		fpga-mgr = <&fpga_mgr0>;
365		#address-cells = <0x1>;
366		#size-cells = <0x1>;
367		ranges;
368	};
369
370DT Overlay contains:
371/dts-v1/ /plugin/;
372/ {
373fragment@0 {
374	target = <&fpga_region0>;
375	#address-cells = <1>;
376	#size-cells = <1>;
377	__overlay__ {
378		#address-cells = <1>;
379		#size-cells = <1>;
380
381		firmware-name = "zynq-gpio.bin";
382
383		gpio1: gpio@40000000 {
384			compatible = "xlnx,xps-gpio-1.00.a";
385			reg = <0x40000000 0x10000>;
386			gpio-controller;
387			#gpio-cells = <0x2>;
388			xlnx,gpio-width= <0x6>;
389		};
390	};
391};
392
393Device Tree Example: Full Reconfiguration to add PRR's
394======================================================
395
396The base FPGA Region is specified similar to the first example above.
397
398This example programs the FPGA to have two regions that can later be partially
399configured.  Each region has its own bridge in the FPGA fabric.
400
401DT Overlay contains:
402/dts-v1/ /plugin/;
403/ {
404	fragment@0 {
405		target = <&fpga_region0>;
406		#address-cells = <1>;
407		#size-cells = <1>;
408		__overlay__ {
409			#address-cells = <1>;
410			#size-cells = <1>;
411
412			firmware-name = "base.rbf";
413
414			fpga-bridge@4400 {
415				compatible = "altr,freeze-bridge";
416				reg = <0x4400 0x10>;
417
418				fpga_region1: fpga-region1 {
419					compatible = "fpga-region";
420					#address-cells = <0x1>;
421					#size-cells = <0x1>;
422					ranges;
423				};
424			};
425
426			fpga-bridge@4420 {
427				compatible = "altr,freeze-bridge";
428				reg = <0x4420 0x10>;
429
430				fpga_region2: fpga-region2 {
431					compatible = "fpga-region";
432					#address-cells = <0x1>;
433					#size-cells = <0x1>;
434					ranges;
435				};
436			};
437		};
438	};
439};
440
441Device Tree Example: Partial Reconfiguration
442============================================
443
444This example reprograms one of the PRR's set up in the previous example.
445
446The sequence that occurs when this overlay is similar to the above, the only
447differences are that the FPGA is partially reconfigured due to the
448"partial-fpga-config" boolean and the only bridge that is controlled during
449programming is the FPGA based bridge of fpga_region1.
450
451/dts-v1/ /plugin/;
452/ {
453	fragment@0 {
454		target = <&fpga_region1>;
455		#address-cells = <1>;
456		#size-cells = <1>;
457		__overlay__ {
458			#address-cells = <1>;
459			#size-cells = <1>;
460
461			firmware-name = "soc_image2.rbf";
462			partial-fpga-config;
463
464			gpio@10040 {
465				compatible = "altr,pio-1.0";
466				reg = <0x10040 0x20>;
467				clocks = <0x2>;
468				altr,gpio-bank-width = <0x4>;
469				resetvalue = <0x0>;
470				#gpio-cells = <0x2>;
471				gpio-controller;
472			};
473		};
474	};
475};
476
477Constraints
478===========
479
480It is beyond the scope of this document to fully describe all the FPGA design
481constraints required to make partial reconfiguration work[1] [2] [3], but a few
482deserve quick mention.
483
484A persona must have boundary connections that line up with those of the partion
485or region it is designed to go into.
486
487During programming, transactions through those connections must be stopped and
488the connections must be held at a fixed logic level.  This can be achieved by
489FPGA Bridges that exist on the FPGA fabric prior to the partial reconfiguration.
490
491--
492[1] www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_partrecon.pdf
493[2] tspace.library.utoronto.ca/bitstream/1807/67932/1/Byma_Stuart_A_201411_MAS_thesis.pdf
494[3] http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
495