xref: /openbmc/linux/Documentation/devicetree/bindings/cpu/idle-states.yaml (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2%YAML 1.2
3---
4$id: http://devicetree.org/schemas/cpu/idle-states.yaml#
5$schema: http://devicetree.org/meta-schemas/core.yaml#
6
7title: Idle states
8
9maintainers:
10  - Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
11  - Anup Patel <anup@brainfault.org>
12
13description: |+
14  ==========================================
15  1 - Introduction
16  ==========================================
17
18  ARM and RISC-V systems contain HW capable of managing power consumption
19  dynamically, where cores can be put in different low-power states (ranging
20  from simple wfi to power gating) according to OS PM policies. The CPU states
21  representing the range of dynamic idle states that a processor can enter at
22  run-time, can be specified through device tree bindings representing the
23  parameters required to enter/exit specific idle states on a given processor.
24
25  ==========================================
26  2 - ARM idle states
27  ==========================================
28
29  According to the Server Base System Architecture document (SBSA, [3]), the
30  power states an ARM CPU can be put into are identified by the following list:
31
32  - Running
33  - Idle_standby
34  - Idle_retention
35  - Sleep
36  - Off
37
38  The power states described in the SBSA document define the basic CPU states on
39  top of which ARM platforms implement power management schemes that allow an OS
40  PM implementation to put the processor in different idle states (which include
41  states listed above; "off" state is not an idle state since it does not have
42  wake-up capabilities, hence it is not considered in this document).
43
44  Idle state parameters (e.g. entry latency) are platform specific and need to
45  be characterized with bindings that provide the required information to OS PM
46  code so that it can build the required tables and use them at runtime.
47
48  The device tree binding definition for ARM idle states is the subject of this
49  document.
50
51  ==========================================
52  3 - RISC-V idle states
53  ==========================================
54
55  On RISC-V systems, the HARTs (or CPUs) [6] can be put in platform specific
56  suspend (or idle) states (ranging from simple WFI, power gating, etc). The
57  RISC-V SBI v0.3 (or higher) [7] hart state management extension provides a
58  standard mechanism for OS to request HART state transitions.
59
60  The platform specific suspend (or idle) states of a hart can be either
61  retentive or non-rententive in nature. A retentive suspend state will
62  preserve HART registers and CSR values for all privilege modes whereas
63  a non-retentive suspend state will not preserve HART registers and CSR
64  values.
65
66  ===========================================
67  4 - idle-states definitions
68  ===========================================
69
70  Idle states are characterized for a specific system through a set of
71  timing and energy related properties, that underline the HW behaviour
72  triggered upon idle states entry and exit.
73
74  The following diagram depicts the CPU execution phases and related timing
75  properties required to enter and exit an idle state:
76
77  ..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__..
78              |          |           |          |          |
79
80              |<------ entry ------->|
81              |       latency        |
82                                                |<- exit ->|
83                                                |  latency |
84              |<-------- min-residency -------->|
85                         |<-------  wakeup-latency ------->|
86
87      Diagram 1: CPU idle state execution phases
88
89  EXEC:  Normal CPU execution.
90
91  PREP:  Preparation phase before committing the hardware to idle mode
92    like cache flushing. This is abortable on pending wake-up
93    event conditions. The abort latency is assumed to be negligible
94    (i.e. less than the ENTRY + EXIT duration). If aborted, CPU
95    goes back to EXEC. This phase is optional. If not abortable,
96    this should be included in the ENTRY phase instead.
97
98  ENTRY:  The hardware is committed to idle mode. This period must run
99    to completion up to IDLE before anything else can happen.
100
101  IDLE:  This is the actual energy-saving idle period. This may last
102    between 0 and infinite time, until a wake-up event occurs.
103
104  EXIT:  Period during which the CPU is brought back to operational
105    mode (EXEC).
106
107  entry-latency: Worst case latency required to enter the idle state. The
108  exit-latency may be guaranteed only after entry-latency has passed.
109
110  min-residency: Minimum period, including preparation and entry, for a given
111  idle state to be worthwhile energywise.
112
113  wakeup-latency: Maximum delay between the signaling of a wake-up event and the
114  CPU being able to execute normal code again. If not specified, this is assumed
115  to be entry-latency + exit-latency.
116
117  These timing parameters can be used by an OS in different circumstances.
118
119  An idle CPU requires the expected min-residency time to select the most
120  appropriate idle state based on the expected expiry time of the next IRQ
121  (i.e. wake-up) that causes the CPU to return to the EXEC phase.
122
123  An operating system scheduler may need to compute the shortest wake-up delay
124  for CPUs in the system by detecting how long will it take to get a CPU out
125  of an idle state, e.g.:
126
127  wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0)
128
129  In other words, the scheduler can make its scheduling decision by selecting
130  (e.g. waking-up) the CPU with the shortest wake-up delay.
131  The wake-up delay must take into account the entry latency if that period
132  has not expired. The abortable nature of the PREP period can be ignored
133  if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than
134  the worst case since it depends on the CPU operating conditions, i.e. caches
135  state).
136
137  An OS has to reliably probe the wakeup-latency since some devices can enforce
138  latency constraint guarantees to work properly, so the OS has to detect the
139  worst case wake-up latency it can incur if a CPU is allowed to enter an
140  idle state, and possibly to prevent that to guarantee reliable device
141  functioning.
142
143  The min-residency time parameter deserves further explanation since it is
144  expressed in time units but must factor in energy consumption coefficients.
145
146  The energy consumption of a cpu when it enters a power state can be roughly
147  characterised by the following graph:
148
149                 |
150                 |
151                 |
152             e   |
153             n   |                                      /---
154             e   |                               /------
155             r   |                        /------
156             g   |                  /-----
157             y   |           /------
158                 |       ----
159                 |      /|
160                 |     / |
161                 |    /  |
162                 |   /   |
163                 |  /    |
164                 | /     |
165                 |/      |
166            -----|-------+----------------------------------
167                0|       1                              time(ms)
168
169      Graph 1: Energy vs time example
170
171  The graph is split in two parts delimited by time 1ms on the X-axis.
172  The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope
173  and denotes the energy costs incurred while entering and leaving the idle
174  state.
175  The graph curve in the area delimited by X-axis values = {x | x > 1ms } has
176  shallower slope and essentially represents the energy consumption of the idle
177  state.
178
179  min-residency is defined for a given idle state as the minimum expected
180  residency time for a state (inclusive of preparation and entry) after
181  which choosing that state become the most energy efficient option. A good
182  way to visualise this, is by taking the same graph above and comparing some
183  states energy consumptions plots.
184
185  For sake of simplicity, let's consider a system with two idle states IDLE1,
186  and IDLE2:
187
188            |
189            |
190            |
191            |                                                  /-- IDLE1
192         e  |                                              /---
193         n  |                                         /----
194         e  |                                     /---
195         r  |                                /-----/--------- IDLE2
196         g  |                    /-------/---------
197         y  |        ------------    /---|
198            |       /           /----    |
199            |      /        /---         |
200            |     /    /----             |
201            |    / /---                  |
202            |   ---                      |
203            |  /                         |
204            | /                          |
205            |/                           |                  time
206         ---/----------------------------+------------------------
207            |IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy
208                                         |
209                                  IDLE2-min-residency
210
211      Graph 2: idle states min-residency example
212
213  In graph 2 above, that takes into account idle states entry/exit energy
214  costs, it is clear that if the idle state residency time (i.e. time till next
215  wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state
216  choice energywise.
217
218  This is mainly down to the fact that IDLE1 entry/exit energy costs are lower
219  than IDLE2.
220
221  However, the lower power consumption (i.e. shallower energy curve slope) of
222  idle state IDLE2 implies that after a suitable time, IDLE2 becomes more energy
223  efficient.
224
225  The time at which IDLE2 becomes more energy efficient than IDLE1 (and other
226  shallower states in a system with multiple idle states) is defined
227  IDLE2-min-residency and corresponds to the time when energy consumption of
228  IDLE1 and IDLE2 states breaks even.
229
230  The definitions provided in this section underpin the idle states
231  properties specification that is the subject of the following sections.
232
233  ===========================================
234  5 - idle-states node
235  ===========================================
236
237  The processor idle states are defined within the idle-states node, which is
238  a direct child of the cpus node [1] and provides a container where the
239  processor idle states, defined as device tree nodes, are listed.
240
241  On ARM systems, it is a container of processor idle states nodes. If the
242  system does not provide CPU power management capabilities, or the processor
243  just supports idle_standby, an idle-states node is not required.
244
245  ===========================================
246  6 - References
247  ===========================================
248
249  [1] ARM Linux Kernel documentation - CPUs bindings
250      Documentation/devicetree/bindings/arm/cpus.yaml
251
252  [2] ARM Linux Kernel documentation - PSCI bindings
253      Documentation/devicetree/bindings/arm/psci.yaml
254
255  [3] ARM Server Base System Architecture (SBSA)
256      http://infocenter.arm.com/help/index.jsp
257
258  [4] ARM Architecture Reference Manuals
259      http://infocenter.arm.com/help/index.jsp
260
261  [5] ARM Linux Kernel documentation - Booting AArch64 Linux
262      Documentation/arch/arm64/booting.rst
263
264  [6] RISC-V Linux Kernel documentation - CPUs bindings
265      Documentation/devicetree/bindings/riscv/cpus.yaml
266
267  [7] RISC-V Supervisor Binary Interface (SBI)
268      http://github.com/riscv/riscv-sbi-doc/riscv-sbi.adoc
269
270properties:
271  $nodename:
272    const: idle-states
273
274  entry-method:
275    description: |
276      Usage and definition depend on ARM architecture version.
277
278      On ARM v8 64-bit this property is required.
279      On ARM 32-bit systems this property is optional
280
281      This assumes that the "enable-method" property is set to "psci" in the cpu
282      node[5] that is responsible for setting up CPU idle management in the OS
283      implementation.
284    const: psci
285
286patternProperties:
287  "^(cpu|cluster)-":
288    type: object
289    description: |
290      Each state node represents an idle state description and must be defined
291      as follows.
292
293      The idle state entered by executing the wfi instruction (idle_standby
294      SBSA,[3][4]) is considered standard on all ARM and RISC-V platforms and
295      therefore must not be listed.
296
297      In addition to the properties listed above, a state node may require
298      additional properties specific to the entry-method defined in the
299      idle-states node. Please refer to the entry-method bindings
300      documentation for properties definitions.
301
302    properties:
303      compatible:
304        enum:
305          - arm,idle-state
306          - riscv,idle-state
307
308      arm,psci-suspend-param:
309        $ref: /schemas/types.yaml#/definitions/uint32
310        description: |
311          power_state parameter to pass to the ARM PSCI suspend call.
312
313          Device tree nodes that require usage of PSCI CPU_SUSPEND function
314          (i.e. idle states node with entry-method property is set to "psci")
315          must specify this property.
316
317      riscv,sbi-suspend-param:
318        $ref: /schemas/types.yaml#/definitions/uint32
319        description: |
320          suspend_type parameter to pass to the RISC-V SBI HSM suspend call.
321
322          This property is required in idle state nodes of device tree meant
323          for RISC-V systems. For more details on the suspend_type parameter
324          refer the SBI specifiation v0.3 (or higher) [7].
325
326      local-timer-stop:
327        description:
328          If present the CPU local timer control logic is
329             lost on state entry, otherwise it is retained.
330        type: boolean
331
332      entry-latency-us:
333        description:
334          Worst case latency in microseconds required to enter the idle state.
335
336      exit-latency-us:
337        description:
338          Worst case latency in microseconds required to exit the idle state.
339          The exit-latency-us duration may be guaranteed only after
340          entry-latency-us has passed.
341
342      min-residency-us:
343        description:
344          Minimum residency duration in microseconds, inclusive of preparation
345          and entry, for this idle state to be considered worthwhile energy wise
346          (refer to section 2 of this document for a complete description).
347
348      wakeup-latency-us:
349        description: |
350          Maximum delay between the signaling of a wake-up event and the CPU
351          being able to execute normal code again. If omitted, this is assumed
352          to be equal to:
353
354            entry-latency-us + exit-latency-us
355
356          It is important to supply this value on systems where the duration of
357          PREP phase (see diagram 1, section 2) is non-neglibigle. In such
358          systems entry-latency-us + exit-latency-us will exceed
359          wakeup-latency-us by this duration.
360
361      idle-state-name:
362        $ref: /schemas/types.yaml#/definitions/string
363        description:
364          A string used as a descriptive name for the idle state.
365
366    additionalProperties: false
367
368    required:
369      - compatible
370      - entry-latency-us
371      - exit-latency-us
372      - min-residency-us
373
374additionalProperties: false
375
376examples:
377  - |
378
379    cpus {
380        #size-cells = <0>;
381        #address-cells = <2>;
382
383        cpu@0 {
384            device_type = "cpu";
385            compatible = "arm,cortex-a57";
386            reg = <0x0 0x0>;
387            enable-method = "psci";
388            cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
389                    <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
390        };
391
392        cpu@1 {
393            device_type = "cpu";
394            compatible = "arm,cortex-a57";
395            reg = <0x0 0x1>;
396            enable-method = "psci";
397            cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
398                    <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
399        };
400
401        cpu@100 {
402            device_type = "cpu";
403            compatible = "arm,cortex-a57";
404            reg = <0x0 0x100>;
405            enable-method = "psci";
406            cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
407                    <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
408        };
409
410        cpu@101 {
411            device_type = "cpu";
412            compatible = "arm,cortex-a57";
413            reg = <0x0 0x101>;
414            enable-method = "psci";
415            cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
416                    <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
417        };
418
419        cpu@10000 {
420            device_type = "cpu";
421            compatible = "arm,cortex-a57";
422            reg = <0x0 0x10000>;
423            enable-method = "psci";
424            cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
425                    <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
426        };
427
428        cpu@10001 {
429            device_type = "cpu";
430            compatible = "arm,cortex-a57";
431            reg = <0x0 0x10001>;
432            enable-method = "psci";
433            cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
434                    <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
435        };
436
437        cpu@10100 {
438            device_type = "cpu";
439            compatible = "arm,cortex-a57";
440            reg = <0x0 0x10100>;
441            enable-method = "psci";
442            cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
443                    <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
444        };
445
446        cpu@10101 {
447            device_type = "cpu";
448            compatible = "arm,cortex-a57";
449            reg = <0x0 0x10101>;
450            enable-method = "psci";
451            cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
452                    <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
453        };
454
455        cpu@100000000 {
456            device_type = "cpu";
457            compatible = "arm,cortex-a53";
458            reg = <0x1 0x0>;
459            enable-method = "psci";
460            cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
461                    <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
462        };
463
464        cpu@100000001 {
465            device_type = "cpu";
466            compatible = "arm,cortex-a53";
467            reg = <0x1 0x1>;
468            enable-method = "psci";
469            cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
470                    <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
471        };
472
473        cpu@100000100 {
474            device_type = "cpu";
475            compatible = "arm,cortex-a53";
476            reg = <0x1 0x100>;
477            enable-method = "psci";
478            cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
479                    <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
480        };
481
482        cpu@100000101 {
483            device_type = "cpu";
484            compatible = "arm,cortex-a53";
485            reg = <0x1 0x101>;
486            enable-method = "psci";
487            cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
488                    <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
489        };
490
491        cpu@100010000 {
492            device_type = "cpu";
493            compatible = "arm,cortex-a53";
494            reg = <0x1 0x10000>;
495            enable-method = "psci";
496            cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
497                    <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
498        };
499
500        cpu@100010001 {
501            device_type = "cpu";
502            compatible = "arm,cortex-a53";
503            reg = <0x1 0x10001>;
504            enable-method = "psci";
505            cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
506                    <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
507        };
508
509        cpu@100010100 {
510            device_type = "cpu";
511            compatible = "arm,cortex-a53";
512            reg = <0x1 0x10100>;
513            enable-method = "psci";
514            cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
515                    <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
516        };
517
518        cpu@100010101 {
519            device_type = "cpu";
520            compatible = "arm,cortex-a53";
521            reg = <0x1 0x10101>;
522            enable-method = "psci";
523            cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
524                    <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
525        };
526
527        idle-states {
528            entry-method = "psci";
529
530            CPU_RETENTION_0_0: cpu-retention-0-0 {
531                compatible = "arm,idle-state";
532                arm,psci-suspend-param = <0x0010000>;
533                entry-latency-us = <20>;
534                exit-latency-us = <40>;
535                min-residency-us = <80>;
536            };
537
538            CLUSTER_RETENTION_0: cluster-retention-0 {
539                compatible = "arm,idle-state";
540                local-timer-stop;
541                arm,psci-suspend-param = <0x1010000>;
542                entry-latency-us = <50>;
543                exit-latency-us = <100>;
544                min-residency-us = <250>;
545                wakeup-latency-us = <130>;
546            };
547
548            CPU_SLEEP_0_0: cpu-sleep-0-0 {
549                compatible = "arm,idle-state";
550                local-timer-stop;
551                arm,psci-suspend-param = <0x0010000>;
552                entry-latency-us = <250>;
553                exit-latency-us = <500>;
554                min-residency-us = <950>;
555            };
556
557            CLUSTER_SLEEP_0: cluster-sleep-0 {
558                compatible = "arm,idle-state";
559                local-timer-stop;
560                arm,psci-suspend-param = <0x1010000>;
561                entry-latency-us = <600>;
562                exit-latency-us = <1100>;
563                min-residency-us = <2700>;
564                wakeup-latency-us = <1500>;
565            };
566
567            CPU_RETENTION_1_0: cpu-retention-1-0 {
568                compatible = "arm,idle-state";
569                arm,psci-suspend-param = <0x0010000>;
570                entry-latency-us = <20>;
571                exit-latency-us = <40>;
572                min-residency-us = <90>;
573            };
574
575            CLUSTER_RETENTION_1: cluster-retention-1 {
576                compatible = "arm,idle-state";
577                local-timer-stop;
578                arm,psci-suspend-param = <0x1010000>;
579                entry-latency-us = <50>;
580                exit-latency-us = <100>;
581                min-residency-us = <270>;
582                wakeup-latency-us = <100>;
583            };
584
585            CPU_SLEEP_1_0: cpu-sleep-1-0 {
586                compatible = "arm,idle-state";
587                local-timer-stop;
588                arm,psci-suspend-param = <0x0010000>;
589                entry-latency-us = <70>;
590                exit-latency-us = <100>;
591                min-residency-us = <300>;
592                wakeup-latency-us = <150>;
593            };
594
595            CLUSTER_SLEEP_1: cluster-sleep-1 {
596                compatible = "arm,idle-state";
597                local-timer-stop;
598                arm,psci-suspend-param = <0x1010000>;
599                entry-latency-us = <500>;
600                exit-latency-us = <1200>;
601                min-residency-us = <3500>;
602                wakeup-latency-us = <1300>;
603            };
604        };
605    };
606
607  - |
608    // Example 2 (ARM 32-bit, 8-cpu system, two clusters):
609
610    cpus {
611        #size-cells = <0>;
612        #address-cells = <1>;
613
614        cpu@0 {
615            device_type = "cpu";
616            compatible = "arm,cortex-a15";
617            reg = <0x0>;
618            cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
619        };
620
621        cpu@1 {
622            device_type = "cpu";
623            compatible = "arm,cortex-a15";
624            reg = <0x1>;
625            cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
626        };
627
628        cpu@2 {
629            device_type = "cpu";
630            compatible = "arm,cortex-a15";
631            reg = <0x2>;
632            cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
633        };
634
635        cpu@3 {
636            device_type = "cpu";
637            compatible = "arm,cortex-a15";
638            reg = <0x3>;
639            cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
640        };
641
642        cpu@100 {
643            device_type = "cpu";
644            compatible = "arm,cortex-a7";
645            reg = <0x100>;
646            cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
647        };
648
649        cpu@101 {
650            device_type = "cpu";
651            compatible = "arm,cortex-a7";
652            reg = <0x101>;
653            cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
654        };
655
656        cpu@102 {
657            device_type = "cpu";
658            compatible = "arm,cortex-a7";
659            reg = <0x102>;
660            cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
661        };
662
663        cpu@103 {
664            device_type = "cpu";
665            compatible = "arm,cortex-a7";
666            reg = <0x103>;
667            cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
668        };
669
670        idle-states {
671            cpu_sleep_0_0: cpu-sleep-0-0 {
672                compatible = "arm,idle-state";
673                local-timer-stop;
674                entry-latency-us = <200>;
675                exit-latency-us = <100>;
676                min-residency-us = <400>;
677                wakeup-latency-us = <250>;
678            };
679
680            cluster_sleep_0: cluster-sleep-0 {
681                compatible = "arm,idle-state";
682                local-timer-stop;
683                entry-latency-us = <500>;
684                exit-latency-us = <1500>;
685                min-residency-us = <2500>;
686                wakeup-latency-us = <1700>;
687            };
688
689            cpu_sleep_1_0: cpu-sleep-1-0 {
690                compatible = "arm,idle-state";
691                local-timer-stop;
692                entry-latency-us = <300>;
693                exit-latency-us = <500>;
694                min-residency-us = <900>;
695                wakeup-latency-us = <600>;
696            };
697
698            cluster_sleep_1: cluster-sleep-1 {
699                compatible = "arm,idle-state";
700                local-timer-stop;
701                entry-latency-us = <800>;
702                exit-latency-us = <2000>;
703                min-residency-us = <6500>;
704                wakeup-latency-us = <2300>;
705            };
706        };
707    };
708
709  - |
710    // Example 3 (RISC-V 64-bit, 4-cpu systems, two clusters):
711
712    cpus {
713        #size-cells = <0>;
714        #address-cells = <1>;
715
716        cpu@0 {
717            device_type = "cpu";
718            compatible = "riscv";
719            reg = <0x0>;
720            riscv,isa = "rv64imafdc";
721            mmu-type = "riscv,sv48";
722            cpu-idle-states = <&CPU_RET_0_0>, <&CPU_NONRET_0_0>,
723                            <&CLUSTER_RET_0>, <&CLUSTER_NONRET_0>;
724
725            cpu_intc0: interrupt-controller {
726                #interrupt-cells = <1>;
727                compatible = "riscv,cpu-intc";
728                interrupt-controller;
729            };
730        };
731
732        cpu@1 {
733            device_type = "cpu";
734            compatible = "riscv";
735            reg = <0x1>;
736            riscv,isa = "rv64imafdc";
737            mmu-type = "riscv,sv48";
738            cpu-idle-states = <&CPU_RET_0_0>, <&CPU_NONRET_0_0>,
739                            <&CLUSTER_RET_0>, <&CLUSTER_NONRET_0>;
740
741            cpu_intc1: interrupt-controller {
742                #interrupt-cells = <1>;
743                compatible = "riscv,cpu-intc";
744                interrupt-controller;
745            };
746        };
747
748        cpu@10 {
749            device_type = "cpu";
750            compatible = "riscv";
751            reg = <0x10>;
752            riscv,isa = "rv64imafdc";
753            mmu-type = "riscv,sv48";
754            cpu-idle-states = <&CPU_RET_1_0>, <&CPU_NONRET_1_0>,
755                            <&CLUSTER_RET_1>, <&CLUSTER_NONRET_1>;
756
757            cpu_intc10: interrupt-controller {
758                #interrupt-cells = <1>;
759                compatible = "riscv,cpu-intc";
760                interrupt-controller;
761            };
762        };
763
764        cpu@11 {
765            device_type = "cpu";
766            compatible = "riscv";
767            reg = <0x11>;
768            riscv,isa = "rv64imafdc";
769            mmu-type = "riscv,sv48";
770            cpu-idle-states = <&CPU_RET_1_0>, <&CPU_NONRET_1_0>,
771                            <&CLUSTER_RET_1>, <&CLUSTER_NONRET_1>;
772
773            cpu_intc11: interrupt-controller {
774                #interrupt-cells = <1>;
775                compatible = "riscv,cpu-intc";
776                interrupt-controller;
777            };
778        };
779
780        idle-states {
781            CPU_RET_0_0: cpu-retentive-0-0 {
782                compatible = "riscv,idle-state";
783                riscv,sbi-suspend-param = <0x10000000>;
784                entry-latency-us = <20>;
785                exit-latency-us = <40>;
786                min-residency-us = <80>;
787            };
788
789            CPU_NONRET_0_0: cpu-nonretentive-0-0 {
790                compatible = "riscv,idle-state";
791                riscv,sbi-suspend-param = <0x90000000>;
792                entry-latency-us = <250>;
793                exit-latency-us = <500>;
794                min-residency-us = <950>;
795            };
796
797            CLUSTER_RET_0: cluster-retentive-0 {
798                compatible = "riscv,idle-state";
799                riscv,sbi-suspend-param = <0x11000000>;
800                local-timer-stop;
801                entry-latency-us = <50>;
802                exit-latency-us = <100>;
803                min-residency-us = <250>;
804                wakeup-latency-us = <130>;
805            };
806
807            CLUSTER_NONRET_0: cluster-nonretentive-0 {
808                compatible = "riscv,idle-state";
809                riscv,sbi-suspend-param = <0x91000000>;
810                local-timer-stop;
811                entry-latency-us = <600>;
812                exit-latency-us = <1100>;
813                min-residency-us = <2700>;
814                wakeup-latency-us = <1500>;
815            };
816
817            CPU_RET_1_0: cpu-retentive-1-0 {
818                compatible = "riscv,idle-state";
819                riscv,sbi-suspend-param = <0x10000010>;
820                entry-latency-us = <20>;
821                exit-latency-us = <40>;
822                min-residency-us = <80>;
823            };
824
825            CPU_NONRET_1_0: cpu-nonretentive-1-0 {
826                compatible = "riscv,idle-state";
827                riscv,sbi-suspend-param = <0x90000010>;
828                entry-latency-us = <250>;
829                exit-latency-us = <500>;
830                min-residency-us = <950>;
831            };
832
833            CLUSTER_RET_1: cluster-retentive-1 {
834                compatible = "riscv,idle-state";
835                riscv,sbi-suspend-param = <0x11000010>;
836                local-timer-stop;
837                entry-latency-us = <50>;
838                exit-latency-us = <100>;
839                min-residency-us = <250>;
840                wakeup-latency-us = <130>;
841            };
842
843            CLUSTER_NONRET_1: cluster-nonretentive-1 {
844                compatible = "riscv,idle-state";
845                riscv,sbi-suspend-param = <0x91000010>;
846                local-timer-stop;
847                entry-latency-us = <600>;
848                exit-latency-us = <1100>;
849                min-residency-us = <2700>;
850                wakeup-latency-us = <1500>;
851            };
852        };
853    };
854
855...
856