1.. SPDX-License-Identifier: GPL-2.0 2 3Writing Tests 4============= 5 6Test Cases 7---------- 8 9The fundamental unit in KUnit is the test case. A test case is a function with 10the signature ``void (*)(struct kunit *test)``. It calls the function under test 11and then sets *expectations* for what should happen. For example: 12 13.. code-block:: c 14 15 void example_test_success(struct kunit *test) 16 { 17 } 18 19 void example_test_failure(struct kunit *test) 20 { 21 KUNIT_FAIL(test, "This test never passes."); 22 } 23 24In the above example, ``example_test_success`` always passes because it does 25nothing; no expectations are set, and therefore all expectations pass. On the 26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, 27which is a special expectation that logs a message and causes the test case to 28fail. 29 30Expectations 31~~~~~~~~~~~~ 32An *expectation* specifies that we expect a piece of code to do something in a 33test. An expectation is called like a function. A test is made by setting 34expectations about the behavior of a piece of code under test. When one or more 35expectations fail, the test case fails and information about the failure is 36logged. For example: 37 38.. code-block:: c 39 40 void add_test_basic(struct kunit *test) 41 { 42 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 43 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 44 } 45 46In the above example, ``add_test_basic`` makes a number of assertions about the 47behavior of a function called ``add``. The first parameter is always of type 48``struct kunit *``, which contains information about the current test context. 49The second parameter, in this case, is what the value is expected to be. The 50last value is what the value actually is. If ``add`` passes all of these 51expectations, the test case, ``add_test_basic`` will pass; if any one of these 52expectations fails, the test case will fail. 53 54A test case *fails* when any expectation is violated; however, the test will 55continue to run, and try other expectations until the test case ends or is 56otherwise terminated. This is as opposed to *assertions* which are discussed 57later. 58 59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst. 60 61.. note:: 62 A single test case should be short, easy to understand, and focused on a 63 single behavior. 64 65For example, if we want to rigorously test the ``add`` function above, create 66additional tests cases which would test each property that an ``add`` function 67should have as shown below: 68 69.. code-block:: c 70 71 void add_test_basic(struct kunit *test) 72 { 73 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 74 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 75 } 76 77 void add_test_negative(struct kunit *test) 78 { 79 KUNIT_EXPECT_EQ(test, 0, add(-1, 1)); 80 } 81 82 void add_test_max(struct kunit *test) 83 { 84 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX)); 85 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN)); 86 } 87 88 void add_test_overflow(struct kunit *test) 89 { 90 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); 91 } 92 93Assertions 94~~~~~~~~~~ 95 96An assertion is like an expectation, except that the assertion immediately 97terminates the test case if the condition is not satisfied. For example: 98 99.. code-block:: c 100 101 static void test_sort(struct kunit *test) 102 { 103 int *a, i, r = 1; 104 a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); 105 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); 106 for (i = 0; i < TEST_LEN; i++) { 107 r = (r * 725861) % 6599; 108 a[i] = r; 109 } 110 sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); 111 for (i = 0; i < TEST_LEN-1; i++) 112 KUNIT_EXPECT_LE(test, a[i], a[i + 1]); 113 } 114 115In this example, we need to be able to allocate an array to test the ``sort()`` 116function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_NULL()`` to abort the test if 117there's an allocation error. 118 119.. note:: 120 In other test frameworks, ``ASSERT`` macros are often implemented by calling 121 ``return`` so they only work from the test function. In KUnit, we stop the 122 current kthread on failure, so you can call them from anywhere. 123 124Customizing error messages 125-------------------------- 126 127Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSERT`` macros have a ``_MSG`` 128variant. These take a format string and arguments to provide additional 129context to the automatically generated error messages. 130 131.. code-block:: c 132 133 char some_str[41]; 134 generate_sha1_hex_string(some_str); 135 136 /* Before. Not easy to tell why the test failed. */ 137 KUNIT_EXPECT_EQ(test, strlen(some_str), 40); 138 139 /* After. Now we see the offending string. */ 140 KUNIT_EXPECT_EQ_MSG(test, strlen(some_str), 40, "some_str='%s'", some_str); 141 142Alternatively, one can take full control over the error message by using 143``KUNIT_FAIL()``, e.g. 144 145.. code-block:: c 146 147 /* Before */ 148 KUNIT_EXPECT_EQ(test, some_setup_function(), 0); 149 150 /* After: full control over the failure message. */ 151 if (some_setup_function()) 152 KUNIT_FAIL(test, "Failed to setup thing for testing"); 153 154 155Test Suites 156~~~~~~~~~~~ 157 158We need many test cases covering all the unit's behaviors. It is common to have 159many similar tests. In order to reduce duplication in these closely related 160tests, most unit testing frameworks (including KUnit) provide the concept of a 161*test suite*. A test suite is a collection of test cases for a unit of code 162with optional setup and teardown functions that run before/after the whole 163suite and/or every test case. For example: 164 165.. code-block:: c 166 167 static struct kunit_case example_test_cases[] = { 168 KUNIT_CASE(example_test_foo), 169 KUNIT_CASE(example_test_bar), 170 KUNIT_CASE(example_test_baz), 171 {} 172 }; 173 174 static struct kunit_suite example_test_suite = { 175 .name = "example", 176 .init = example_test_init, 177 .exit = example_test_exit, 178 .suite_init = example_suite_init, 179 .suite_exit = example_suite_exit, 180 .test_cases = example_test_cases, 181 }; 182 kunit_test_suite(example_test_suite); 183 184In the above example, the test suite ``example_test_suite`` would first run 185``example_suite_init``, then run the test cases ``example_test_foo``, 186``example_test_bar``, and ``example_test_baz``. Each would have 187``example_test_init`` called immediately before it and ``example_test_exit`` 188called immediately after it. Finally, ``example_suite_exit`` would be called 189after everything else. ``kunit_test_suite(example_test_suite)`` registers the 190test suite with the KUnit test framework. 191 192.. note:: 193 A test case will only run if it is associated with a test suite. 194 195``kunit_test_suite(...)`` is a macro which tells the linker to put the 196specified test suite in a special linker section so that it can be run by KUnit 197either after ``late_init``, or when the test module is loaded (if the test was 198built as a module). 199 200For more information, see Documentation/dev-tools/kunit/api/test.rst. 201 202.. _kunit-on-non-uml: 203 204Writing Tests For Other Architectures 205------------------------------------- 206 207It is better to write tests that run on UML to tests that only run under a 208particular architecture. It is better to write tests that run under QEMU or 209another easy to obtain (and monetarily free) software environment to a specific 210piece of hardware. 211 212Nevertheless, there are still valid reasons to write a test that is architecture 213or hardware specific. For example, we might want to test code that really 214belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does 215not depend on physical hardware. Some of our test cases may not need hardware, 216only few tests actually require the hardware to test it. When hardware is not 217available, instead of disabling tests, we can skip them. 218 219Now that we have narrowed down exactly what bits are hardware specific, the 220actual procedure for writing and running the tests is same as writing normal 221KUnit tests. 222 223.. important:: 224 We may have to reset hardware state. If this is not possible, we may only 225 be able to run one test case per invocation. 226 227.. TODO(brendanhiggins@google.com): Add an actual example of an architecture- 228 dependent KUnit test. 229 230Common Patterns 231=============== 232 233Isolating Behavior 234------------------ 235 236Unit testing limits the amount of code under test to a single unit. It controls 237what code gets run when the unit under test calls a function. Where a function 238is exposed as part of an API such that the definition of that function can be 239changed without affecting the rest of the code base. In the kernel, this comes 240from two constructs: classes, which are structs that contain function pointers 241provided by the implementer, and architecture-specific functions, which have 242definitions selected at compile time. 243 244Classes 245~~~~~~~ 246 247Classes are not a construct that is built into the C programming language; 248however, it is an easily derived concept. Accordingly, in most cases, every 249project that does not use a standardized object oriented library (like GNOME's 250GObject) has their own slightly different way of doing object oriented 251programming; the Linux kernel is no exception. 252 253The central concept in kernel object oriented programming is the class. In the 254kernel, a *class* is a struct that contains function pointers. This creates a 255contract between *implementers* and *users* since it forces them to use the 256same function signature without having to call the function directly. To be a 257class, the function pointers must specify that a pointer to the class, known as 258a *class handle*, be one of the parameters. Thus the member functions (also 259known as *methods*) have access to member variables (also known as *fields*) 260allowing the same implementation to have multiple *instances*. 261 262A class can be *overridden* by *child classes* by embedding the *parent class* 263in the child class. Then when the child class *method* is called, the child 264implementation knows that the pointer passed to it is of a parent contained 265within the child. Thus, the child can compute the pointer to itself because the 266pointer to the parent is always a fixed offset from the pointer to the child. 267This offset is the offset of the parent contained in the child struct. For 268example: 269 270.. code-block:: c 271 272 struct shape { 273 int (*area)(struct shape *this); 274 }; 275 276 struct rectangle { 277 struct shape parent; 278 int length; 279 int width; 280 }; 281 282 int rectangle_area(struct shape *this) 283 { 284 struct rectangle *self = container_of(this, struct rectangle, parent); 285 286 return self->length * self->width; 287 }; 288 289 void rectangle_new(struct rectangle *self, int length, int width) 290 { 291 self->parent.area = rectangle_area; 292 self->length = length; 293 self->width = width; 294 } 295 296In this example, computing the pointer to the child from the pointer to the 297parent is done by ``container_of``. 298 299Faking Classes 300~~~~~~~~~~~~~~ 301 302In order to unit test a piece of code that calls a method in a class, the 303behavior of the method must be controllable, otherwise the test ceases to be a 304unit test and becomes an integration test. 305 306A fake class implements a piece of code that is different than what runs in a 307production instance, but behaves identical from the standpoint of the callers. 308This is done to replace a dependency that is hard to deal with, or is slow. For 309example, implementing a fake EEPROM that stores the "contents" in an 310internal buffer. Assume we have a class that represents an EEPROM: 311 312.. code-block:: c 313 314 struct eeprom { 315 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count); 316 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); 317 }; 318 319And we want to test code that buffers writes to the EEPROM: 320 321.. code-block:: c 322 323 struct eeprom_buffer { 324 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count); 325 int flush(struct eeprom_buffer *this); 326 size_t flush_count; /* Flushes when buffer exceeds flush_count. */ 327 }; 328 329 struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); 330 void destroy_eeprom_buffer(struct eeprom *eeprom); 331 332We can test this code by *faking out* the underlying EEPROM: 333 334.. code-block:: c 335 336 struct fake_eeprom { 337 struct eeprom parent; 338 char contents[FAKE_EEPROM_CONTENTS_SIZE]; 339 }; 340 341 ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count) 342 { 343 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 344 345 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 346 memcpy(buffer, this->contents + offset, count); 347 348 return count; 349 } 350 351 ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count) 352 { 353 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 354 355 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 356 memcpy(this->contents + offset, buffer, count); 357 358 return count; 359 } 360 361 void fake_eeprom_init(struct fake_eeprom *this) 362 { 363 this->parent.read = fake_eeprom_read; 364 this->parent.write = fake_eeprom_write; 365 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE); 366 } 367 368We can now use it to test ``struct eeprom_buffer``: 369 370.. code-block:: c 371 372 struct eeprom_buffer_test { 373 struct fake_eeprom *fake_eeprom; 374 struct eeprom_buffer *eeprom_buffer; 375 }; 376 377 static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test) 378 { 379 struct eeprom_buffer_test *ctx = test->priv; 380 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 381 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 382 char buffer[] = {0xff}; 383 384 eeprom_buffer->flush_count = SIZE_MAX; 385 386 eeprom_buffer->write(eeprom_buffer, buffer, 1); 387 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 388 389 eeprom_buffer->write(eeprom_buffer, buffer, 1); 390 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0); 391 392 eeprom_buffer->flush(eeprom_buffer); 393 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 394 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 395 } 396 397 static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test) 398 { 399 struct eeprom_buffer_test *ctx = test->priv; 400 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 401 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 402 char buffer[] = {0xff}; 403 404 eeprom_buffer->flush_count = 2; 405 406 eeprom_buffer->write(eeprom_buffer, buffer, 1); 407 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 408 409 eeprom_buffer->write(eeprom_buffer, buffer, 1); 410 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 411 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 412 } 413 414 static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test) 415 { 416 struct eeprom_buffer_test *ctx = test->priv; 417 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 418 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 419 char buffer[] = {0xff, 0xff}; 420 421 eeprom_buffer->flush_count = 2; 422 423 eeprom_buffer->write(eeprom_buffer, buffer, 1); 424 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 425 426 eeprom_buffer->write(eeprom_buffer, buffer, 2); 427 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 428 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 429 /* Should have only flushed the first two bytes. */ 430 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0); 431 } 432 433 static int eeprom_buffer_test_init(struct kunit *test) 434 { 435 struct eeprom_buffer_test *ctx; 436 437 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); 438 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); 439 440 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL); 441 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom); 442 fake_eeprom_init(ctx->fake_eeprom); 443 444 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent); 445 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer); 446 447 test->priv = ctx; 448 449 return 0; 450 } 451 452 static void eeprom_buffer_test_exit(struct kunit *test) 453 { 454 struct eeprom_buffer_test *ctx = test->priv; 455 456 destroy_eeprom_buffer(ctx->eeprom_buffer); 457 } 458 459Testing Against Multiple Inputs 460------------------------------- 461 462Testing just a few inputs is not enough to ensure that the code works correctly, 463for example: testing a hash function. 464 465We can write a helper macro or function. The function is called for each input. 466For example, to test ``sha1sum(1)``, we can write: 467 468.. code-block:: c 469 470 #define TEST_SHA1(in, want) \ 471 sha1sum(in, out); \ 472 KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in); 473 474 char out[40]; 475 TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); 476 TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169"); 477 478Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more 479detailed error and make the assertions clearer within the helper macros. 480 481The ``_MSG`` variants are useful when the same expectation is called multiple 482times (in a loop or helper function) and thus the line number is not enough to 483identify what failed, as shown below. 484 485In complicated cases, we recommend using a *table-driven test* compared to the 486helper macro variation, for example: 487 488.. code-block:: c 489 490 int i; 491 char out[40]; 492 493 struct sha1_test_case { 494 const char *str; 495 const char *sha1; 496 }; 497 498 struct sha1_test_case cases[] = { 499 { 500 .str = "hello world", 501 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 502 }, 503 { 504 .str = "hello world!", 505 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 506 }, 507 }; 508 for (i = 0; i < ARRAY_SIZE(cases); ++i) { 509 sha1sum(cases[i].str, out); 510 KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1, 511 "sha1sum(%s)", cases[i].str); 512 } 513 514 515There is more boilerplate code involved, but it can: 516 517* be more readable when there are multiple inputs/outputs (due to field names). 518 519 * For example, see ``fs/ext4/inode-test.c``. 520 521* reduce duplication if test cases are shared across multiple tests. 522 523 * For example: if we want to test ``sha256sum``, we could add a ``sha256`` 524 field and reuse ``cases``. 525 526* be converted to a "parameterized test". 527 528Parameterized Testing 529~~~~~~~~~~~~~~~~~~~~~ 530 531The table-driven testing pattern is common enough that KUnit has special 532support for it. 533 534By reusing the same ``cases`` array from above, we can write the test as a 535"parameterized test" with the following. 536 537.. code-block:: c 538 539 // This is copy-pasted from above. 540 struct sha1_test_case { 541 const char *str; 542 const char *sha1; 543 }; 544 const struct sha1_test_case cases[] = { 545 { 546 .str = "hello world", 547 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 548 }, 549 { 550 .str = "hello world!", 551 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 552 }, 553 }; 554 555 // Need a helper function to generate a name for each test case. 556 static void case_to_desc(const struct sha1_test_case *t, char *desc) 557 { 558 strcpy(desc, t->str); 559 } 560 // Creates `sha1_gen_params()` to iterate over `cases`. 561 KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc); 562 563 // Looks no different from a normal test. 564 static void sha1_test(struct kunit *test) 565 { 566 // This function can just contain the body of the for-loop. 567 // The former `cases[i]` is accessible under test->param_value. 568 char out[40]; 569 struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value); 570 571 sha1sum(test_param->str, out); 572 KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1, 573 "sha1sum(%s)", test_param->str); 574 } 575 576 // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the 577 // function declared by KUNIT_ARRAY_PARAM. 578 static struct kunit_case sha1_test_cases[] = { 579 KUNIT_CASE_PARAM(sha1_test, sha1_gen_params), 580 {} 581 }; 582 583Allocating Memory 584----------------- 585 586Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit 587will then ensure that the memory is freed once the test completes. 588 589This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit 590early from a test without having to worry about remembering to call ``kfree``. 591For example: 592 593.. code-block:: c 594 595 void example_test_allocation(struct kunit *test) 596 { 597 char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); 598 /* Ensure allocation succeeded. */ 599 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer); 600 601 KUNIT_ASSERT_STREQ(test, buffer, ""); 602 } 603 604 605Testing Static Functions 606------------------------ 607 608If we do not want to expose functions or variables for testing, one option is to 609conditionally ``#include`` the test file at the end of your .c file. For 610example: 611 612.. code-block:: c 613 614 /* In my_file.c */ 615 616 static int do_interesting_thing(); 617 618 #ifdef CONFIG_MY_KUNIT_TEST 619 #include "my_kunit_test.c" 620 #endif 621 622Injecting Test-Only Code 623------------------------ 624 625Similar to as shown above, we can add test-specific logic. For example: 626 627.. code-block:: c 628 629 /* In my_file.h */ 630 631 #ifdef CONFIG_MY_KUNIT_TEST 632 /* Defined in my_kunit_test.c */ 633 void test_only_hook(void); 634 #else 635 void test_only_hook(void) { } 636 #endif 637 638This test-only code can be made more useful by accessing the current ``kunit_test`` 639as shown in next section: *Accessing The Current Test*. 640 641Accessing The Current Test 642-------------------------- 643 644In some cases, we need to call test-only code from outside the test file. This 645is helpful, for example, when providing a fake implementation of a function, or 646to fail any current test from within an error handler. 647We can do this via the ``kunit_test`` field in ``task_struct``, which we can 648access using the ``kunit_get_current_test()`` function in ``kunit/test-bug.h``. 649 650``kunit_get_current_test()`` is safe to call even if KUnit is not enabled. If 651KUnit is not enabled, was built as a module (``CONFIG_KUNIT=m``), or no test is 652running in the current task, it will return ``NULL``. This compiles down to 653either a no-op or a static key check, so will have a negligible performance 654impact when no test is running. 655 656The example below uses this to implement a "mock" implementation of a function, ``foo``: 657 658.. code-block:: c 659 660 #include <kunit/test-bug.h> /* for kunit_get_current_test */ 661 662 struct test_data { 663 int foo_result; 664 int want_foo_called_with; 665 }; 666 667 static int fake_foo(int arg) 668 { 669 struct kunit *test = kunit_get_current_test(); 670 struct test_data *test_data = test->priv; 671 672 KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); 673 return test_data->foo_result; 674 } 675 676 static void example_simple_test(struct kunit *test) 677 { 678 /* Assume priv (private, a member used to pass test data from 679 * the init function) is allocated in the suite's .init */ 680 struct test_data *test_data = test->priv; 681 682 test_data->foo_result = 42; 683 test_data->want_foo_called_with = 1; 684 685 /* In a real test, we'd probably pass a pointer to fake_foo somewhere 686 * like an ops struct, etc. instead of calling it directly. */ 687 KUNIT_EXPECT_EQ(test, fake_foo(1), 42); 688 } 689 690In this example, we are using the ``priv`` member of ``struct kunit`` as a way 691of passing data to the test from the init function. In general ``priv`` is 692pointer that can be used for any user data. This is preferred over static 693variables, as it avoids concurrency issues. 694 695Had we wanted something more flexible, we could have used a named ``kunit_resource``. 696Each test can have multiple resources which have string names providing the same 697flexibility as a ``priv`` member, but also, for example, allowing helper 698functions to create resources without conflicting with each other. It is also 699possible to define a clean up function for each resource, making it easy to 700avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/resource.rst. 701 702Failing The Current Test 703------------------------ 704 705If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` 706which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. 707For example, we have an option to enable some extra debug checks on some data 708structures as shown below: 709 710.. code-block:: c 711 712 #include <kunit/test-bug.h> 713 714 #ifdef CONFIG_EXTRA_DEBUG_CHECKS 715 static void validate_my_data(struct data *data) 716 { 717 if (is_valid(data)) 718 return; 719 720 kunit_fail_current_test("data %p is invalid", data); 721 722 /* Normal, non-KUnit, error reporting code here. */ 723 } 724 #else 725 static void my_debug_function(void) { } 726 #endif 727 728``kunit_fail_current_test()`` is safe to call even if KUnit is not enabled. If 729KUnit is not enabled, was built as a module (``CONFIG_KUNIT=m``), or no test is 730running in the current task, it will do nothing. This compiles down to either a 731no-op or a static key check, so will have a negligible performance impact when 732no test is running. 733 734