1.. SPDX-License-Identifier: GPL-2.0 2 3Writing Tests 4============= 5 6Test Cases 7---------- 8 9The fundamental unit in KUnit is the test case. A test case is a function with 10the signature ``void (*)(struct kunit *test)``. It calls the function under test 11and then sets *expectations* for what should happen. For example: 12 13.. code-block:: c 14 15 void example_test_success(struct kunit *test) 16 { 17 } 18 19 void example_test_failure(struct kunit *test) 20 { 21 KUNIT_FAIL(test, "This test never passes."); 22 } 23 24In the above example, ``example_test_success`` always passes because it does 25nothing; no expectations are set, and therefore all expectations pass. On the 26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, 27which is a special expectation that logs a message and causes the test case to 28fail. 29 30Expectations 31~~~~~~~~~~~~ 32An *expectation* specifies that we expect a piece of code to do something in a 33test. An expectation is called like a function. A test is made by setting 34expectations about the behavior of a piece of code under test. When one or more 35expectations fail, the test case fails and information about the failure is 36logged. For example: 37 38.. code-block:: c 39 40 void add_test_basic(struct kunit *test) 41 { 42 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 43 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 44 } 45 46In the above example, ``add_test_basic`` makes a number of assertions about the 47behavior of a function called ``add``. The first parameter is always of type 48``struct kunit *``, which contains information about the current test context. 49The second parameter, in this case, is what the value is expected to be. The 50last value is what the value actually is. If ``add`` passes all of these 51expectations, the test case, ``add_test_basic`` will pass; if any one of these 52expectations fails, the test case will fail. 53 54A test case *fails* when any expectation is violated; however, the test will 55continue to run, and try other expectations until the test case ends or is 56otherwise terminated. This is as opposed to *assertions* which are discussed 57later. 58 59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst. 60 61.. note:: 62 A single test case should be short, easy to understand, and focused on a 63 single behavior. 64 65For example, if we want to rigorously test the ``add`` function above, create 66additional tests cases which would test each property that an ``add`` function 67should have as shown below: 68 69.. code-block:: c 70 71 void add_test_basic(struct kunit *test) 72 { 73 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 74 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 75 } 76 77 void add_test_negative(struct kunit *test) 78 { 79 KUNIT_EXPECT_EQ(test, 0, add(-1, 1)); 80 } 81 82 void add_test_max(struct kunit *test) 83 { 84 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX)); 85 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN)); 86 } 87 88 void add_test_overflow(struct kunit *test) 89 { 90 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); 91 } 92 93Assertions 94~~~~~~~~~~ 95 96An assertion is like an expectation, except that the assertion immediately 97terminates the test case if the condition is not satisfied. For example: 98 99.. code-block:: c 100 101 static void test_sort(struct kunit *test) 102 { 103 int *a, i, r = 1; 104 a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); 105 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); 106 for (i = 0; i < TEST_LEN; i++) { 107 r = (r * 725861) % 6599; 108 a[i] = r; 109 } 110 sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); 111 for (i = 0; i < TEST_LEN-1; i++) 112 KUNIT_EXPECT_LE(test, a[i], a[i + 1]); 113 } 114 115In this example, the method under test should return pointer to a value. If the 116pointer returns null or an errno, we want to stop the test since the following 117expectation could crash the test case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us 118to bail out of the test case if the appropriate conditions are not satisfied to 119complete the test. 120 121Test Suites 122~~~~~~~~~~~ 123 124We need many test cases covering all the unit's behaviors. It is common to have 125many similar tests. In order to reduce duplication in these closely related 126tests, most unit testing frameworks (including KUnit) provide the concept of a 127*test suite*. A test suite is a collection of test cases for a unit of code 128with optional setup and teardown functions that run before/after the whole 129suite and/or every test case. For example: 130 131.. code-block:: c 132 133 static struct kunit_case example_test_cases[] = { 134 KUNIT_CASE(example_test_foo), 135 KUNIT_CASE(example_test_bar), 136 KUNIT_CASE(example_test_baz), 137 {} 138 }; 139 140 static struct kunit_suite example_test_suite = { 141 .name = "example", 142 .init = example_test_init, 143 .exit = example_test_exit, 144 .suite_init = example_suite_init, 145 .suite_exit = example_suite_exit, 146 .test_cases = example_test_cases, 147 }; 148 kunit_test_suite(example_test_suite); 149 150In the above example, the test suite ``example_test_suite`` would first run 151``example_suite_init``, then run the test cases ``example_test_foo``, 152``example_test_bar``, and ``example_test_baz``. Each would have 153``example_test_init`` called immediately before it and ``example_test_exit`` 154called immediately after it. Finally, ``example_suite_exit`` would be called 155after everything else. ``kunit_test_suite(example_test_suite)`` registers the 156test suite with the KUnit test framework. 157 158.. note:: 159 A test case will only run if it is associated with a test suite. 160 161``kunit_test_suite(...)`` is a macro which tells the linker to put the 162specified test suite in a special linker section so that it can be run by KUnit 163either after ``late_init``, or when the test module is loaded (if the test was 164built as a module). 165 166For more information, see Documentation/dev-tools/kunit/api/test.rst. 167 168Writing Tests For Other Architectures 169------------------------------------- 170 171It is better to write tests that run on UML to tests that only run under a 172particular architecture. It is better to write tests that run under QEMU or 173another easy to obtain (and monetarily free) software environment to a specific 174piece of hardware. 175 176Nevertheless, there are still valid reasons to write a test that is architecture 177or hardware specific. For example, we might want to test code that really 178belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does 179not depend on physical hardware. Some of our test cases may not need hardware, 180only few tests actually require the hardware to test it. When hardware is not 181available, instead of disabling tests, we can skip them. 182 183Now that we have narrowed down exactly what bits are hardware specific, the 184actual procedure for writing and running the tests is same as writing normal 185KUnit tests. 186 187.. important:: 188 We may have to reset hardware state. If this is not possible, we may only 189 be able to run one test case per invocation. 190 191.. TODO(brendanhiggins@google.com): Add an actual example of an architecture- 192 dependent KUnit test. 193 194Common Patterns 195=============== 196 197Isolating Behavior 198------------------ 199 200Unit testing limits the amount of code under test to a single unit. It controls 201what code gets run when the unit under test calls a function. Where a function 202is exposed as part of an API such that the definition of that function can be 203changed without affecting the rest of the code base. In the kernel, this comes 204from two constructs: classes, which are structs that contain function pointers 205provided by the implementer, and architecture-specific functions, which have 206definitions selected at compile time. 207 208Classes 209~~~~~~~ 210 211Classes are not a construct that is built into the C programming language; 212however, it is an easily derived concept. Accordingly, in most cases, every 213project that does not use a standardized object oriented library (like GNOME's 214GObject) has their own slightly different way of doing object oriented 215programming; the Linux kernel is no exception. 216 217The central concept in kernel object oriented programming is the class. In the 218kernel, a *class* is a struct that contains function pointers. This creates a 219contract between *implementers* and *users* since it forces them to use the 220same function signature without having to call the function directly. To be a 221class, the function pointers must specify that a pointer to the class, known as 222a *class handle*, be one of the parameters. Thus the member functions (also 223known as *methods*) have access to member variables (also known as *fields*) 224allowing the same implementation to have multiple *instances*. 225 226A class can be *overridden* by *child classes* by embedding the *parent class* 227in the child class. Then when the child class *method* is called, the child 228implementation knows that the pointer passed to it is of a parent contained 229within the child. Thus, the child can compute the pointer to itself because the 230pointer to the parent is always a fixed offset from the pointer to the child. 231This offset is the offset of the parent contained in the child struct. For 232example: 233 234.. code-block:: c 235 236 struct shape { 237 int (*area)(struct shape *this); 238 }; 239 240 struct rectangle { 241 struct shape parent; 242 int length; 243 int width; 244 }; 245 246 int rectangle_area(struct shape *this) 247 { 248 struct rectangle *self = container_of(this, struct rectangle, parent); 249 250 return self->length * self->width; 251 }; 252 253 void rectangle_new(struct rectangle *self, int length, int width) 254 { 255 self->parent.area = rectangle_area; 256 self->length = length; 257 self->width = width; 258 } 259 260In this example, computing the pointer to the child from the pointer to the 261parent is done by ``container_of``. 262 263Faking Classes 264~~~~~~~~~~~~~~ 265 266In order to unit test a piece of code that calls a method in a class, the 267behavior of the method must be controllable, otherwise the test ceases to be a 268unit test and becomes an integration test. 269 270A fake class implements a piece of code that is different than what runs in a 271production instance, but behaves identical from the standpoint of the callers. 272This is done to replace a dependency that is hard to deal with, or is slow. For 273example, implementing a fake EEPROM that stores the "contents" in an 274internal buffer. Assume we have a class that represents an EEPROM: 275 276.. code-block:: c 277 278 struct eeprom { 279 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count); 280 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); 281 }; 282 283And we want to test code that buffers writes to the EEPROM: 284 285.. code-block:: c 286 287 struct eeprom_buffer { 288 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count); 289 int flush(struct eeprom_buffer *this); 290 size_t flush_count; /* Flushes when buffer exceeds flush_count. */ 291 }; 292 293 struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); 294 void destroy_eeprom_buffer(struct eeprom *eeprom); 295 296We can test this code by *faking out* the underlying EEPROM: 297 298.. code-block:: c 299 300 struct fake_eeprom { 301 struct eeprom parent; 302 char contents[FAKE_EEPROM_CONTENTS_SIZE]; 303 }; 304 305 ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count) 306 { 307 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 308 309 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 310 memcpy(buffer, this->contents + offset, count); 311 312 return count; 313 } 314 315 ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count) 316 { 317 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 318 319 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 320 memcpy(this->contents + offset, buffer, count); 321 322 return count; 323 } 324 325 void fake_eeprom_init(struct fake_eeprom *this) 326 { 327 this->parent.read = fake_eeprom_read; 328 this->parent.write = fake_eeprom_write; 329 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE); 330 } 331 332We can now use it to test ``struct eeprom_buffer``: 333 334.. code-block:: c 335 336 struct eeprom_buffer_test { 337 struct fake_eeprom *fake_eeprom; 338 struct eeprom_buffer *eeprom_buffer; 339 }; 340 341 static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test) 342 { 343 struct eeprom_buffer_test *ctx = test->priv; 344 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 345 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 346 char buffer[] = {0xff}; 347 348 eeprom_buffer->flush_count = SIZE_MAX; 349 350 eeprom_buffer->write(eeprom_buffer, buffer, 1); 351 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 352 353 eeprom_buffer->write(eeprom_buffer, buffer, 1); 354 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0); 355 356 eeprom_buffer->flush(eeprom_buffer); 357 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 358 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 359 } 360 361 static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test) 362 { 363 struct eeprom_buffer_test *ctx = test->priv; 364 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 365 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 366 char buffer[] = {0xff}; 367 368 eeprom_buffer->flush_count = 2; 369 370 eeprom_buffer->write(eeprom_buffer, buffer, 1); 371 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 372 373 eeprom_buffer->write(eeprom_buffer, buffer, 1); 374 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 375 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 376 } 377 378 static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test) 379 { 380 struct eeprom_buffer_test *ctx = test->priv; 381 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 382 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 383 char buffer[] = {0xff, 0xff}; 384 385 eeprom_buffer->flush_count = 2; 386 387 eeprom_buffer->write(eeprom_buffer, buffer, 1); 388 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 389 390 eeprom_buffer->write(eeprom_buffer, buffer, 2); 391 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 392 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 393 /* Should have only flushed the first two bytes. */ 394 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0); 395 } 396 397 static int eeprom_buffer_test_init(struct kunit *test) 398 { 399 struct eeprom_buffer_test *ctx; 400 401 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); 402 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); 403 404 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL); 405 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom); 406 fake_eeprom_init(ctx->fake_eeprom); 407 408 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent); 409 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer); 410 411 test->priv = ctx; 412 413 return 0; 414 } 415 416 static void eeprom_buffer_test_exit(struct kunit *test) 417 { 418 struct eeprom_buffer_test *ctx = test->priv; 419 420 destroy_eeprom_buffer(ctx->eeprom_buffer); 421 } 422 423Testing Against Multiple Inputs 424------------------------------- 425 426Testing just a few inputs is not enough to ensure that the code works correctly, 427for example: testing a hash function. 428 429We can write a helper macro or function. The function is called for each input. 430For example, to test ``sha1sum(1)``, we can write: 431 432.. code-block:: c 433 434 #define TEST_SHA1(in, want) \ 435 sha1sum(in, out); \ 436 KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in); 437 438 char out[40]; 439 TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); 440 TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169"); 441 442Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more 443detailed error and make the assertions clearer within the helper macros. 444 445The ``_MSG`` variants are useful when the same expectation is called multiple 446times (in a loop or helper function) and thus the line number is not enough to 447identify what failed, as shown below. 448 449In complicated cases, we recommend using a *table-driven test* compared to the 450helper macro variation, for example: 451 452.. code-block:: c 453 454 int i; 455 char out[40]; 456 457 struct sha1_test_case { 458 const char *str; 459 const char *sha1; 460 }; 461 462 struct sha1_test_case cases[] = { 463 { 464 .str = "hello world", 465 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 466 }, 467 { 468 .str = "hello world!", 469 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 470 }, 471 }; 472 for (i = 0; i < ARRAY_SIZE(cases); ++i) { 473 sha1sum(cases[i].str, out); 474 KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1, 475 "sha1sum(%s)", cases[i].str); 476 } 477 478 479There is more boilerplate code involved, but it can: 480 481* be more readable when there are multiple inputs/outputs (due to field names). 482 483 * For example, see ``fs/ext4/inode-test.c``. 484 485* reduce duplication if test cases are shared across multiple tests. 486 487 * For example: if we want to test ``sha256sum``, we could add a ``sha256`` 488 field and reuse ``cases``. 489 490* be converted to a "parameterized test". 491 492Parameterized Testing 493~~~~~~~~~~~~~~~~~~~~~ 494 495The table-driven testing pattern is common enough that KUnit has special 496support for it. 497 498By reusing the same ``cases`` array from above, we can write the test as a 499"parameterized test" with the following. 500 501.. code-block:: c 502 503 // This is copy-pasted from above. 504 struct sha1_test_case { 505 const char *str; 506 const char *sha1; 507 }; 508 struct sha1_test_case cases[] = { 509 { 510 .str = "hello world", 511 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 512 }, 513 { 514 .str = "hello world!", 515 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 516 }, 517 }; 518 519 // Need a helper function to generate a name for each test case. 520 static void case_to_desc(const struct sha1_test_case *t, char *desc) 521 { 522 strcpy(desc, t->str); 523 } 524 // Creates `sha1_gen_params()` to iterate over `cases`. 525 KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc); 526 527 // Looks no different from a normal test. 528 static void sha1_test(struct kunit *test) 529 { 530 // This function can just contain the body of the for-loop. 531 // The former `cases[i]` is accessible under test->param_value. 532 char out[40]; 533 struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value); 534 535 sha1sum(test_param->str, out); 536 KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1, 537 "sha1sum(%s)", test_param->str); 538 } 539 540 // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the 541 // function declared by KUNIT_ARRAY_PARAM. 542 static struct kunit_case sha1_test_cases[] = { 543 KUNIT_CASE_PARAM(sha1_test, sha1_gen_params), 544 {} 545 }; 546 547.. _kunit-on-non-uml: 548 549Exiting Early on Failed Expectations 550------------------------------------ 551 552We can use ``KUNIT_EXPECT_EQ`` to mark the test as failed and continue 553execution. In some cases, it is unsafe to continue. We can use the 554``KUNIT_ASSERT`` variant to exit on failure. 555 556.. code-block:: c 557 558 void example_test_user_alloc_function(struct kunit *test) 559 { 560 void *object = alloc_some_object_for_me(); 561 562 /* Make sure we got a valid pointer back. */ 563 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, object); 564 do_something_with_object(object); 565 } 566 567Allocating Memory 568----------------- 569 570Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit 571will then ensure that the memory is freed once the test completes. 572 573This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit 574early from a test without having to worry about remembering to call ``kfree``. 575For example: 576 577.. code-block:: c 578 579 void example_test_allocation(struct kunit *test) 580 { 581 char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); 582 /* Ensure allocation succeeded. */ 583 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer); 584 585 KUNIT_ASSERT_STREQ(test, buffer, ""); 586 } 587 588 589Testing Static Functions 590------------------------ 591 592If we do not want to expose functions or variables for testing, one option is to 593conditionally ``#include`` the test file at the end of your .c file. For 594example: 595 596.. code-block:: c 597 598 /* In my_file.c */ 599 600 static int do_interesting_thing(); 601 602 #ifdef CONFIG_MY_KUNIT_TEST 603 #include "my_kunit_test.c" 604 #endif 605 606Injecting Test-Only Code 607------------------------ 608 609Similar to as shown above, we can add test-specific logic. For example: 610 611.. code-block:: c 612 613 /* In my_file.h */ 614 615 #ifdef CONFIG_MY_KUNIT_TEST 616 /* Defined in my_kunit_test.c */ 617 void test_only_hook(void); 618 #else 619 void test_only_hook(void) { } 620 #endif 621 622This test-only code can be made more useful by accessing the current ``kunit_test`` 623as shown in next section: *Accessing The Current Test*. 624 625Accessing The Current Test 626-------------------------- 627 628In some cases, we need to call test-only code from outside the test file. 629For example, see example in section *Injecting Test-Only Code* or if 630we are providing a fake implementation of an ops struct. Using 631``kunit_test`` field in ``task_struct``, we can access it via 632``current->kunit_test``. 633 634The example below includes how to implement "mocking": 635 636.. code-block:: c 637 638 #include <linux/sched.h> /* for current */ 639 640 struct test_data { 641 int foo_result; 642 int want_foo_called_with; 643 }; 644 645 static int fake_foo(int arg) 646 { 647 struct kunit *test = current->kunit_test; 648 struct test_data *test_data = test->priv; 649 650 KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); 651 return test_data->foo_result; 652 } 653 654 static void example_simple_test(struct kunit *test) 655 { 656 /* Assume priv (private, a member used to pass test data from 657 * the init function) is allocated in the suite's .init */ 658 struct test_data *test_data = test->priv; 659 660 test_data->foo_result = 42; 661 test_data->want_foo_called_with = 1; 662 663 /* In a real test, we'd probably pass a pointer to fake_foo somewhere 664 * like an ops struct, etc. instead of calling it directly. */ 665 KUNIT_EXPECT_EQ(test, fake_foo(1), 42); 666 } 667 668In this example, we are using the ``priv`` member of ``struct kunit`` as a way 669of passing data to the test from the init function. In general ``priv`` is 670pointer that can be used for any user data. This is preferred over static 671variables, as it avoids concurrency issues. 672 673Had we wanted something more flexible, we could have used a named ``kunit_resource``. 674Each test can have multiple resources which have string names providing the same 675flexibility as a ``priv`` member, but also, for example, allowing helper 676functions to create resources without conflicting with each other. It is also 677possible to define a clean up function for each resource, making it easy to 678avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/test.rst. 679 680Failing The Current Test 681------------------------ 682 683If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` 684which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. 685For example, we have an option to enable some extra debug checks on some data 686structures as shown below: 687 688.. code-block:: c 689 690 #include <kunit/test-bug.h> 691 692 #ifdef CONFIG_EXTRA_DEBUG_CHECKS 693 static void validate_my_data(struct data *data) 694 { 695 if (is_valid(data)) 696 return; 697 698 kunit_fail_current_test("data %p is invalid", data); 699 700 /* Normal, non-KUnit, error reporting code here. */ 701 } 702 #else 703 static void my_debug_function(void) { } 704 #endif 705 706