1.. SPDX-License-Identifier: GPL-2.0 2 3Writing Tests 4============= 5 6Test Cases 7---------- 8 9The fundamental unit in KUnit is the test case. A test case is a function with 10the signature ``void (*)(struct kunit *test)``. It calls the function under test 11and then sets *expectations* for what should happen. For example: 12 13.. code-block:: c 14 15 void example_test_success(struct kunit *test) 16 { 17 } 18 19 void example_test_failure(struct kunit *test) 20 { 21 KUNIT_FAIL(test, "This test never passes."); 22 } 23 24In the above example, ``example_test_success`` always passes because it does 25nothing; no expectations are set, and therefore all expectations pass. On the 26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, 27which is a special expectation that logs a message and causes the test case to 28fail. 29 30Expectations 31~~~~~~~~~~~~ 32An *expectation* specifies that we expect a piece of code to do something in a 33test. An expectation is called like a function. A test is made by setting 34expectations about the behavior of a piece of code under test. When one or more 35expectations fail, the test case fails and information about the failure is 36logged. For example: 37 38.. code-block:: c 39 40 void add_test_basic(struct kunit *test) 41 { 42 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 43 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 44 } 45 46In the above example, ``add_test_basic`` makes a number of assertions about the 47behavior of a function called ``add``. The first parameter is always of type 48``struct kunit *``, which contains information about the current test context. 49The second parameter, in this case, is what the value is expected to be. The 50last value is what the value actually is. If ``add`` passes all of these 51expectations, the test case, ``add_test_basic`` will pass; if any one of these 52expectations fails, the test case will fail. 53 54A test case *fails* when any expectation is violated; however, the test will 55continue to run, and try other expectations until the test case ends or is 56otherwise terminated. This is as opposed to *assertions* which are discussed 57later. 58 59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst. 60 61.. note:: 62 A single test case should be short, easy to understand, and focused on a 63 single behavior. 64 65For example, if we want to rigorously test the ``add`` function above, create 66additional tests cases which would test each property that an ``add`` function 67should have as shown below: 68 69.. code-block:: c 70 71 void add_test_basic(struct kunit *test) 72 { 73 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 74 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 75 } 76 77 void add_test_negative(struct kunit *test) 78 { 79 KUNIT_EXPECT_EQ(test, 0, add(-1, 1)); 80 } 81 82 void add_test_max(struct kunit *test) 83 { 84 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX)); 85 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN)); 86 } 87 88 void add_test_overflow(struct kunit *test) 89 { 90 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); 91 } 92 93Assertions 94~~~~~~~~~~ 95 96An assertion is like an expectation, except that the assertion immediately 97terminates the test case if the condition is not satisfied. For example: 98 99.. code-block:: c 100 101 static void test_sort(struct kunit *test) 102 { 103 int *a, i, r = 1; 104 a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); 105 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); 106 for (i = 0; i < TEST_LEN; i++) { 107 r = (r * 725861) % 6599; 108 a[i] = r; 109 } 110 sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); 111 for (i = 0; i < TEST_LEN-1; i++) 112 KUNIT_EXPECT_LE(test, a[i], a[i + 1]); 113 } 114 115In this example, the method under test should return pointer to a value. If the 116pointer returns null or an errno, we want to stop the test since the following 117expectation could crash the test case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us 118to bail out of the test case if the appropriate conditions are not satisfied to 119complete the test. 120 121Test Suites 122~~~~~~~~~~~ 123 124We need many test cases covering all the unit's behaviors. It is common to have 125many similar tests. In order to reduce duplication in these closely related 126tests, most unit testing frameworks (including KUnit) provide the concept of a 127*test suite*. A test suite is a collection of test cases for a unit of code 128with a setup function that gets invoked before every test case and then a tear 129down function that gets invoked after every test case completes. For example: 130 131.. code-block:: c 132 133 static struct kunit_case example_test_cases[] = { 134 KUNIT_CASE(example_test_foo), 135 KUNIT_CASE(example_test_bar), 136 KUNIT_CASE(example_test_baz), 137 {} 138 }; 139 140 static struct kunit_suite example_test_suite = { 141 .name = "example", 142 .init = example_test_init, 143 .exit = example_test_exit, 144 .test_cases = example_test_cases, 145 }; 146 kunit_test_suite(example_test_suite); 147 148In the above example, the test suite ``example_test_suite`` would run the test 149cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``. Each 150would have ``example_test_init`` called immediately before it and 151``example_test_exit`` called immediately after it. 152``kunit_test_suite(example_test_suite)`` registers the test suite with the 153KUnit test framework. 154 155.. note:: 156 A test case will only run if it is associated with a test suite. 157 158``kunit_test_suite(...)`` is a macro which tells the linker to put the 159specified test suite in a special linker section so that it can be run by KUnit 160either after ``late_init``, or when the test module is loaded (if the test was 161built as a module). 162 163For more information, see Documentation/dev-tools/kunit/api/test.rst. 164 165Writing Tests For Other Architectures 166------------------------------------- 167 168It is better to write tests that run on UML to tests that only run under a 169particular architecture. It is better to write tests that run under QEMU or 170another easy to obtain (and monetarily free) software environment to a specific 171piece of hardware. 172 173Nevertheless, there are still valid reasons to write a test that is architecture 174or hardware specific. For example, we might want to test code that really 175belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does 176not depend on physical hardware. Some of our test cases may not need hardware, 177only few tests actually require the hardware to test it. When hardware is not 178available, instead of disabling tests, we can skip them. 179 180Now that we have narrowed down exactly what bits are hardware specific, the 181actual procedure for writing and running the tests is same as writing normal 182KUnit tests. 183 184.. important:: 185 We may have to reset hardware state. If this is not possible, we may only 186 be able to run one test case per invocation. 187 188.. TODO(brendanhiggins@google.com): Add an actual example of an architecture- 189 dependent KUnit test. 190 191Common Patterns 192=============== 193 194Isolating Behavior 195------------------ 196 197Unit testing limits the amount of code under test to a single unit. It controls 198what code gets run when the unit under test calls a function. Where a function 199is exposed as part of an API such that the definition of that function can be 200changed without affecting the rest of the code base. In the kernel, this comes 201from two constructs: classes, which are structs that contain function pointers 202provided by the implementer, and architecture-specific functions, which have 203definitions selected at compile time. 204 205Classes 206~~~~~~~ 207 208Classes are not a construct that is built into the C programming language; 209however, it is an easily derived concept. Accordingly, in most cases, every 210project that does not use a standardized object oriented library (like GNOME's 211GObject) has their own slightly different way of doing object oriented 212programming; the Linux kernel is no exception. 213 214The central concept in kernel object oriented programming is the class. In the 215kernel, a *class* is a struct that contains function pointers. This creates a 216contract between *implementers* and *users* since it forces them to use the 217same function signature without having to call the function directly. To be a 218class, the function pointers must specify that a pointer to the class, known as 219a *class handle*, be one of the parameters. Thus the member functions (also 220known as *methods*) have access to member variables (also known as *fields*) 221allowing the same implementation to have multiple *instances*. 222 223A class can be *overridden* by *child classes* by embedding the *parent class* 224in the child class. Then when the child class *method* is called, the child 225implementation knows that the pointer passed to it is of a parent contained 226within the child. Thus, the child can compute the pointer to itself because the 227pointer to the parent is always a fixed offset from the pointer to the child. 228This offset is the offset of the parent contained in the child struct. For 229example: 230 231.. code-block:: c 232 233 struct shape { 234 int (*area)(struct shape *this); 235 }; 236 237 struct rectangle { 238 struct shape parent; 239 int length; 240 int width; 241 }; 242 243 int rectangle_area(struct shape *this) 244 { 245 struct rectangle *self = container_of(this, struct shape, parent); 246 247 return self->length * self->width; 248 }; 249 250 void rectangle_new(struct rectangle *self, int length, int width) 251 { 252 self->parent.area = rectangle_area; 253 self->length = length; 254 self->width = width; 255 } 256 257In this example, computing the pointer to the child from the pointer to the 258parent is done by ``container_of``. 259 260Faking Classes 261~~~~~~~~~~~~~~ 262 263In order to unit test a piece of code that calls a method in a class, the 264behavior of the method must be controllable, otherwise the test ceases to be a 265unit test and becomes an integration test. 266 267A fake class implements a piece of code that is different than what runs in a 268production instance, but behaves identical from the standpoint of the callers. 269This is done to replace a dependency that is hard to deal with, or is slow. For 270example, implementing a fake EEPROM that stores the "contents" in an 271internal buffer. Assume we have a class that represents an EEPROM: 272 273.. code-block:: c 274 275 struct eeprom { 276 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count); 277 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); 278 }; 279 280And we want to test code that buffers writes to the EEPROM: 281 282.. code-block:: c 283 284 struct eeprom_buffer { 285 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count); 286 int flush(struct eeprom_buffer *this); 287 size_t flush_count; /* Flushes when buffer exceeds flush_count. */ 288 }; 289 290 struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); 291 void destroy_eeprom_buffer(struct eeprom *eeprom); 292 293We can test this code by *faking out* the underlying EEPROM: 294 295.. code-block:: c 296 297 struct fake_eeprom { 298 struct eeprom parent; 299 char contents[FAKE_EEPROM_CONTENTS_SIZE]; 300 }; 301 302 ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count) 303 { 304 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 305 306 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 307 memcpy(buffer, this->contents + offset, count); 308 309 return count; 310 } 311 312 ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count) 313 { 314 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 315 316 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 317 memcpy(this->contents + offset, buffer, count); 318 319 return count; 320 } 321 322 void fake_eeprom_init(struct fake_eeprom *this) 323 { 324 this->parent.read = fake_eeprom_read; 325 this->parent.write = fake_eeprom_write; 326 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE); 327 } 328 329We can now use it to test ``struct eeprom_buffer``: 330 331.. code-block:: c 332 333 struct eeprom_buffer_test { 334 struct fake_eeprom *fake_eeprom; 335 struct eeprom_buffer *eeprom_buffer; 336 }; 337 338 static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test) 339 { 340 struct eeprom_buffer_test *ctx = test->priv; 341 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 342 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 343 char buffer[] = {0xff}; 344 345 eeprom_buffer->flush_count = SIZE_MAX; 346 347 eeprom_buffer->write(eeprom_buffer, buffer, 1); 348 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 349 350 eeprom_buffer->write(eeprom_buffer, buffer, 1); 351 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0); 352 353 eeprom_buffer->flush(eeprom_buffer); 354 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 355 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 356 } 357 358 static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test) 359 { 360 struct eeprom_buffer_test *ctx = test->priv; 361 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 362 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 363 char buffer[] = {0xff}; 364 365 eeprom_buffer->flush_count = 2; 366 367 eeprom_buffer->write(eeprom_buffer, buffer, 1); 368 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 369 370 eeprom_buffer->write(eeprom_buffer, buffer, 1); 371 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 372 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 373 } 374 375 static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test) 376 { 377 struct eeprom_buffer_test *ctx = test->priv; 378 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 379 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 380 char buffer[] = {0xff, 0xff}; 381 382 eeprom_buffer->flush_count = 2; 383 384 eeprom_buffer->write(eeprom_buffer, buffer, 1); 385 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 386 387 eeprom_buffer->write(eeprom_buffer, buffer, 2); 388 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 389 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 390 /* Should have only flushed the first two bytes. */ 391 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0); 392 } 393 394 static int eeprom_buffer_test_init(struct kunit *test) 395 { 396 struct eeprom_buffer_test *ctx; 397 398 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); 399 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); 400 401 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL); 402 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom); 403 fake_eeprom_init(ctx->fake_eeprom); 404 405 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent); 406 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer); 407 408 test->priv = ctx; 409 410 return 0; 411 } 412 413 static void eeprom_buffer_test_exit(struct kunit *test) 414 { 415 struct eeprom_buffer_test *ctx = test->priv; 416 417 destroy_eeprom_buffer(ctx->eeprom_buffer); 418 } 419 420Testing Against Multiple Inputs 421------------------------------- 422 423Testing just a few inputs is not enough to ensure that the code works correctly, 424for example: testing a hash function. 425 426We can write a helper macro or function. The function is called for each input. 427For example, to test ``sha1sum(1)``, we can write: 428 429.. code-block:: c 430 431 #define TEST_SHA1(in, want) \ 432 sha1sum(in, out); \ 433 KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in); 434 435 char out[40]; 436 TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); 437 TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169"); 438 439Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more 440detailed error and make the assertions clearer within the helper macros. 441 442The ``_MSG`` variants are useful when the same expectation is called multiple 443times (in a loop or helper function) and thus the line number is not enough to 444identify what failed, as shown below. 445 446In complicated cases, we recommend using a *table-driven test* compared to the 447helper macro variation, for example: 448 449.. code-block:: c 450 451 int i; 452 char out[40]; 453 454 struct sha1_test_case { 455 const char *str; 456 const char *sha1; 457 }; 458 459 struct sha1_test_case cases[] = { 460 { 461 .str = "hello world", 462 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 463 }, 464 { 465 .str = "hello world!", 466 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 467 }, 468 }; 469 for (i = 0; i < ARRAY_SIZE(cases); ++i) { 470 sha1sum(cases[i].str, out); 471 KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1, 472 "sha1sum(%s)", cases[i].str); 473 } 474 475 476There is more boilerplate code involved, but it can: 477 478* be more readable when there are multiple inputs/outputs (due to field names). 479 480 * For example, see ``fs/ext4/inode-test.c``. 481 482* reduce duplication if test cases are shared across multiple tests. 483 484 * For example: if we want to test ``sha256sum``, we could add a ``sha256`` 485 field and reuse ``cases``. 486 487* be converted to a "parameterized test". 488 489Parameterized Testing 490~~~~~~~~~~~~~~~~~~~~~ 491 492The table-driven testing pattern is common enough that KUnit has special 493support for it. 494 495By reusing the same ``cases`` array from above, we can write the test as a 496"parameterized test" with the following. 497 498.. code-block:: c 499 500 // This is copy-pasted from above. 501 struct sha1_test_case { 502 const char *str; 503 const char *sha1; 504 }; 505 struct sha1_test_case cases[] = { 506 { 507 .str = "hello world", 508 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 509 }, 510 { 511 .str = "hello world!", 512 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 513 }, 514 }; 515 516 // Need a helper function to generate a name for each test case. 517 static void case_to_desc(const struct sha1_test_case *t, char *desc) 518 { 519 strcpy(desc, t->str); 520 } 521 // Creates `sha1_gen_params()` to iterate over `cases`. 522 KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc); 523 524 // Looks no different from a normal test. 525 static void sha1_test(struct kunit *test) 526 { 527 // This function can just contain the body of the for-loop. 528 // The former `cases[i]` is accessible under test->param_value. 529 char out[40]; 530 struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value); 531 532 sha1sum(test_param->str, out); 533 KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1, 534 "sha1sum(%s)", test_param->str); 535 } 536 537 // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the 538 // function declared by KUNIT_ARRAY_PARAM. 539 static struct kunit_case sha1_test_cases[] = { 540 KUNIT_CASE_PARAM(sha1_test, sha1_gen_params), 541 {} 542 }; 543 544.. _kunit-on-non-uml: 545 546Exiting Early on Failed Expectations 547------------------------------------ 548 549We can use ``KUNIT_EXPECT_EQ`` to mark the test as failed and continue 550execution. In some cases, it is unsafe to continue. We can use the 551``KUNIT_ASSERT`` variant to exit on failure. 552 553.. code-block:: c 554 555 void example_test_user_alloc_function(struct kunit *test) 556 { 557 void *object = alloc_some_object_for_me(); 558 559 /* Make sure we got a valid pointer back. */ 560 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, object); 561 do_something_with_object(object); 562 } 563 564Allocating Memory 565----------------- 566 567Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit 568will then ensure that the memory is freed once the test completes. 569 570This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit 571early from a test without having to worry about remembering to call ``kfree``. 572For example: 573 574.. code-block:: c 575 576 void example_test_allocation(struct kunit *test) 577 { 578 char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); 579 /* Ensure allocation succeeded. */ 580 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer); 581 582 KUNIT_ASSERT_STREQ(test, buffer, ""); 583 } 584 585 586Testing Static Functions 587------------------------ 588 589If we do not want to expose functions or variables for testing, one option is to 590conditionally ``#include`` the test file at the end of your .c file. For 591example: 592 593.. code-block:: c 594 595 /* In my_file.c */ 596 597 static int do_interesting_thing(); 598 599 #ifdef CONFIG_MY_KUNIT_TEST 600 #include "my_kunit_test.c" 601 #endif 602 603Injecting Test-Only Code 604------------------------ 605 606Similar to as shown above, we can add test-specific logic. For example: 607 608.. code-block:: c 609 610 /* In my_file.h */ 611 612 #ifdef CONFIG_MY_KUNIT_TEST 613 /* Defined in my_kunit_test.c */ 614 void test_only_hook(void); 615 #else 616 void test_only_hook(void) { } 617 #endif 618 619This test-only code can be made more useful by accessing the current ``kunit_test`` 620as shown in next section: *Accessing The Current Test*. 621 622Accessing The Current Test 623-------------------------- 624 625In some cases, we need to call test-only code from outside the test file. 626For example, see example in section *Injecting Test-Only Code* or if 627we are providing a fake implementation of an ops struct. Using 628``kunit_test`` field in ``task_struct``, we can access it via 629``current->kunit_test``. 630 631The example below includes how to implement "mocking": 632 633.. code-block:: c 634 635 #include <linux/sched.h> /* for current */ 636 637 struct test_data { 638 int foo_result; 639 int want_foo_called_with; 640 }; 641 642 static int fake_foo(int arg) 643 { 644 struct kunit *test = current->kunit_test; 645 struct test_data *test_data = test->priv; 646 647 KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); 648 return test_data->foo_result; 649 } 650 651 static void example_simple_test(struct kunit *test) 652 { 653 /* Assume priv (private, a member used to pass test data from 654 * the init function) is allocated in the suite's .init */ 655 struct test_data *test_data = test->priv; 656 657 test_data->foo_result = 42; 658 test_data->want_foo_called_with = 1; 659 660 /* In a real test, we'd probably pass a pointer to fake_foo somewhere 661 * like an ops struct, etc. instead of calling it directly. */ 662 KUNIT_EXPECT_EQ(test, fake_foo(1), 42); 663 } 664 665In this example, we are using the ``priv`` member of ``struct kunit`` as a way 666of passing data to the test from the init function. In general ``priv`` is 667pointer that can be used for any user data. This is preferred over static 668variables, as it avoids concurrency issues. 669 670Had we wanted something more flexible, we could have used a named ``kunit_resource``. 671Each test can have multiple resources which have string names providing the same 672flexibility as a ``priv`` member, but also, for example, allowing helper 673functions to create resources without conflicting with each other. It is also 674possible to define a clean up function for each resource, making it easy to 675avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/test.rst. 676 677Failing The Current Test 678------------------------ 679 680If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` 681which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. 682For example, we have an option to enable some extra debug checks on some data 683structures as shown below: 684 685.. code-block:: c 686 687 #include <kunit/test-bug.h> 688 689 #ifdef CONFIG_EXTRA_DEBUG_CHECKS 690 static void validate_my_data(struct data *data) 691 { 692 if (is_valid(data)) 693 return; 694 695 kunit_fail_current_test("data %p is invalid", data); 696 697 /* Normal, non-KUnit, error reporting code here. */ 698 } 699 #else 700 static void my_debug_function(void) { } 701 #endif 702 703