1.. SPDX-License-Identifier: GPL-2.0 2 3Writing Tests 4============= 5 6Test Cases 7---------- 8 9The fundamental unit in KUnit is the test case. A test case is a function with 10the signature ``void (*)(struct kunit *test)``. It calls the function under test 11and then sets *expectations* for what should happen. For example: 12 13.. code-block:: c 14 15 void example_test_success(struct kunit *test) 16 { 17 } 18 19 void example_test_failure(struct kunit *test) 20 { 21 KUNIT_FAIL(test, "This test never passes."); 22 } 23 24In the above example, ``example_test_success`` always passes because it does 25nothing; no expectations are set, and therefore all expectations pass. On the 26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, 27which is a special expectation that logs a message and causes the test case to 28fail. 29 30Expectations 31~~~~~~~~~~~~ 32An *expectation* specifies that we expect a piece of code to do something in a 33test. An expectation is called like a function. A test is made by setting 34expectations about the behavior of a piece of code under test. When one or more 35expectations fail, the test case fails and information about the failure is 36logged. For example: 37 38.. code-block:: c 39 40 void add_test_basic(struct kunit *test) 41 { 42 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 43 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 44 } 45 46In the above example, ``add_test_basic`` makes a number of assertions about the 47behavior of a function called ``add``. The first parameter is always of type 48``struct kunit *``, which contains information about the current test context. 49The second parameter, in this case, is what the value is expected to be. The 50last value is what the value actually is. If ``add`` passes all of these 51expectations, the test case, ``add_test_basic`` will pass; if any one of these 52expectations fails, the test case will fail. 53 54A test case *fails* when any expectation is violated; however, the test will 55continue to run, and try other expectations until the test case ends or is 56otherwise terminated. This is as opposed to *assertions* which are discussed 57later. 58 59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst. 60 61.. note:: 62 A single test case should be short, easy to understand, and focused on a 63 single behavior. 64 65For example, if we want to rigorously test the ``add`` function above, create 66additional tests cases which would test each property that an ``add`` function 67should have as shown below: 68 69.. code-block:: c 70 71 void add_test_basic(struct kunit *test) 72 { 73 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 74 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 75 } 76 77 void add_test_negative(struct kunit *test) 78 { 79 KUNIT_EXPECT_EQ(test, 0, add(-1, 1)); 80 } 81 82 void add_test_max(struct kunit *test) 83 { 84 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX)); 85 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN)); 86 } 87 88 void add_test_overflow(struct kunit *test) 89 { 90 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); 91 } 92 93Assertions 94~~~~~~~~~~ 95 96An assertion is like an expectation, except that the assertion immediately 97terminates the test case if the condition is not satisfied. For example: 98 99.. code-block:: c 100 101 static void test_sort(struct kunit *test) 102 { 103 int *a, i, r = 1; 104 a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); 105 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); 106 for (i = 0; i < TEST_LEN; i++) { 107 r = (r * 725861) % 6599; 108 a[i] = r; 109 } 110 sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); 111 for (i = 0; i < TEST_LEN-1; i++) 112 KUNIT_EXPECT_LE(test, a[i], a[i + 1]); 113 } 114 115In this example, we need to be able to allocate an array to test the ``sort()`` 116function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_NULL()`` to abort the test if 117there's an allocation error. 118 119.. note:: 120 In other test frameworks, ``ASSERT`` macros are often implemented by calling 121 ``return`` so they only work from the test function. In KUnit, we stop the 122 current kthread on failure, so you can call them from anywhere. 123 124.. note:: 125 Warning: There is an exception to the above rule. You shouldn't use assertions 126 in the suite's exit() function, or in the free function for a resource. These 127 run when a test is shutting down, and an assertion here prevents further 128 cleanup code from running, potentially leading to a memory leak. 129 130Customizing error messages 131-------------------------- 132 133Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSERT`` macros have a ``_MSG`` 134variant. These take a format string and arguments to provide additional 135context to the automatically generated error messages. 136 137.. code-block:: c 138 139 char some_str[41]; 140 generate_sha1_hex_string(some_str); 141 142 /* Before. Not easy to tell why the test failed. */ 143 KUNIT_EXPECT_EQ(test, strlen(some_str), 40); 144 145 /* After. Now we see the offending string. */ 146 KUNIT_EXPECT_EQ_MSG(test, strlen(some_str), 40, "some_str='%s'", some_str); 147 148Alternatively, one can take full control over the error message by using 149``KUNIT_FAIL()``, e.g. 150 151.. code-block:: c 152 153 /* Before */ 154 KUNIT_EXPECT_EQ(test, some_setup_function(), 0); 155 156 /* After: full control over the failure message. */ 157 if (some_setup_function()) 158 KUNIT_FAIL(test, "Failed to setup thing for testing"); 159 160 161Test Suites 162~~~~~~~~~~~ 163 164We need many test cases covering all the unit's behaviors. It is common to have 165many similar tests. In order to reduce duplication in these closely related 166tests, most unit testing frameworks (including KUnit) provide the concept of a 167*test suite*. A test suite is a collection of test cases for a unit of code 168with optional setup and teardown functions that run before/after the whole 169suite and/or every test case. 170 171.. note:: 172 A test case will only run if it is associated with a test suite. 173 174For example: 175 176.. code-block:: c 177 178 static struct kunit_case example_test_cases[] = { 179 KUNIT_CASE(example_test_foo), 180 KUNIT_CASE(example_test_bar), 181 KUNIT_CASE(example_test_baz), 182 {} 183 }; 184 185 static struct kunit_suite example_test_suite = { 186 .name = "example", 187 .init = example_test_init, 188 .exit = example_test_exit, 189 .suite_init = example_suite_init, 190 .suite_exit = example_suite_exit, 191 .test_cases = example_test_cases, 192 }; 193 kunit_test_suite(example_test_suite); 194 195In the above example, the test suite ``example_test_suite`` would first run 196``example_suite_init``, then run the test cases ``example_test_foo``, 197``example_test_bar``, and ``example_test_baz``. Each would have 198``example_test_init`` called immediately before it and ``example_test_exit`` 199called immediately after it. Finally, ``example_suite_exit`` would be called 200after everything else. ``kunit_test_suite(example_test_suite)`` registers the 201test suite with the KUnit test framework. 202 203.. note:: 204 The ``exit`` and ``suite_exit`` functions will run even if ``init`` or 205 ``suite_init`` fail. Make sure that they can handle any inconsistent 206 state which may result from ``init`` or ``suite_init`` encountering errors 207 or exiting early. 208 209``kunit_test_suite(...)`` is a macro which tells the linker to put the 210specified test suite in a special linker section so that it can be run by KUnit 211either after ``late_init``, or when the test module is loaded (if the test was 212built as a module). 213 214For more information, see Documentation/dev-tools/kunit/api/test.rst. 215 216.. _kunit-on-non-uml: 217 218Writing Tests For Other Architectures 219------------------------------------- 220 221It is better to write tests that run on UML to tests that only run under a 222particular architecture. It is better to write tests that run under QEMU or 223another easy to obtain (and monetarily free) software environment to a specific 224piece of hardware. 225 226Nevertheless, there are still valid reasons to write a test that is architecture 227or hardware specific. For example, we might want to test code that really 228belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does 229not depend on physical hardware. Some of our test cases may not need hardware, 230only few tests actually require the hardware to test it. When hardware is not 231available, instead of disabling tests, we can skip them. 232 233Now that we have narrowed down exactly what bits are hardware specific, the 234actual procedure for writing and running the tests is same as writing normal 235KUnit tests. 236 237.. important:: 238 We may have to reset hardware state. If this is not possible, we may only 239 be able to run one test case per invocation. 240 241.. TODO(brendanhiggins@google.com): Add an actual example of an architecture- 242 dependent KUnit test. 243 244Common Patterns 245=============== 246 247Isolating Behavior 248------------------ 249 250Unit testing limits the amount of code under test to a single unit. It controls 251what code gets run when the unit under test calls a function. Where a function 252is exposed as part of an API such that the definition of that function can be 253changed without affecting the rest of the code base. In the kernel, this comes 254from two constructs: classes, which are structs that contain function pointers 255provided by the implementer, and architecture-specific functions, which have 256definitions selected at compile time. 257 258Classes 259~~~~~~~ 260 261Classes are not a construct that is built into the C programming language; 262however, it is an easily derived concept. Accordingly, in most cases, every 263project that does not use a standardized object oriented library (like GNOME's 264GObject) has their own slightly different way of doing object oriented 265programming; the Linux kernel is no exception. 266 267The central concept in kernel object oriented programming is the class. In the 268kernel, a *class* is a struct that contains function pointers. This creates a 269contract between *implementers* and *users* since it forces them to use the 270same function signature without having to call the function directly. To be a 271class, the function pointers must specify that a pointer to the class, known as 272a *class handle*, be one of the parameters. Thus the member functions (also 273known as *methods*) have access to member variables (also known as *fields*) 274allowing the same implementation to have multiple *instances*. 275 276A class can be *overridden* by *child classes* by embedding the *parent class* 277in the child class. Then when the child class *method* is called, the child 278implementation knows that the pointer passed to it is of a parent contained 279within the child. Thus, the child can compute the pointer to itself because the 280pointer to the parent is always a fixed offset from the pointer to the child. 281This offset is the offset of the parent contained in the child struct. For 282example: 283 284.. code-block:: c 285 286 struct shape { 287 int (*area)(struct shape *this); 288 }; 289 290 struct rectangle { 291 struct shape parent; 292 int length; 293 int width; 294 }; 295 296 int rectangle_area(struct shape *this) 297 { 298 struct rectangle *self = container_of(this, struct rectangle, parent); 299 300 return self->length * self->width; 301 }; 302 303 void rectangle_new(struct rectangle *self, int length, int width) 304 { 305 self->parent.area = rectangle_area; 306 self->length = length; 307 self->width = width; 308 } 309 310In this example, computing the pointer to the child from the pointer to the 311parent is done by ``container_of``. 312 313Faking Classes 314~~~~~~~~~~~~~~ 315 316In order to unit test a piece of code that calls a method in a class, the 317behavior of the method must be controllable, otherwise the test ceases to be a 318unit test and becomes an integration test. 319 320A fake class implements a piece of code that is different than what runs in a 321production instance, but behaves identical from the standpoint of the callers. 322This is done to replace a dependency that is hard to deal with, or is slow. For 323example, implementing a fake EEPROM that stores the "contents" in an 324internal buffer. Assume we have a class that represents an EEPROM: 325 326.. code-block:: c 327 328 struct eeprom { 329 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count); 330 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); 331 }; 332 333And we want to test code that buffers writes to the EEPROM: 334 335.. code-block:: c 336 337 struct eeprom_buffer { 338 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count); 339 int flush(struct eeprom_buffer *this); 340 size_t flush_count; /* Flushes when buffer exceeds flush_count. */ 341 }; 342 343 struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); 344 void destroy_eeprom_buffer(struct eeprom *eeprom); 345 346We can test this code by *faking out* the underlying EEPROM: 347 348.. code-block:: c 349 350 struct fake_eeprom { 351 struct eeprom parent; 352 char contents[FAKE_EEPROM_CONTENTS_SIZE]; 353 }; 354 355 ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count) 356 { 357 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 358 359 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 360 memcpy(buffer, this->contents + offset, count); 361 362 return count; 363 } 364 365 ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count) 366 { 367 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 368 369 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 370 memcpy(this->contents + offset, buffer, count); 371 372 return count; 373 } 374 375 void fake_eeprom_init(struct fake_eeprom *this) 376 { 377 this->parent.read = fake_eeprom_read; 378 this->parent.write = fake_eeprom_write; 379 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE); 380 } 381 382We can now use it to test ``struct eeprom_buffer``: 383 384.. code-block:: c 385 386 struct eeprom_buffer_test { 387 struct fake_eeprom *fake_eeprom; 388 struct eeprom_buffer *eeprom_buffer; 389 }; 390 391 static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test) 392 { 393 struct eeprom_buffer_test *ctx = test->priv; 394 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 395 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 396 char buffer[] = {0xff}; 397 398 eeprom_buffer->flush_count = SIZE_MAX; 399 400 eeprom_buffer->write(eeprom_buffer, buffer, 1); 401 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 402 403 eeprom_buffer->write(eeprom_buffer, buffer, 1); 404 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0); 405 406 eeprom_buffer->flush(eeprom_buffer); 407 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 408 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 409 } 410 411 static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test) 412 { 413 struct eeprom_buffer_test *ctx = test->priv; 414 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 415 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 416 char buffer[] = {0xff}; 417 418 eeprom_buffer->flush_count = 2; 419 420 eeprom_buffer->write(eeprom_buffer, buffer, 1); 421 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 422 423 eeprom_buffer->write(eeprom_buffer, buffer, 1); 424 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 425 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 426 } 427 428 static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test) 429 { 430 struct eeprom_buffer_test *ctx = test->priv; 431 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 432 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 433 char buffer[] = {0xff, 0xff}; 434 435 eeprom_buffer->flush_count = 2; 436 437 eeprom_buffer->write(eeprom_buffer, buffer, 1); 438 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 439 440 eeprom_buffer->write(eeprom_buffer, buffer, 2); 441 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 442 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 443 /* Should have only flushed the first two bytes. */ 444 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0); 445 } 446 447 static int eeprom_buffer_test_init(struct kunit *test) 448 { 449 struct eeprom_buffer_test *ctx; 450 451 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); 452 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); 453 454 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL); 455 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom); 456 fake_eeprom_init(ctx->fake_eeprom); 457 458 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent); 459 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer); 460 461 test->priv = ctx; 462 463 return 0; 464 } 465 466 static void eeprom_buffer_test_exit(struct kunit *test) 467 { 468 struct eeprom_buffer_test *ctx = test->priv; 469 470 destroy_eeprom_buffer(ctx->eeprom_buffer); 471 } 472 473Testing Against Multiple Inputs 474------------------------------- 475 476Testing just a few inputs is not enough to ensure that the code works correctly, 477for example: testing a hash function. 478 479We can write a helper macro or function. The function is called for each input. 480For example, to test ``sha1sum(1)``, we can write: 481 482.. code-block:: c 483 484 #define TEST_SHA1(in, want) \ 485 sha1sum(in, out); \ 486 KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in); 487 488 char out[40]; 489 TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); 490 TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169"); 491 492Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more 493detailed error and make the assertions clearer within the helper macros. 494 495The ``_MSG`` variants are useful when the same expectation is called multiple 496times (in a loop or helper function) and thus the line number is not enough to 497identify what failed, as shown below. 498 499In complicated cases, we recommend using a *table-driven test* compared to the 500helper macro variation, for example: 501 502.. code-block:: c 503 504 int i; 505 char out[40]; 506 507 struct sha1_test_case { 508 const char *str; 509 const char *sha1; 510 }; 511 512 struct sha1_test_case cases[] = { 513 { 514 .str = "hello world", 515 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 516 }, 517 { 518 .str = "hello world!", 519 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 520 }, 521 }; 522 for (i = 0; i < ARRAY_SIZE(cases); ++i) { 523 sha1sum(cases[i].str, out); 524 KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1, 525 "sha1sum(%s)", cases[i].str); 526 } 527 528 529There is more boilerplate code involved, but it can: 530 531* be more readable when there are multiple inputs/outputs (due to field names). 532 533 * For example, see ``fs/ext4/inode-test.c``. 534 535* reduce duplication if test cases are shared across multiple tests. 536 537 * For example: if we want to test ``sha256sum``, we could add a ``sha256`` 538 field and reuse ``cases``. 539 540* be converted to a "parameterized test". 541 542Parameterized Testing 543~~~~~~~~~~~~~~~~~~~~~ 544 545The table-driven testing pattern is common enough that KUnit has special 546support for it. 547 548By reusing the same ``cases`` array from above, we can write the test as a 549"parameterized test" with the following. 550 551.. code-block:: c 552 553 // This is copy-pasted from above. 554 struct sha1_test_case { 555 const char *str; 556 const char *sha1; 557 }; 558 const struct sha1_test_case cases[] = { 559 { 560 .str = "hello world", 561 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 562 }, 563 { 564 .str = "hello world!", 565 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 566 }, 567 }; 568 569 // Need a helper function to generate a name for each test case. 570 static void case_to_desc(const struct sha1_test_case *t, char *desc) 571 { 572 strcpy(desc, t->str); 573 } 574 // Creates `sha1_gen_params()` to iterate over `cases`. 575 KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc); 576 577 // Looks no different from a normal test. 578 static void sha1_test(struct kunit *test) 579 { 580 // This function can just contain the body of the for-loop. 581 // The former `cases[i]` is accessible under test->param_value. 582 char out[40]; 583 struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value); 584 585 sha1sum(test_param->str, out); 586 KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1, 587 "sha1sum(%s)", test_param->str); 588 } 589 590 // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the 591 // function declared by KUNIT_ARRAY_PARAM. 592 static struct kunit_case sha1_test_cases[] = { 593 KUNIT_CASE_PARAM(sha1_test, sha1_gen_params), 594 {} 595 }; 596 597Allocating Memory 598----------------- 599 600Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit 601will then ensure that the memory is freed once the test completes. 602 603This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit 604early from a test without having to worry about remembering to call ``kfree``. 605For example: 606 607.. code-block:: c 608 609 void example_test_allocation(struct kunit *test) 610 { 611 char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); 612 /* Ensure allocation succeeded. */ 613 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer); 614 615 KUNIT_ASSERT_STREQ(test, buffer, ""); 616 } 617 618Registering Cleanup Actions 619--------------------------- 620 621If you need to perform some cleanup beyond simple use of ``kunit_kzalloc``, 622you can register a custom "deferred action", which is a cleanup function 623run when the test exits (whether cleanly, or via a failed assertion). 624 625Actions are simple functions with no return value, and a single ``void*`` 626context argument, and fulfill the same role as "cleanup" functions in Python 627and Go tests, "defer" statements in languages which support them, and 628(in some cases) destructors in RAII languages. 629 630These are very useful for unregistering things from global lists, closing 631files or other resources, or freeing resources. 632 633For example: 634 635.. code-block:: C 636 637 static void cleanup_device(void *ctx) 638 { 639 struct device *dev = (struct device *)ctx; 640 641 device_unregister(dev); 642 } 643 644 void example_device_test(struct kunit *test) 645 { 646 struct my_device dev; 647 648 device_register(&dev); 649 650 kunit_add_action(test, &cleanup_device, &dev); 651 } 652 653Note that, for functions like device_unregister which only accept a single 654pointer-sized argument, it's possible to directly cast that function to 655a ``kunit_action_t`` rather than writing a wrapper function, for example: 656 657.. code-block:: C 658 659 kunit_add_action(test, (kunit_action_t *)&device_unregister, &dev); 660 661``kunit_add_action`` can fail if, for example, the system is out of memory. 662You can use ``kunit_add_action_or_reset`` instead which runs the action 663immediately if it cannot be deferred. 664 665If you need more control over when the cleanup function is called, you 666can trigger it early using ``kunit_release_action``, or cancel it entirely 667with ``kunit_remove_action``. 668 669 670Testing Static Functions 671------------------------ 672 673If we do not want to expose functions or variables for testing, one option is to 674conditionally ``#include`` the test file at the end of your .c file. For 675example: 676 677.. code-block:: c 678 679 /* In my_file.c */ 680 681 static int do_interesting_thing(); 682 683 #ifdef CONFIG_MY_KUNIT_TEST 684 #include "my_kunit_test.c" 685 #endif 686 687Injecting Test-Only Code 688------------------------ 689 690Similar to as shown above, we can add test-specific logic. For example: 691 692.. code-block:: c 693 694 /* In my_file.h */ 695 696 #ifdef CONFIG_MY_KUNIT_TEST 697 /* Defined in my_kunit_test.c */ 698 void test_only_hook(void); 699 #else 700 void test_only_hook(void) { } 701 #endif 702 703This test-only code can be made more useful by accessing the current ``kunit_test`` 704as shown in next section: *Accessing The Current Test*. 705 706Accessing The Current Test 707-------------------------- 708 709In some cases, we need to call test-only code from outside the test file. This 710is helpful, for example, when providing a fake implementation of a function, or 711to fail any current test from within an error handler. 712We can do this via the ``kunit_test`` field in ``task_struct``, which we can 713access using the ``kunit_get_current_test()`` function in ``kunit/test-bug.h``. 714 715``kunit_get_current_test()`` is safe to call even if KUnit is not enabled. If 716KUnit is not enabled, or if no test is running in the current task, it will 717return ``NULL``. This compiles down to either a no-op or a static key check, 718so will have a negligible performance impact when no test is running. 719 720The example below uses this to implement a "mock" implementation of a function, ``foo``: 721 722.. code-block:: c 723 724 #include <kunit/test-bug.h> /* for kunit_get_current_test */ 725 726 struct test_data { 727 int foo_result; 728 int want_foo_called_with; 729 }; 730 731 static int fake_foo(int arg) 732 { 733 struct kunit *test = kunit_get_current_test(); 734 struct test_data *test_data = test->priv; 735 736 KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); 737 return test_data->foo_result; 738 } 739 740 static void example_simple_test(struct kunit *test) 741 { 742 /* Assume priv (private, a member used to pass test data from 743 * the init function) is allocated in the suite's .init */ 744 struct test_data *test_data = test->priv; 745 746 test_data->foo_result = 42; 747 test_data->want_foo_called_with = 1; 748 749 /* In a real test, we'd probably pass a pointer to fake_foo somewhere 750 * like an ops struct, etc. instead of calling it directly. */ 751 KUNIT_EXPECT_EQ(test, fake_foo(1), 42); 752 } 753 754In this example, we are using the ``priv`` member of ``struct kunit`` as a way 755of passing data to the test from the init function. In general ``priv`` is 756pointer that can be used for any user data. This is preferred over static 757variables, as it avoids concurrency issues. 758 759Had we wanted something more flexible, we could have used a named ``kunit_resource``. 760Each test can have multiple resources which have string names providing the same 761flexibility as a ``priv`` member, but also, for example, allowing helper 762functions to create resources without conflicting with each other. It is also 763possible to define a clean up function for each resource, making it easy to 764avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/resource.rst. 765 766Failing The Current Test 767------------------------ 768 769If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` 770which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. 771For example, we have an option to enable some extra debug checks on some data 772structures as shown below: 773 774.. code-block:: c 775 776 #include <kunit/test-bug.h> 777 778 #ifdef CONFIG_EXTRA_DEBUG_CHECKS 779 static void validate_my_data(struct data *data) 780 { 781 if (is_valid(data)) 782 return; 783 784 kunit_fail_current_test("data %p is invalid", data); 785 786 /* Normal, non-KUnit, error reporting code here. */ 787 } 788 #else 789 static void my_debug_function(void) { } 790 #endif 791 792``kunit_fail_current_test()`` is safe to call even if KUnit is not enabled. If 793KUnit is not enabled, or if no test is running in the current task, it will do 794nothing. This compiles down to either a no-op or a static key check, so will 795have a negligible performance impact when no test is running. 796