xref: /openbmc/linux/Documentation/dev-tools/kunit/usage.rst (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1.. SPDX-License-Identifier: GPL-2.0
2
3Writing Tests
4=============
5
6Test Cases
7----------
8
9The fundamental unit in KUnit is the test case. A test case is a function with
10the signature ``void (*)(struct kunit *test)``. It calls the function under test
11and then sets *expectations* for what should happen. For example:
12
13.. code-block:: c
14
15	void example_test_success(struct kunit *test)
16	{
17	}
18
19	void example_test_failure(struct kunit *test)
20	{
21		KUNIT_FAIL(test, "This test never passes.");
22	}
23
24In the above example, ``example_test_success`` always passes because it does
25nothing; no expectations are set, and therefore all expectations pass. On the
26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``,
27which is a special expectation that logs a message and causes the test case to
28fail.
29
30Expectations
31~~~~~~~~~~~~
32An *expectation* specifies that we expect a piece of code to do something in a
33test. An expectation is called like a function. A test is made by setting
34expectations about the behavior of a piece of code under test. When one or more
35expectations fail, the test case fails and information about the failure is
36logged. For example:
37
38.. code-block:: c
39
40	void add_test_basic(struct kunit *test)
41	{
42		KUNIT_EXPECT_EQ(test, 1, add(1, 0));
43		KUNIT_EXPECT_EQ(test, 2, add(1, 1));
44	}
45
46In the above example, ``add_test_basic`` makes a number of assertions about the
47behavior of a function called ``add``. The first parameter is always of type
48``struct kunit *``, which contains information about the current test context.
49The second parameter, in this case, is what the value is expected to be. The
50last value is what the value actually is. If ``add`` passes all of these
51expectations, the test case, ``add_test_basic`` will pass; if any one of these
52expectations fails, the test case will fail.
53
54A test case *fails* when any expectation is violated; however, the test will
55continue to run, and try other expectations until the test case ends or is
56otherwise terminated. This is as opposed to *assertions* which are discussed
57later.
58
59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst.
60
61.. note::
62   A single test case should be short, easy to understand, and focused on a
63   single behavior.
64
65For example, if we want to rigorously test the ``add`` function above, create
66additional tests cases which would test each property that an ``add`` function
67should have as shown below:
68
69.. code-block:: c
70
71	void add_test_basic(struct kunit *test)
72	{
73		KUNIT_EXPECT_EQ(test, 1, add(1, 0));
74		KUNIT_EXPECT_EQ(test, 2, add(1, 1));
75	}
76
77	void add_test_negative(struct kunit *test)
78	{
79		KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
80	}
81
82	void add_test_max(struct kunit *test)
83	{
84		KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
85		KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
86	}
87
88	void add_test_overflow(struct kunit *test)
89	{
90		KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
91	}
92
93Assertions
94~~~~~~~~~~
95
96An assertion is like an expectation, except that the assertion immediately
97terminates the test case if the condition is not satisfied. For example:
98
99.. code-block:: c
100
101	static void test_sort(struct kunit *test)
102	{
103		int *a, i, r = 1;
104		a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL);
105		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a);
106		for (i = 0; i < TEST_LEN; i++) {
107			r = (r * 725861) % 6599;
108			a[i] = r;
109		}
110		sort(a, TEST_LEN, sizeof(*a), cmpint, NULL);
111		for (i = 0; i < TEST_LEN-1; i++)
112			KUNIT_EXPECT_LE(test, a[i], a[i + 1]);
113	}
114
115In this example, we need to be able to allocate an array to test the ``sort()``
116function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_NULL()`` to abort the test if
117there's an allocation error.
118
119.. note::
120   In other test frameworks, ``ASSERT`` macros are often implemented by calling
121   ``return`` so they only work from the test function. In KUnit, we stop the
122   current kthread on failure, so you can call them from anywhere.
123
124.. note::
125   Warning: There is an exception to the above rule. You shouldn't use assertions
126   in the suite's exit() function, or in the free function for a resource. These
127   run when a test is shutting down, and an assertion here prevents further
128   cleanup code from running, potentially leading to a memory leak.
129
130Customizing error messages
131--------------------------
132
133Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSERT`` macros have a ``_MSG``
134variant.  These take a format string and arguments to provide additional
135context to the automatically generated error messages.
136
137.. code-block:: c
138
139	char some_str[41];
140	generate_sha1_hex_string(some_str);
141
142	/* Before. Not easy to tell why the test failed. */
143	KUNIT_EXPECT_EQ(test, strlen(some_str), 40);
144
145	/* After. Now we see the offending string. */
146	KUNIT_EXPECT_EQ_MSG(test, strlen(some_str), 40, "some_str='%s'", some_str);
147
148Alternatively, one can take full control over the error message by using
149``KUNIT_FAIL()``, e.g.
150
151.. code-block:: c
152
153	/* Before */
154	KUNIT_EXPECT_EQ(test, some_setup_function(), 0);
155
156	/* After: full control over the failure message. */
157	if (some_setup_function())
158		KUNIT_FAIL(test, "Failed to setup thing for testing");
159
160
161Test Suites
162~~~~~~~~~~~
163
164We need many test cases covering all the unit's behaviors. It is common to have
165many similar tests. In order to reduce duplication in these closely related
166tests, most unit testing frameworks (including KUnit) provide the concept of a
167*test suite*. A test suite is a collection of test cases for a unit of code
168with optional setup and teardown functions that run before/after the whole
169suite and/or every test case.
170
171.. note::
172   A test case will only run if it is associated with a test suite.
173
174For example:
175
176.. code-block:: c
177
178	static struct kunit_case example_test_cases[] = {
179		KUNIT_CASE(example_test_foo),
180		KUNIT_CASE(example_test_bar),
181		KUNIT_CASE(example_test_baz),
182		{}
183	};
184
185	static struct kunit_suite example_test_suite = {
186		.name = "example",
187		.init = example_test_init,
188		.exit = example_test_exit,
189		.suite_init = example_suite_init,
190		.suite_exit = example_suite_exit,
191		.test_cases = example_test_cases,
192	};
193	kunit_test_suite(example_test_suite);
194
195In the above example, the test suite ``example_test_suite`` would first run
196``example_suite_init``, then run the test cases ``example_test_foo``,
197``example_test_bar``, and ``example_test_baz``. Each would have
198``example_test_init`` called immediately before it and ``example_test_exit``
199called immediately after it. Finally, ``example_suite_exit`` would be called
200after everything else. ``kunit_test_suite(example_test_suite)`` registers the
201test suite with the KUnit test framework.
202
203.. note::
204   The ``exit`` and ``suite_exit`` functions will run even if ``init`` or
205   ``suite_init`` fail. Make sure that they can handle any inconsistent
206   state which may result from ``init`` or ``suite_init`` encountering errors
207   or exiting early.
208
209``kunit_test_suite(...)`` is a macro which tells the linker to put the
210specified test suite in a special linker section so that it can be run by KUnit
211either after ``late_init``, or when the test module is loaded (if the test was
212built as a module).
213
214For more information, see Documentation/dev-tools/kunit/api/test.rst.
215
216.. _kunit-on-non-uml:
217
218Writing Tests For Other Architectures
219-------------------------------------
220
221It is better to write tests that run on UML to tests that only run under a
222particular architecture. It is better to write tests that run under QEMU or
223another easy to obtain (and monetarily free) software environment to a specific
224piece of hardware.
225
226Nevertheless, there are still valid reasons to write a test that is architecture
227or hardware specific. For example, we might want to test code that really
228belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does
229not depend on physical hardware. Some of our test cases may not need hardware,
230only few tests actually require the hardware to test it. When hardware is not
231available, instead of disabling tests, we can skip them.
232
233Now that we have narrowed down exactly what bits are hardware specific, the
234actual procedure for writing and running the tests is same as writing normal
235KUnit tests.
236
237.. important::
238   We may have to reset hardware state. If this is not possible, we may only
239   be able to run one test case per invocation.
240
241.. TODO(brendanhiggins@google.com): Add an actual example of an architecture-
242   dependent KUnit test.
243
244Common Patterns
245===============
246
247Isolating Behavior
248------------------
249
250Unit testing limits the amount of code under test to a single unit. It controls
251what code gets run when the unit under test calls a function. Where a function
252is exposed as part of an API such that the definition of that function can be
253changed without affecting the rest of the code base. In the kernel, this comes
254from two constructs: classes, which are structs that contain function pointers
255provided by the implementer, and architecture-specific functions, which have
256definitions selected at compile time.
257
258Classes
259~~~~~~~
260
261Classes are not a construct that is built into the C programming language;
262however, it is an easily derived concept. Accordingly, in most cases, every
263project that does not use a standardized object oriented library (like GNOME's
264GObject) has their own slightly different way of doing object oriented
265programming; the Linux kernel is no exception.
266
267The central concept in kernel object oriented programming is the class. In the
268kernel, a *class* is a struct that contains function pointers. This creates a
269contract between *implementers* and *users* since it forces them to use the
270same function signature without having to call the function directly. To be a
271class, the function pointers must specify that a pointer to the class, known as
272a *class handle*, be one of the parameters. Thus the member functions (also
273known as *methods*) have access to member variables (also known as *fields*)
274allowing the same implementation to have multiple *instances*.
275
276A class can be *overridden* by *child classes* by embedding the *parent class*
277in the child class. Then when the child class *method* is called, the child
278implementation knows that the pointer passed to it is of a parent contained
279within the child. Thus, the child can compute the pointer to itself because the
280pointer to the parent is always a fixed offset from the pointer to the child.
281This offset is the offset of the parent contained in the child struct. For
282example:
283
284.. code-block:: c
285
286	struct shape {
287		int (*area)(struct shape *this);
288	};
289
290	struct rectangle {
291		struct shape parent;
292		int length;
293		int width;
294	};
295
296	int rectangle_area(struct shape *this)
297	{
298		struct rectangle *self = container_of(this, struct rectangle, parent);
299
300		return self->length * self->width;
301	};
302
303	void rectangle_new(struct rectangle *self, int length, int width)
304	{
305		self->parent.area = rectangle_area;
306		self->length = length;
307		self->width = width;
308	}
309
310In this example, computing the pointer to the child from the pointer to the
311parent is done by ``container_of``.
312
313Faking Classes
314~~~~~~~~~~~~~~
315
316In order to unit test a piece of code that calls a method in a class, the
317behavior of the method must be controllable, otherwise the test ceases to be a
318unit test and becomes an integration test.
319
320A fake class implements a piece of code that is different than what runs in a
321production instance, but behaves identical from the standpoint of the callers.
322This is done to replace a dependency that is hard to deal with, or is slow. For
323example, implementing a fake EEPROM that stores the "contents" in an
324internal buffer. Assume we have a class that represents an EEPROM:
325
326.. code-block:: c
327
328	struct eeprom {
329		ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
330		ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
331	};
332
333And we want to test code that buffers writes to the EEPROM:
334
335.. code-block:: c
336
337	struct eeprom_buffer {
338		ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
339		int flush(struct eeprom_buffer *this);
340		size_t flush_count; /* Flushes when buffer exceeds flush_count. */
341	};
342
343	struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
344	void destroy_eeprom_buffer(struct eeprom *eeprom);
345
346We can test this code by *faking out* the underlying EEPROM:
347
348.. code-block:: c
349
350	struct fake_eeprom {
351		struct eeprom parent;
352		char contents[FAKE_EEPROM_CONTENTS_SIZE];
353	};
354
355	ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
356	{
357		struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
358
359		count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
360		memcpy(buffer, this->contents + offset, count);
361
362		return count;
363	}
364
365	ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count)
366	{
367		struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
368
369		count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
370		memcpy(this->contents + offset, buffer, count);
371
372		return count;
373	}
374
375	void fake_eeprom_init(struct fake_eeprom *this)
376	{
377		this->parent.read = fake_eeprom_read;
378		this->parent.write = fake_eeprom_write;
379		memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
380	}
381
382We can now use it to test ``struct eeprom_buffer``:
383
384.. code-block:: c
385
386	struct eeprom_buffer_test {
387		struct fake_eeprom *fake_eeprom;
388		struct eeprom_buffer *eeprom_buffer;
389	};
390
391	static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
392	{
393		struct eeprom_buffer_test *ctx = test->priv;
394		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
395		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
396		char buffer[] = {0xff};
397
398		eeprom_buffer->flush_count = SIZE_MAX;
399
400		eeprom_buffer->write(eeprom_buffer, buffer, 1);
401		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
402
403		eeprom_buffer->write(eeprom_buffer, buffer, 1);
404		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
405
406		eeprom_buffer->flush(eeprom_buffer);
407		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
408		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
409	}
410
411	static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
412	{
413		struct eeprom_buffer_test *ctx = test->priv;
414		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
415		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
416		char buffer[] = {0xff};
417
418		eeprom_buffer->flush_count = 2;
419
420		eeprom_buffer->write(eeprom_buffer, buffer, 1);
421		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
422
423		eeprom_buffer->write(eeprom_buffer, buffer, 1);
424		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
425		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
426	}
427
428	static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
429	{
430		struct eeprom_buffer_test *ctx = test->priv;
431		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
432		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
433		char buffer[] = {0xff, 0xff};
434
435		eeprom_buffer->flush_count = 2;
436
437		eeprom_buffer->write(eeprom_buffer, buffer, 1);
438		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
439
440		eeprom_buffer->write(eeprom_buffer, buffer, 2);
441		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
442		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
443		/* Should have only flushed the first two bytes. */
444		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
445	}
446
447	static int eeprom_buffer_test_init(struct kunit *test)
448	{
449		struct eeprom_buffer_test *ctx;
450
451		ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
452		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
453
454		ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
455		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
456		fake_eeprom_init(ctx->fake_eeprom);
457
458		ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
459		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
460
461		test->priv = ctx;
462
463		return 0;
464	}
465
466	static void eeprom_buffer_test_exit(struct kunit *test)
467	{
468		struct eeprom_buffer_test *ctx = test->priv;
469
470		destroy_eeprom_buffer(ctx->eeprom_buffer);
471	}
472
473Testing Against Multiple Inputs
474-------------------------------
475
476Testing just a few inputs is not enough to ensure that the code works correctly,
477for example: testing a hash function.
478
479We can write a helper macro or function. The function is called for each input.
480For example, to test ``sha1sum(1)``, we can write:
481
482.. code-block:: c
483
484	#define TEST_SHA1(in, want) \
485		sha1sum(in, out); \
486		KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in);
487
488	char out[40];
489	TEST_SHA1("hello world",  "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed");
490	TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169");
491
492Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more
493detailed error and make the assertions clearer within the helper macros.
494
495The ``_MSG`` variants are useful when the same expectation is called multiple
496times (in a loop or helper function) and thus the line number is not enough to
497identify what failed, as shown below.
498
499In complicated cases, we recommend using a *table-driven test* compared to the
500helper macro variation, for example:
501
502.. code-block:: c
503
504	int i;
505	char out[40];
506
507	struct sha1_test_case {
508		const char *str;
509		const char *sha1;
510	};
511
512	struct sha1_test_case cases[] = {
513		{
514			.str = "hello world",
515			.sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
516		},
517		{
518			.str = "hello world!",
519			.sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
520		},
521	};
522	for (i = 0; i < ARRAY_SIZE(cases); ++i) {
523		sha1sum(cases[i].str, out);
524		KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1,
525		                      "sha1sum(%s)", cases[i].str);
526	}
527
528
529There is more boilerplate code involved, but it can:
530
531* be more readable when there are multiple inputs/outputs (due to field names).
532
533  * For example, see ``fs/ext4/inode-test.c``.
534
535* reduce duplication if test cases are shared across multiple tests.
536
537  * For example: if we want to test ``sha256sum``, we could add a ``sha256``
538    field and reuse ``cases``.
539
540* be converted to a "parameterized test".
541
542Parameterized Testing
543~~~~~~~~~~~~~~~~~~~~~
544
545The table-driven testing pattern is common enough that KUnit has special
546support for it.
547
548By reusing the same ``cases`` array from above, we can write the test as a
549"parameterized test" with the following.
550
551.. code-block:: c
552
553	// This is copy-pasted from above.
554	struct sha1_test_case {
555		const char *str;
556		const char *sha1;
557	};
558	const struct sha1_test_case cases[] = {
559		{
560			.str = "hello world",
561			.sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
562		},
563		{
564			.str = "hello world!",
565			.sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
566		},
567	};
568
569	// Need a helper function to generate a name for each test case.
570	static void case_to_desc(const struct sha1_test_case *t, char *desc)
571	{
572		strcpy(desc, t->str);
573	}
574	// Creates `sha1_gen_params()` to iterate over `cases`.
575	KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc);
576
577	// Looks no different from a normal test.
578	static void sha1_test(struct kunit *test)
579	{
580		// This function can just contain the body of the for-loop.
581		// The former `cases[i]` is accessible under test->param_value.
582		char out[40];
583		struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value);
584
585		sha1sum(test_param->str, out);
586		KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1,
587				      "sha1sum(%s)", test_param->str);
588	}
589
590	// Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the
591	// function declared by KUNIT_ARRAY_PARAM.
592	static struct kunit_case sha1_test_cases[] = {
593		KUNIT_CASE_PARAM(sha1_test, sha1_gen_params),
594		{}
595	};
596
597Allocating Memory
598-----------------
599
600Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit
601will then ensure that the memory is freed once the test completes.
602
603This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit
604early from a test without having to worry about remembering to call ``kfree``.
605For example:
606
607.. code-block:: c
608
609	void example_test_allocation(struct kunit *test)
610	{
611		char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL);
612		/* Ensure allocation succeeded. */
613		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer);
614
615		KUNIT_ASSERT_STREQ(test, buffer, "");
616	}
617
618Registering Cleanup Actions
619---------------------------
620
621If you need to perform some cleanup beyond simple use of ``kunit_kzalloc``,
622you can register a custom "deferred action", which is a cleanup function
623run when the test exits (whether cleanly, or via a failed assertion).
624
625Actions are simple functions with no return value, and a single ``void*``
626context argument, and fulfill the same role as "cleanup" functions in Python
627and Go tests, "defer" statements in languages which support them, and
628(in some cases) destructors in RAII languages.
629
630These are very useful for unregistering things from global lists, closing
631files or other resources, or freeing resources.
632
633For example:
634
635.. code-block:: C
636
637	static void cleanup_device(void *ctx)
638	{
639		struct device *dev = (struct device *)ctx;
640
641		device_unregister(dev);
642	}
643
644	void example_device_test(struct kunit *test)
645	{
646		struct my_device dev;
647
648		device_register(&dev);
649
650		kunit_add_action(test, &cleanup_device, &dev);
651	}
652
653Note that, for functions like device_unregister which only accept a single
654pointer-sized argument, it's possible to directly cast that function to
655a ``kunit_action_t`` rather than writing a wrapper function, for example:
656
657.. code-block:: C
658
659	kunit_add_action(test, (kunit_action_t *)&device_unregister, &dev);
660
661``kunit_add_action`` can fail if, for example, the system is out of memory.
662You can use ``kunit_add_action_or_reset`` instead which runs the action
663immediately if it cannot be deferred.
664
665If you need more control over when the cleanup function is called, you
666can trigger it early using ``kunit_release_action``, or cancel it entirely
667with ``kunit_remove_action``.
668
669
670Testing Static Functions
671------------------------
672
673If we do not want to expose functions or variables for testing, one option is to
674conditionally ``#include`` the test file at the end of your .c file. For
675example:
676
677.. code-block:: c
678
679	/* In my_file.c */
680
681	static int do_interesting_thing();
682
683	#ifdef CONFIG_MY_KUNIT_TEST
684	#include "my_kunit_test.c"
685	#endif
686
687Injecting Test-Only Code
688------------------------
689
690Similar to as shown above, we can add test-specific logic. For example:
691
692.. code-block:: c
693
694	/* In my_file.h */
695
696	#ifdef CONFIG_MY_KUNIT_TEST
697	/* Defined in my_kunit_test.c */
698	void test_only_hook(void);
699	#else
700	void test_only_hook(void) { }
701	#endif
702
703This test-only code can be made more useful by accessing the current ``kunit_test``
704as shown in next section: *Accessing The Current Test*.
705
706Accessing The Current Test
707--------------------------
708
709In some cases, we need to call test-only code from outside the test file.  This
710is helpful, for example, when providing a fake implementation of a function, or
711to fail any current test from within an error handler.
712We can do this via the ``kunit_test`` field in ``task_struct``, which we can
713access using the ``kunit_get_current_test()`` function in ``kunit/test-bug.h``.
714
715``kunit_get_current_test()`` is safe to call even if KUnit is not enabled. If
716KUnit is not enabled, or if no test is running in the current task, it will
717return ``NULL``. This compiles down to either a no-op or a static key check,
718so will have a negligible performance impact when no test is running.
719
720The example below uses this to implement a "mock" implementation of a function, ``foo``:
721
722.. code-block:: c
723
724	#include <kunit/test-bug.h> /* for kunit_get_current_test */
725
726	struct test_data {
727		int foo_result;
728		int want_foo_called_with;
729	};
730
731	static int fake_foo(int arg)
732	{
733		struct kunit *test = kunit_get_current_test();
734		struct test_data *test_data = test->priv;
735
736		KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg);
737		return test_data->foo_result;
738	}
739
740	static void example_simple_test(struct kunit *test)
741	{
742		/* Assume priv (private, a member used to pass test data from
743		 * the init function) is allocated in the suite's .init */
744		struct test_data *test_data = test->priv;
745
746		test_data->foo_result = 42;
747		test_data->want_foo_called_with = 1;
748
749		/* In a real test, we'd probably pass a pointer to fake_foo somewhere
750		 * like an ops struct, etc. instead of calling it directly. */
751		KUNIT_EXPECT_EQ(test, fake_foo(1), 42);
752	}
753
754In this example, we are using the ``priv`` member of ``struct kunit`` as a way
755of passing data to the test from the init function. In general ``priv`` is
756pointer that can be used for any user data. This is preferred over static
757variables, as it avoids concurrency issues.
758
759Had we wanted something more flexible, we could have used a named ``kunit_resource``.
760Each test can have multiple resources which have string names providing the same
761flexibility as a ``priv`` member, but also, for example, allowing helper
762functions to create resources without conflicting with each other. It is also
763possible to define a clean up function for each resource, making it easy to
764avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/resource.rst.
765
766Failing The Current Test
767------------------------
768
769If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)``
770which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``.
771For example, we have an option to enable some extra debug checks on some data
772structures as shown below:
773
774.. code-block:: c
775
776	#include <kunit/test-bug.h>
777
778	#ifdef CONFIG_EXTRA_DEBUG_CHECKS
779	static void validate_my_data(struct data *data)
780	{
781		if (is_valid(data))
782			return;
783
784		kunit_fail_current_test("data %p is invalid", data);
785
786		/* Normal, non-KUnit, error reporting code here. */
787	}
788	#else
789	static void my_debug_function(void) { }
790	#endif
791
792``kunit_fail_current_test()`` is safe to call even if KUnit is not enabled. If
793KUnit is not enabled, or if no test is running in the current task, it will do
794nothing. This compiles down to either a no-op or a static key check, so will
795have a negligible performance impact when no test is running.
796