1.. SPDX-License-Identifier: GPL-2.0
2
3Writing Tests
4=============
5
6Test Cases
7----------
8
9The fundamental unit in KUnit is the test case. A test case is a function with
10the signature ``void (*)(struct kunit *test)``. It calls the function under test
11and then sets *expectations* for what should happen. For example:
12
13.. code-block:: c
14
15	void example_test_success(struct kunit *test)
16	{
17	}
18
19	void example_test_failure(struct kunit *test)
20	{
21		KUNIT_FAIL(test, "This test never passes.");
22	}
23
24In the above example, ``example_test_success`` always passes because it does
25nothing; no expectations are set, and therefore all expectations pass. On the
26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``,
27which is a special expectation that logs a message and causes the test case to
28fail.
29
30Expectations
31~~~~~~~~~~~~
32An *expectation* specifies that we expect a piece of code to do something in a
33test. An expectation is called like a function. A test is made by setting
34expectations about the behavior of a piece of code under test. When one or more
35expectations fail, the test case fails and information about the failure is
36logged. For example:
37
38.. code-block:: c
39
40	void add_test_basic(struct kunit *test)
41	{
42		KUNIT_EXPECT_EQ(test, 1, add(1, 0));
43		KUNIT_EXPECT_EQ(test, 2, add(1, 1));
44	}
45
46In the above example, ``add_test_basic`` makes a number of assertions about the
47behavior of a function called ``add``. The first parameter is always of type
48``struct kunit *``, which contains information about the current test context.
49The second parameter, in this case, is what the value is expected to be. The
50last value is what the value actually is. If ``add`` passes all of these
51expectations, the test case, ``add_test_basic`` will pass; if any one of these
52expectations fails, the test case will fail.
53
54A test case *fails* when any expectation is violated; however, the test will
55continue to run, and try other expectations until the test case ends or is
56otherwise terminated. This is as opposed to *assertions* which are discussed
57later.
58
59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst.
60
61.. note::
62   A single test case should be short, easy to understand, and focused on a
63   single behavior.
64
65For example, if we want to rigorously test the ``add`` function above, create
66additional tests cases which would test each property that an ``add`` function
67should have as shown below:
68
69.. code-block:: c
70
71	void add_test_basic(struct kunit *test)
72	{
73		KUNIT_EXPECT_EQ(test, 1, add(1, 0));
74		KUNIT_EXPECT_EQ(test, 2, add(1, 1));
75	}
76
77	void add_test_negative(struct kunit *test)
78	{
79		KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
80	}
81
82	void add_test_max(struct kunit *test)
83	{
84		KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
85		KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
86	}
87
88	void add_test_overflow(struct kunit *test)
89	{
90		KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
91	}
92
93Assertions
94~~~~~~~~~~
95
96An assertion is like an expectation, except that the assertion immediately
97terminates the test case if the condition is not satisfied. For example:
98
99.. code-block:: c
100
101	static void test_sort(struct kunit *test)
102	{
103		int *a, i, r = 1;
104		a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL);
105		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a);
106		for (i = 0; i < TEST_LEN; i++) {
107			r = (r * 725861) % 6599;
108			a[i] = r;
109		}
110		sort(a, TEST_LEN, sizeof(*a), cmpint, NULL);
111		for (i = 0; i < TEST_LEN-1; i++)
112			KUNIT_EXPECT_LE(test, a[i], a[i + 1]);
113	}
114
115In this example, the method under test should return pointer to a value. If the
116pointer returns null or an errno, we want to stop the test since the following
117expectation could crash the test case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us
118to bail out of the test case if the appropriate conditions are not satisfied to
119complete the test.
120
121Test Suites
122~~~~~~~~~~~
123
124We need many test cases covering all the unit's behaviors. It is common to have
125many similar tests. In order to reduce duplication in these closely related
126tests, most unit testing frameworks (including KUnit) provide the concept of a
127*test suite*. A test suite is a collection of test cases for a unit of code
128with a setup function that gets invoked before every test case and then a tear
129down function that gets invoked after every test case completes. For example:
130
131.. code-block:: c
132
133	static struct kunit_case example_test_cases[] = {
134		KUNIT_CASE(example_test_foo),
135		KUNIT_CASE(example_test_bar),
136		KUNIT_CASE(example_test_baz),
137		{}
138	};
139
140	static struct kunit_suite example_test_suite = {
141		.name = "example",
142		.init = example_test_init,
143		.exit = example_test_exit,
144		.test_cases = example_test_cases,
145	};
146	kunit_test_suite(example_test_suite);
147
148In the above example, the test suite ``example_test_suite`` would run the test
149cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``. Each
150would have ``example_test_init`` called immediately before it and
151``example_test_exit`` called immediately after it.
152``kunit_test_suite(example_test_suite)`` registers the test suite with the
153KUnit test framework.
154
155.. note::
156   A test case will only run if it is associated with a test suite.
157
158``kunit_test_suite(...)`` is a macro which tells the linker to put the
159specified test suite in a special linker section so that it can be run by KUnit
160either after ``late_init``, or when the test module is loaded (if the test was
161built as a module).
162
163For more information, see Documentation/dev-tools/kunit/api/test.rst.
164
165Writing Tests For Other Architectures
166-------------------------------------
167
168It is better to write tests that run on UML to tests that only run under a
169particular architecture. It is better to write tests that run under QEMU or
170another easy to obtain (and monetarily free) software environment to a specific
171piece of hardware.
172
173Nevertheless, there are still valid reasons to write a test that is architecture
174or hardware specific. For example, we might want to test code that really
175belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does
176not depend on physical hardware. Some of our test cases may not need hardware,
177only few tests actually require the hardware to test it. When hardware is not
178available, instead of disabling tests, we can skip them.
179
180Now that we have narrowed down exactly what bits are hardware specific, the
181actual procedure for writing and running the tests is same as writing normal
182KUnit tests.
183
184.. important::
185   We may have to reset hardware state. If this is not possible, we may only
186   be able to run one test case per invocation.
187
188.. TODO(brendanhiggins@google.com): Add an actual example of an architecture-
189   dependent KUnit test.
190
191Common Patterns
192===============
193
194Isolating Behavior
195------------------
196
197Unit testing limits the amount of code under test to a single unit. It controls
198what code gets run when the unit under test calls a function. Where a function
199is exposed as part of an API such that the definition of that function can be
200changed without affecting the rest of the code base. In the kernel, this comes
201from two constructs: classes, which are structs that contain function pointers
202provided by the implementer, and architecture-specific functions, which have
203definitions selected at compile time.
204
205Classes
206~~~~~~~
207
208Classes are not a construct that is built into the C programming language;
209however, it is an easily derived concept. Accordingly, in most cases, every
210project that does not use a standardized object oriented library (like GNOME's
211GObject) has their own slightly different way of doing object oriented
212programming; the Linux kernel is no exception.
213
214The central concept in kernel object oriented programming is the class. In the
215kernel, a *class* is a struct that contains function pointers. This creates a
216contract between *implementers* and *users* since it forces them to use the
217same function signature without having to call the function directly. To be a
218class, the function pointers must specify that a pointer to the class, known as
219a *class handle*, be one of the parameters. Thus the member functions (also
220known as *methods*) have access to member variables (also known as *fields*)
221allowing the same implementation to have multiple *instances*.
222
223A class can be *overridden* by *child classes* by embedding the *parent class*
224in the child class. Then when the child class *method* is called, the child
225implementation knows that the pointer passed to it is of a parent contained
226within the child. Thus, the child can compute the pointer to itself because the
227pointer to the parent is always a fixed offset from the pointer to the child.
228This offset is the offset of the parent contained in the child struct. For
229example:
230
231.. code-block:: c
232
233	struct shape {
234		int (*area)(struct shape *this);
235	};
236
237	struct rectangle {
238		struct shape parent;
239		int length;
240		int width;
241	};
242
243	int rectangle_area(struct shape *this)
244	{
245		struct rectangle *self = container_of(this, struct rectangle, parent);
246
247		return self->length * self->width;
248	};
249
250	void rectangle_new(struct rectangle *self, int length, int width)
251	{
252		self->parent.area = rectangle_area;
253		self->length = length;
254		self->width = width;
255	}
256
257In this example, computing the pointer to the child from the pointer to the
258parent is done by ``container_of``.
259
260Faking Classes
261~~~~~~~~~~~~~~
262
263In order to unit test a piece of code that calls a method in a class, the
264behavior of the method must be controllable, otherwise the test ceases to be a
265unit test and becomes an integration test.
266
267A fake class implements a piece of code that is different than what runs in a
268production instance, but behaves identical from the standpoint of the callers.
269This is done to replace a dependency that is hard to deal with, or is slow. For
270example, implementing a fake EEPROM that stores the "contents" in an
271internal buffer. Assume we have a class that represents an EEPROM:
272
273.. code-block:: c
274
275	struct eeprom {
276		ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
277		ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
278	};
279
280And we want to test code that buffers writes to the EEPROM:
281
282.. code-block:: c
283
284	struct eeprom_buffer {
285		ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
286		int flush(struct eeprom_buffer *this);
287		size_t flush_count; /* Flushes when buffer exceeds flush_count. */
288	};
289
290	struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
291	void destroy_eeprom_buffer(struct eeprom *eeprom);
292
293We can test this code by *faking out* the underlying EEPROM:
294
295.. code-block:: c
296
297	struct fake_eeprom {
298		struct eeprom parent;
299		char contents[FAKE_EEPROM_CONTENTS_SIZE];
300	};
301
302	ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
303	{
304		struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
305
306		count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
307		memcpy(buffer, this->contents + offset, count);
308
309		return count;
310	}
311
312	ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count)
313	{
314		struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
315
316		count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
317		memcpy(this->contents + offset, buffer, count);
318
319		return count;
320	}
321
322	void fake_eeprom_init(struct fake_eeprom *this)
323	{
324		this->parent.read = fake_eeprom_read;
325		this->parent.write = fake_eeprom_write;
326		memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
327	}
328
329We can now use it to test ``struct eeprom_buffer``:
330
331.. code-block:: c
332
333	struct eeprom_buffer_test {
334		struct fake_eeprom *fake_eeprom;
335		struct eeprom_buffer *eeprom_buffer;
336	};
337
338	static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
339	{
340		struct eeprom_buffer_test *ctx = test->priv;
341		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
342		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
343		char buffer[] = {0xff};
344
345		eeprom_buffer->flush_count = SIZE_MAX;
346
347		eeprom_buffer->write(eeprom_buffer, buffer, 1);
348		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
349
350		eeprom_buffer->write(eeprom_buffer, buffer, 1);
351		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
352
353		eeprom_buffer->flush(eeprom_buffer);
354		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
355		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
356	}
357
358	static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
359	{
360		struct eeprom_buffer_test *ctx = test->priv;
361		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
362		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
363		char buffer[] = {0xff};
364
365		eeprom_buffer->flush_count = 2;
366
367		eeprom_buffer->write(eeprom_buffer, buffer, 1);
368		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
369
370		eeprom_buffer->write(eeprom_buffer, buffer, 1);
371		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
372		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
373	}
374
375	static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
376	{
377		struct eeprom_buffer_test *ctx = test->priv;
378		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
379		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
380		char buffer[] = {0xff, 0xff};
381
382		eeprom_buffer->flush_count = 2;
383
384		eeprom_buffer->write(eeprom_buffer, buffer, 1);
385		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
386
387		eeprom_buffer->write(eeprom_buffer, buffer, 2);
388		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
389		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
390		/* Should have only flushed the first two bytes. */
391		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
392	}
393
394	static int eeprom_buffer_test_init(struct kunit *test)
395	{
396		struct eeprom_buffer_test *ctx;
397
398		ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
399		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
400
401		ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
402		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
403		fake_eeprom_init(ctx->fake_eeprom);
404
405		ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
406		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
407
408		test->priv = ctx;
409
410		return 0;
411	}
412
413	static void eeprom_buffer_test_exit(struct kunit *test)
414	{
415		struct eeprom_buffer_test *ctx = test->priv;
416
417		destroy_eeprom_buffer(ctx->eeprom_buffer);
418	}
419
420Testing Against Multiple Inputs
421-------------------------------
422
423Testing just a few inputs is not enough to ensure that the code works correctly,
424for example: testing a hash function.
425
426We can write a helper macro or function. The function is called for each input.
427For example, to test ``sha1sum(1)``, we can write:
428
429.. code-block:: c
430
431	#define TEST_SHA1(in, want) \
432		sha1sum(in, out); \
433		KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in);
434
435	char out[40];
436	TEST_SHA1("hello world",  "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed");
437	TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169");
438
439Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more
440detailed error and make the assertions clearer within the helper macros.
441
442The ``_MSG`` variants are useful when the same expectation is called multiple
443times (in a loop or helper function) and thus the line number is not enough to
444identify what failed, as shown below.
445
446In complicated cases, we recommend using a *table-driven test* compared to the
447helper macro variation, for example:
448
449.. code-block:: c
450
451	int i;
452	char out[40];
453
454	struct sha1_test_case {
455		const char *str;
456		const char *sha1;
457	};
458
459	struct sha1_test_case cases[] = {
460		{
461			.str = "hello world",
462			.sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
463		},
464		{
465			.str = "hello world!",
466			.sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
467		},
468	};
469	for (i = 0; i < ARRAY_SIZE(cases); ++i) {
470		sha1sum(cases[i].str, out);
471		KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1,
472		                      "sha1sum(%s)", cases[i].str);
473	}
474
475
476There is more boilerplate code involved, but it can:
477
478* be more readable when there are multiple inputs/outputs (due to field names).
479
480  * For example, see ``fs/ext4/inode-test.c``.
481
482* reduce duplication if test cases are shared across multiple tests.
483
484  * For example: if we want to test ``sha256sum``, we could add a ``sha256``
485    field and reuse ``cases``.
486
487* be converted to a "parameterized test".
488
489Parameterized Testing
490~~~~~~~~~~~~~~~~~~~~~
491
492The table-driven testing pattern is common enough that KUnit has special
493support for it.
494
495By reusing the same ``cases`` array from above, we can write the test as a
496"parameterized test" with the following.
497
498.. code-block:: c
499
500	// This is copy-pasted from above.
501	struct sha1_test_case {
502		const char *str;
503		const char *sha1;
504	};
505	struct sha1_test_case cases[] = {
506		{
507			.str = "hello world",
508			.sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
509		},
510		{
511			.str = "hello world!",
512			.sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
513		},
514	};
515
516	// Need a helper function to generate a name for each test case.
517	static void case_to_desc(const struct sha1_test_case *t, char *desc)
518	{
519		strcpy(desc, t->str);
520	}
521	// Creates `sha1_gen_params()` to iterate over `cases`.
522	KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc);
523
524	// Looks no different from a normal test.
525	static void sha1_test(struct kunit *test)
526	{
527		// This function can just contain the body of the for-loop.
528		// The former `cases[i]` is accessible under test->param_value.
529		char out[40];
530		struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value);
531
532		sha1sum(test_param->str, out);
533		KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1,
534				      "sha1sum(%s)", test_param->str);
535	}
536
537	// Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the
538	// function declared by KUNIT_ARRAY_PARAM.
539	static struct kunit_case sha1_test_cases[] = {
540		KUNIT_CASE_PARAM(sha1_test, sha1_gen_params),
541		{}
542	};
543
544.. _kunit-on-non-uml:
545
546Exiting Early on Failed Expectations
547------------------------------------
548
549We can use ``KUNIT_EXPECT_EQ`` to mark the test as failed and continue
550execution.  In some cases, it is unsafe to continue. We can use the
551``KUNIT_ASSERT`` variant to exit on failure.
552
553.. code-block:: c
554
555	void example_test_user_alloc_function(struct kunit *test)
556	{
557		void *object = alloc_some_object_for_me();
558
559		/* Make sure we got a valid pointer back. */
560		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, object);
561		do_something_with_object(object);
562	}
563
564Allocating Memory
565-----------------
566
567Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit
568will then ensure that the memory is freed once the test completes.
569
570This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit
571early from a test without having to worry about remembering to call ``kfree``.
572For example:
573
574.. code-block:: c
575
576	void example_test_allocation(struct kunit *test)
577	{
578		char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL);
579		/* Ensure allocation succeeded. */
580		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer);
581
582		KUNIT_ASSERT_STREQ(test, buffer, "");
583	}
584
585
586Testing Static Functions
587------------------------
588
589If we do not want to expose functions or variables for testing, one option is to
590conditionally ``#include`` the test file at the end of your .c file. For
591example:
592
593.. code-block:: c
594
595	/* In my_file.c */
596
597	static int do_interesting_thing();
598
599	#ifdef CONFIG_MY_KUNIT_TEST
600	#include "my_kunit_test.c"
601	#endif
602
603Injecting Test-Only Code
604------------------------
605
606Similar to as shown above, we can add test-specific logic. For example:
607
608.. code-block:: c
609
610	/* In my_file.h */
611
612	#ifdef CONFIG_MY_KUNIT_TEST
613	/* Defined in my_kunit_test.c */
614	void test_only_hook(void);
615	#else
616	void test_only_hook(void) { }
617	#endif
618
619This test-only code can be made more useful by accessing the current ``kunit_test``
620as shown in next section: *Accessing The Current Test*.
621
622Accessing The Current Test
623--------------------------
624
625In some cases, we need to call test-only code from outside the test file.
626For example, see example in section *Injecting Test-Only Code* or if
627we are providing a fake implementation of an ops struct. Using
628``kunit_test`` field in ``task_struct``, we can access it via
629``current->kunit_test``.
630
631The example below includes how to implement "mocking":
632
633.. code-block:: c
634
635	#include <linux/sched.h> /* for current */
636
637	struct test_data {
638		int foo_result;
639		int want_foo_called_with;
640	};
641
642	static int fake_foo(int arg)
643	{
644		struct kunit *test = current->kunit_test;
645		struct test_data *test_data = test->priv;
646
647		KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg);
648		return test_data->foo_result;
649	}
650
651	static void example_simple_test(struct kunit *test)
652	{
653		/* Assume priv (private, a member used to pass test data from
654		 * the init function) is allocated in the suite's .init */
655		struct test_data *test_data = test->priv;
656
657		test_data->foo_result = 42;
658		test_data->want_foo_called_with = 1;
659
660		/* In a real test, we'd probably pass a pointer to fake_foo somewhere
661		 * like an ops struct, etc. instead of calling it directly. */
662		KUNIT_EXPECT_EQ(test, fake_foo(1), 42);
663	}
664
665In this example, we are using the ``priv`` member of ``struct kunit`` as a way
666of passing data to the test from the init function. In general ``priv`` is
667pointer that can be used for any user data. This is preferred over static
668variables, as it avoids concurrency issues.
669
670Had we wanted something more flexible, we could have used a named ``kunit_resource``.
671Each test can have multiple resources which have string names providing the same
672flexibility as a ``priv`` member, but also, for example, allowing helper
673functions to create resources without conflicting with each other. It is also
674possible to define a clean up function for each resource, making it easy to
675avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/test.rst.
676
677Failing The Current Test
678------------------------
679
680If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)``
681which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``.
682For example, we have an option to enable some extra debug checks on some data
683structures as shown below:
684
685.. code-block:: c
686
687	#include <kunit/test-bug.h>
688
689	#ifdef CONFIG_EXTRA_DEBUG_CHECKS
690	static void validate_my_data(struct data *data)
691	{
692		if (is_valid(data))
693			return;
694
695		kunit_fail_current_test("data %p is invalid", data);
696
697		/* Normal, non-KUnit, error reporting code here. */
698	}
699	#else
700	static void my_debug_function(void) { }
701	#endif
702
703