xref: /openbmc/libbej/src/bej_encoder_metadata.c (revision 061fbc6f)
1 #include "bej_encoder_metadata.h"
2 
3 #include "bej_common.h"
4 #include "bej_dictionary.h"
5 
6 #include <stdint.h>
7 #include <stdio.h>
8 #include <string.h>
9 
10 /**
11  * @brief bejTupleL size of an integer.
12  *
13  * Maximum bytes possible for an integer is 8. Therefore to encode the length of
14  * an integer using a nnint, we only need two bytes. [byte1: nnint length,
15  * byte2: integer length [0-8]]
16  */
17 #define BEJ_TUPLE_L_SIZE_FOR_BEJ_INTEGER 2
18 
19 /**
20  * @brief bejTupleL size of a bool.
21  *
22  * 1byte for the nnint length and 1 byte for the value.
23  */
24 #define BEJ_TUPLE_L_SIZE_FOR_BEJ_BOOL 2
25 
26 /**
27  * @brief Check the name is an annotation type name.
28  *
29  * @param[in] name - property name.
30  * @return true for annotation name, false otherwise.
31  */
32 static bool bejIsAnnotation(const char* name)
33 {
34     if (name == NULL)
35     {
36         return false;
37     }
38     return name[0] == '@';
39 }
40 
41 /**
42  * @brief Get the dictionary for the provided node.
43  *
44  * @param[in] dictionaries - available dictionaries for encoding.
45  * @param[in] parentDictionary - dictionary used for the parent of this node.
46  * @param[in] nodeName - name of the interested node. Can be NULL if the node
47  * doesn't have a name.
48  * @return a pointer to the dictionary to be used.
49  */
50 static const uint8_t*
51     bejGetRelatedDictionary(const struct BejDictionaries* dictionaries,
52                             const uint8_t* parentDictionary,
53                             const char* nodeName)
54 {
55     // If the node name is NULL, we have to use parent dictionary.
56     if (nodeName == NULL)
57     {
58         return parentDictionary;
59     }
60 
61     // If the parent is using annotation dictionary, that means the parent is an
62     // annotation. Therefore the child (this node) should be an annotation too
63     // (Could this be false?). Therefore we should use the annotation dictionary
64     // for this node as well.
65     if (parentDictionary == dictionaries->annotationDictionary)
66     {
67         return dictionaries->annotationDictionary;
68     }
69     return bejIsAnnotation(nodeName) ? dictionaries->annotationDictionary
70                                      : dictionaries->schemaDictionary;
71 }
72 
73 /**
74  * @brief Get dictionary data for the given node.
75  *
76  * @param[in] dictionaries - available dictionaries.
77  * @param[in] parentDictionary - the dictionary used by the provided node's
78  * parent.
79  * @param[in] node - node that caller is interested in.
80  * @param[in] nodeIndex - index of this node within its parent.
81  * @param[in] dictStartingOffset - starting dictionary child offset value of
82  * this node's parent.
83  * @param[out] sequenceNumber - sequence number of the node. bit0 specifies the
84  * dictionary schema type: [major|annotation].
85  * @param[out] nodeDictionary - if not NULL, return a pointer to the dictionary
86  * used for the node.
87  * @param[out] childEntryOffset - if not NULL, return the dictionary starting
88  * offset used for this nodes children. If this node is not supposed to have
89  * children, caller should ignore this value.
90  * @return 0 if successful.
91  */
92 static int bejFindSeqNumAndChildDictOffset(
93     const struct BejDictionaries* dictionaries, const uint8_t* parentDictionary,
94     struct RedfishPropertyNode* node, uint16_t nodeIndex,
95     uint16_t dictStartingOffset, uint32_t* sequenceNumber,
96     const uint8_t** nodeDictionary, uint16_t* childEntryOffset)
97 {
98     // If the node doesn't have a name, we can't use a dictionary. So we can use
99     // its parent's info.
100     if (node->name == NULL || node->name[0] == '\0')
101     {
102         if (nodeDictionary != NULL)
103         {
104             *nodeDictionary = parentDictionary;
105         }
106 
107         if (childEntryOffset != NULL)
108         {
109             *childEntryOffset = dictStartingOffset;
110         }
111 
112         // If the property doesn't have a name, it has to be an element of an
113         // array. In that case, sequence number is the array index.
114         *sequenceNumber = (uint32_t)nodeIndex << 1;
115         if (dictionaries->annotationDictionary == parentDictionary)
116         {
117             *sequenceNumber |= 1;
118         }
119         return 0;
120     }
121 
122     // If we are here, the property has a name.
123     const uint8_t* dictionary =
124         bejGetRelatedDictionary(dictionaries, parentDictionary, node->name);
125     bool isAnnotation = dictionary == dictionaries->annotationDictionary;
126     // If this node's dictionary and its parent's dictionary is different,
127     // this node should start searching from the beginning of its
128     // dictionary. This should only happen for property annotations of form
129     // property@annotation_class.annotation_name.
130     if (dictionary != parentDictionary)
131     {
132         // Redundancy check.
133         if (!isAnnotation)
134         {
135             fprintf(stderr,
136                     "Dictionary for property %s should be the annotation "
137                     "dictionary. Might be a encoding failure. Maybe the "
138                     "JSON tree is not created correctly.",
139                     node->name);
140             return -1;
141         }
142         dictStartingOffset = bejDictGetFirstAnnotatedPropertyOffset();
143     }
144 
145     const struct BejDictionaryProperty* property;
146     int ret = bejDictGetPropertyByName(dictionary, dictStartingOffset,
147                                        node->name, &property, NULL);
148     if (ret != 0)
149     {
150         fprintf(stderr,
151                 "Failed to find dictionary entry for name %s. Search started "
152                 "at offset: %u. ret: %d\n",
153                 node->name, dictStartingOffset, ret);
154         return ret;
155     }
156 
157     if (nodeDictionary != NULL)
158     {
159         *nodeDictionary = dictionary;
160     }
161 
162     if (childEntryOffset != NULL)
163     {
164         *childEntryOffset = property->childPointerOffset;
165     }
166 
167     *sequenceNumber = (uint32_t)(property->sequenceNumber) << 1;
168     if (isAnnotation)
169     {
170         *sequenceNumber |= 1;
171     }
172     return 0;
173 }
174 
175 static int bejUpdateIntMetaData(const struct BejDictionaries* dictionaries,
176                                 const uint8_t* parentDictionary,
177                                 struct RedfishPropertyLeafInt* node,
178                                 uint16_t nodeIndex, uint16_t dictStartingOffset)
179 {
180     uint32_t sequenceNumber;
181     RETURN_IF_IERROR(bejFindSeqNumAndChildDictOffset(
182         dictionaries, parentDictionary, &node->leaf.nodeAttr, nodeIndex,
183         dictStartingOffset, &sequenceNumber, NULL, NULL));
184     node->leaf.metaData.sequenceNumber = sequenceNumber;
185 
186     // Calculate the size for encoding this in a SFLV tuple.
187     // S: Size needed for encoding sequence number.
188     node->leaf.metaData.sflSize = bejNnintEncodingSizeOfUInt(sequenceNumber);
189     // F: Size of the format byte is 1.
190     node->leaf.metaData.sflSize += 1;
191     // L: Length needed for the value.
192     node->leaf.metaData.sflSize += BEJ_TUPLE_L_SIZE_FOR_BEJ_INTEGER;
193     // V: Bytes used for the value.
194     node->leaf.metaData.vSize = bejIntLengthOfValue(node->value);
195     return 0;
196 }
197 
198 static int bejUpdateStringMetaData(const struct BejDictionaries* dictionaries,
199                                    const uint8_t* parentDictionary,
200                                    struct RedfishPropertyLeafString* node,
201                                    uint16_t nodeIndex,
202                                    uint16_t dictStartingOffset)
203 {
204     uint32_t sequenceNumber;
205     RETURN_IF_IERROR(bejFindSeqNumAndChildDictOffset(
206         dictionaries, parentDictionary, &(node->leaf.nodeAttr), nodeIndex,
207         dictStartingOffset, &sequenceNumber, NULL, NULL));
208     node->leaf.metaData.sequenceNumber = sequenceNumber;
209 
210     // Calculate the size for encoding this in a SFLV tuple.
211     // S: Size needed for encoding sequence number.
212     node->leaf.metaData.sflSize = bejNnintEncodingSizeOfUInt(sequenceNumber);
213     // F: Size of the format byte is 1.
214     node->leaf.metaData.sflSize += 1;
215     // L: Length needed for the string including the NULL character. Length is
216     // in nnint format.
217     size_t strLenWithNull = strlen(node->value) + 1;
218     node->leaf.metaData.sflSize += bejNnintEncodingSizeOfUInt(strLenWithNull);
219     // V: Bytes used for the value.
220     node->leaf.metaData.vSize = strLenWithNull;
221     return 0;
222 }
223 
224 static int bejUpdateBoolMetaData(const struct BejDictionaries* dictionaries,
225                                  const uint8_t* parentDictionary,
226                                  struct RedfishPropertyLeafBool* node,
227                                  uint16_t nodeIndex,
228                                  uint16_t dictStartingOffset)
229 {
230     uint32_t sequenceNumber;
231     RETURN_IF_IERROR(bejFindSeqNumAndChildDictOffset(
232         dictionaries, parentDictionary, &node->leaf.nodeAttr, nodeIndex,
233         dictStartingOffset, &sequenceNumber, NULL, NULL));
234     node->leaf.metaData.sequenceNumber = sequenceNumber;
235 
236     // Calculate the size for encoding this in a SFLV tuple.
237     // S: Size needed for encoding sequence number.
238     node->leaf.metaData.sflSize = bejNnintEncodingSizeOfUInt(sequenceNumber);
239     // F: Size of the format byte is 1.
240     node->leaf.metaData.sflSize += 1;
241     // L: Length needed for the value.
242     node->leaf.metaData.sflSize += BEJ_TUPLE_L_SIZE_FOR_BEJ_BOOL;
243     // V: Bytes used for the value; 0x00 or 0xFF.
244     node->leaf.metaData.vSize = 1;
245     return 0;
246 }
247 
248 /**
249  * @brief Update metadata of leaf nodes.
250  *
251  * @param dictionaries - dictionaries needed for encoding.
252  * @param parentDictionary - dictionary used by this node's parent.
253  * @param childPtr - a pointer to the leaf node.
254  * @param childIndex - if this node is an array element, this is the array
255  * index.
256  * @param dictStartingOffset - starting dictionary child offset value of this
257  * node's parent.
258  * @return 0 if successful.
259  */
260 static int bejUpdateLeafNodeMetaData(const struct BejDictionaries* dictionaries,
261                                      const uint8_t* parentDictionary,
262                                      void* childPtr, uint16_t childIndex,
263                                      uint16_t dictStartingOffset)
264 {
265     struct RedfishPropertyLeaf* chNode = childPtr;
266 
267     switch (chNode->nodeAttr.format.principalDataType)
268     {
269         case bejInteger:
270             RETURN_IF_IERROR(
271                 bejUpdateIntMetaData(dictionaries, parentDictionary, childPtr,
272                                      childIndex, dictStartingOffset));
273             break;
274         case bejString:
275             RETURN_IF_IERROR(bejUpdateStringMetaData(
276                 dictionaries, parentDictionary, childPtr, childIndex,
277                 dictStartingOffset));
278             break;
279         case bejBoolean:
280             RETURN_IF_IERROR(
281                 bejUpdateBoolMetaData(dictionaries, parentDictionary, childPtr,
282                                       childIndex, dictStartingOffset));
283             break;
284         default:
285             fprintf(stderr, "Child type %u not supported\n",
286                     chNode->nodeAttr.format.principalDataType);
287             return -1;
288     }
289     return 0;
290 }
291 
292 /**
293  * @brief Update metadata of a parent node.
294  *
295  * @param dictionaries - dictionaries needed for encoding.
296  * @param parentDictionary - dictionary used by this node's parent.
297  * @param dictStartingOffset - starting dictionary child offset value of this
298  * node's parent.
299  * @param node - a pointer to the parent node.
300  * @param nodeIndex - If this node is an array element, this is the array index.
301  * @return 0 if successful.
302  */
303 static int bejUpdateParentMetaData(const struct BejDictionaries* dictionaries,
304                                    const uint8_t* parentDictionary,
305                                    uint16_t dictStartingOffset,
306                                    struct RedfishPropertyParent* node,
307                                    uint16_t nodeIndex)
308 {
309     const uint8_t* nodeDictionary;
310     uint16_t childEntryOffset;
311     uint32_t sequenceNumber;
312 
313     // Get the dictionary related data from the node.
314     RETURN_IF_IERROR(bejFindSeqNumAndChildDictOffset(
315         dictionaries, parentDictionary, &node->nodeAttr, nodeIndex,
316         dictStartingOffset, &sequenceNumber, &nodeDictionary,
317         &childEntryOffset));
318 
319     node->metaData.sequenceNumber = sequenceNumber;
320     node->metaData.childrenDictPropOffset = childEntryOffset;
321     node->metaData.nextChild = node->firstChild;
322     node->metaData.nextChildIndex = 0;
323     node->metaData.dictionary = nodeDictionary;
324     node->metaData.vSize = 0;
325 
326     // S: Size needed for encoding sequence number.
327     node->metaData.sflSize =
328         bejNnintEncodingSizeOfUInt(node->metaData.sequenceNumber);
329     // F: Size of the format byte is 1.
330     node->metaData.sflSize += 1;
331     // V: Only for bejArray and bejSet types, value size should include the
332     // children count. We need to add the size needs to encode all the children
333     // later.
334     if (node->nodeAttr.format.principalDataType != bejPropertyAnnotation)
335     {
336         node->metaData.vSize = bejNnintEncodingSizeOfUInt(node->nChildren);
337     }
338     return 0;
339 }
340 
341 /**
342  * @brief Update metadata of child nodes.
343  *
344  * If a child node contains its own child nodes, it will be added to the stack
345  * and function will return.
346  *
347  * @param dictionaries - dictionaries needed for encoding.
348  * @param parent - parent node.
349  * @param stack - stack holding parent nodes.
350  * @return 0 if successful.
351  */
352 static int bejProcessChildNodes(const struct BejDictionaries* dictionaries,
353                                 struct RedfishPropertyParent* parent,
354                                 struct BejPointerStackCallback* stack)
355 {
356     // Get the next child of the parent.
357     void* childPtr = parent->metaData.nextChild;
358 
359     // Process all the children belongs to the parent.
360     while (childPtr != NULL)
361     {
362         // If we find a child with its own child nodes, add it to the stack and
363         // return.
364         if (bejTreeIsParentType(childPtr))
365         {
366             RETURN_IF_IERROR(bejUpdateParentMetaData(
367                 dictionaries, parent->metaData.dictionary,
368                 parent->metaData.childrenDictPropOffset, childPtr,
369                 parent->metaData.nextChildIndex));
370 
371             RETURN_IF_IERROR(stack->stackPush(childPtr, stack->stackContext));
372             bejParentGoToNextChild(parent, childPtr);
373             return 0;
374         }
375 
376         RETURN_IF_IERROR(
377             bejUpdateLeafNodeMetaData(dictionaries, parent->metaData.dictionary,
378                                       childPtr, parent->metaData.nextChildIndex,
379                                       parent->metaData.childrenDictPropOffset));
380         // Use the child value size to update the parent value size.
381         struct RedfishPropertyLeaf* leafChild = childPtr;
382         // V: Include the child size in parent's value size.
383         parent->metaData.vSize +=
384             (leafChild->metaData.sflSize + leafChild->metaData.vSize);
385 
386         // Get the next child belongs to the parent.
387         childPtr = bejParentGoToNextChild(parent, childPtr);
388     }
389     return 0;
390 }
391 
392 int bejUpdateNodeMetadata(const struct BejDictionaries* dictionaries,
393                           uint16_t majorSchemaStartingOffset,
394                           struct RedfishPropertyParent* root,
395                           struct BejPointerStackCallback* stack)
396 {
397     // Decide the starting property offset of the dictionary.
398     uint16_t dictOffset = bejDictGetPropertyHeadOffset();
399     if (majorSchemaStartingOffset != BEJ_DICTIONARY_START_AT_HEAD)
400     {
401         dictOffset = majorSchemaStartingOffset;
402     }
403 
404     // Initialize root node metadata.
405     RETURN_IF_IERROR(
406         bejUpdateParentMetaData(dictionaries, dictionaries->schemaDictionary,
407                                 dictOffset, root, /*childIndex=*/0));
408 
409     // Push the root to the stack. Because we are not done with the parent node
410     // yet. Need to figure out all bytes need to encode children of this parent,
411     // and save it in the parent metadata.
412     RETURN_IF_IERROR(stack->stackPush(root, stack->stackContext));
413 
414     while (!stack->stackEmpty(stack->stackContext))
415     {
416         // Get the parent at the top of the stack. Stack is only popped if the
417         // parent stack entry has no pending children; That is
418         // parent->metaData.nextChild == NULL.
419         struct RedfishPropertyParent* parent =
420             stack->stackPeek(stack->stackContext);
421 
422         // Calculate metadata of all the child nodes of the current parent node.
423         // If one of these child nodes has its own child nodes, that child node
424         // will be added to the stack and this function will return.
425         RETURN_IF_IERROR(bejProcessChildNodes(dictionaries, parent, stack));
426 
427         // If a new node hasn't been added to the stack, we know that this
428         // parent's child nodes have been processed. If not, do not pop the
429         // stack.
430         if (parent != stack->stackPeek(stack->stackContext))
431         {
432             continue;
433         }
434 
435         // If we are here;
436         // Then "parent" is the top element of the stack.
437         // All the children of "parent" has been processed.
438 
439         // Remove the "parent" from the stack.
440         parent = stack->stackPop(stack->stackContext);
441         // L: Add the length needed to store the number of bytes used for the
442         // parent's value.
443         parent->metaData.sflSize +=
444             bejNnintEncodingSizeOfUInt(parent->metaData.vSize);
445 
446         // Since we now know the total size needs to encode the node pointed by
447         // "parent" variable, we should add that to the value size of this
448         // node's parent. Since we already popped this node from the stack, top
449         // of the stack element is this nodes's parent. "parentsParent" can be
450         // NULL if the node pointed by "parent" variable is the root.
451         struct RedfishPropertyParent* parentsParent =
452             stack->stackPeek(stack->stackContext);
453         if (parentsParent != NULL)
454         {
455             // V: Include the total size to encode the current parent in its
456             // parent's value size.
457             parentsParent->metaData.vSize +=
458                 (parent->metaData.sflSize + parent->metaData.vSize);
459         }
460     }
461     return 0;
462 }
463