1 /* 2 // Copyright (c) 2017 2018 Intel Corporation 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 */ 16 17 #pragma once 18 #include <algorithm> 19 #include <cmath> 20 #include <iostream> 21 22 namespace ipmi 23 { 24 static constexpr int16_t maxInt10 = 0x1FF; 25 static constexpr int16_t minInt10 = -0x200; 26 static constexpr int8_t maxInt4 = 7; 27 static constexpr int8_t minInt4 = -8; 28 29 // Helper function to avoid repeated complicated expression 30 // TODO(): Refactor to add a proper sensorutils.cpp file, 31 // instead of putting everything in this header as it is now, 32 // so that helper functions can be correctly hidden from callers. 33 static inline bool baseInRange(double base) 34 { 35 auto min10 = static_cast<double>(minInt10); 36 auto max10 = static_cast<double>(maxInt10); 37 38 return ((base >= min10) && (base <= max10)); 39 } 40 41 // Helper function for internal use by getSensorAttributes() 42 // Ensures floating-point "base" is within bounds, 43 // and adjusts integer exponent "expShift" accordingly. 44 // To minimize data loss when later truncating to integer, 45 // the floating-point "base" will be as large as possible, 46 // but still within the bounds (minInt10,maxInt10). 47 // The bounds of "expShift" are (minInt4,maxInt4). 48 // Consider this equation: n = base * (10.0 ** expShift) 49 // This function will try to maximize "base", 50 // adjusting "expShift" to keep the value "n" unchanged, 51 // while keeping base and expShift within bounds. 52 // Returns true if successful, modifies values in-place 53 static inline bool scaleFloatExp(double& base, int8_t& expShift) 54 { 55 // Comparing with zero should be OK, zero is special in floating-point 56 // If base is exactly zero, no adjustment of the exponent is necessary 57 if (base == 0.0) 58 { 59 return true; 60 } 61 62 // As long as base value is within allowed range, expand precision 63 // This will help to avoid loss when later rounding to integer 64 while (baseInRange(base)) 65 { 66 if (expShift <= minInt4) 67 { 68 // Already at the minimum expShift, can not decrement it more 69 break; 70 } 71 72 // Multiply by 10, but shift decimal point to the left, no net change 73 base *= 10.0; 74 --expShift; 75 } 76 77 // As long as base value is *not* within range, shrink precision 78 // This will pull base value closer to zero, thus within range 79 while (!(baseInRange(base))) 80 { 81 if (expShift >= maxInt4) 82 { 83 // Already at the maximum expShift, can not increment it more 84 break; 85 } 86 87 // Divide by 10, but shift decimal point to the right, no net change 88 base /= 10.0; 89 ++expShift; 90 } 91 92 // If the above loop was not able to pull it back within range, 93 // the base value is beyond what expShift can represent, return false. 94 return baseInRange(base); 95 } 96 97 // Helper function for internal use by getSensorAttributes() 98 // Ensures integer "ibase" is no larger than necessary, 99 // by normalizing it so that the decimal point shift is in the exponent, 100 // whenever possible. 101 // This provides more consistent results, 102 // as many equivalent solutions are collapsed into one consistent solution. 103 // If integer "ibase" is a clean multiple of 10, 104 // divide it by 10 (this is lossless), so it is closer to zero. 105 // Also modify floating-point "dbase" at the same time, 106 // as both integer and floating-point base share the same expShift. 107 // Example: (ibase=300, expShift=2) becomes (ibase=3, expShift=4) 108 // because the underlying value is the same: 200*(10**2) == 2*(10**4) 109 // Always successful, modifies values in-place 110 static inline void normalizeIntExp(int16_t& ibase, int8_t& expShift, 111 double& dbase) 112 { 113 for (;;) 114 { 115 // If zero, already normalized, ensure exponent also zero 116 if (ibase == 0) 117 { 118 expShift = 0; 119 break; 120 } 121 122 // If not cleanly divisible by 10, already normalized 123 if ((ibase % 10) != 0) 124 { 125 break; 126 } 127 128 // If exponent already at max, already normalized 129 if (expShift >= maxInt4) 130 { 131 break; 132 } 133 134 // Bring values closer to zero, correspondingly shift exponent, 135 // without changing the underlying number that this all represents, 136 // similar to what is done by scaleFloatExp(). 137 // The floating-point base must be kept in sync with the integer base, 138 // as both floating-point and integer share the same exponent. 139 ibase /= 10; 140 dbase /= 10.0; 141 ++expShift; 142 } 143 } 144 145 // The IPMI equation: 146 // y = (Mx + (B * 10^(bExp))) * 10^(rExp) 147 // Section 36.3 of this document: 148 // https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf 149 // 150 // The goal is to exactly match the math done by the ipmitool command, 151 // at the other side of the interface: 152 // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360 153 // 154 // To use with Wolfram Alpha, make all variables single letters 155 // bExp becomes E, rExp becomes R 156 // https://www.wolframalpha.com/input/?i=y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29 157 static inline bool getSensorAttributes(const double max, const double min, 158 int16_t& mValue, int8_t& rExp, 159 int16_t& bValue, int8_t& bExp, 160 bool& bSigned) 161 { 162 if (!(std::isfinite(min))) 163 { 164 std::cerr << "getSensorAttributes: Min value is unusable\n"; 165 return false; 166 } 167 if (!(std::isfinite(max))) 168 { 169 std::cerr << "getSensorAttributes: Max value is unusable\n"; 170 return false; 171 } 172 173 // Because NAN has already been tested for, this comparison works 174 if (max <= min) 175 { 176 std::cerr << "getSensorAttributes: Max must be greater than min\n"; 177 return false; 178 } 179 180 // Given min and max, we must solve for M, B, bExp, rExp 181 // y comes in from D-Bus (the actual sensor reading) 182 // x is calculated from y by scaleIPMIValueFromDouble() below 183 // If y is min, x should equal = 0 (or -128 if signed) 184 // If y is max, x should equal 255 (or 127 if signed) 185 double fullRange = max - min; 186 double lowestX; 187 188 rExp = 0; 189 bExp = 0; 190 191 // TODO(): The IPMI document is ambiguous, as to whether 192 // the resulting byte should be signed or unsigned, 193 // essentially leaving it up to the caller. 194 // The document just refers to it as "raw reading", 195 // or "byte of reading", without giving further details. 196 // Previous code set it signed if min was less than zero, 197 // so I'm sticking with that, until I learn otherwise. 198 if (min < 0.0) 199 { 200 // TODO(): It would be worth experimenting with the range (-127,127), 201 // instead of the range (-128,127), because this 202 // would give good symmetry around zero, and make results look better. 203 // Divide by 254 instead of 255, and change -128 to -127 elsewhere. 204 bSigned = true; 205 lowestX = -128.0; 206 } 207 else 208 { 209 bSigned = false; 210 lowestX = 0.0; 211 } 212 213 // Step 1: Set y to (max - min), set x to 255, set B to 0, solve for M 214 // This works, regardless of signed or unsigned, 215 // because total range is the same. 216 double dM = fullRange / 255.0; 217 218 // Step 2: Constrain M, and set rExp accordingly 219 if (!(scaleFloatExp(dM, rExp))) 220 { 221 std::cerr << "getSensorAttributes: Multiplier range exceeds scale (M=" 222 << dM << ", rExp=" << (int)rExp << ")\n"; 223 return false; 224 } 225 226 mValue = static_cast<int16_t>(std::round(dM)); 227 228 normalizeIntExp(mValue, rExp, dM); 229 230 // The multiplier can not be zero, for obvious reasons 231 if (mValue == 0) 232 { 233 std::cerr << "getSensorAttributes: Multiplier range below scale\n"; 234 return false; 235 } 236 237 // Step 3: set y to min, set x to min, keep M and rExp, solve for B 238 // If negative, x will be -128 (the most negative possible byte), not 0 239 240 // Solve the IPMI equation for B, instead of y 241 // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+B 242 // B = 10^(-rExp - bExp) (y - M 10^rExp x) 243 // TODO(): Compare with this alternative solution from SageMathCell 244 // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasjoKTJgDAECTH&lang=sage&interacts=eJyLjgUAARUAuQ== 245 double dB = std::pow(10.0, ((-rExp) - bExp)) * 246 (min - ((dM * std::pow(10.0, rExp) * lowestX))); 247 248 // Step 4: Constrain B, and set bExp accordingly 249 if (!(scaleFloatExp(dB, bExp))) 250 { 251 std::cerr << "getSensorAttributes: Offset (B=" << dB 252 << ", bExp=" << (int)bExp 253 << ") exceeds multiplier scale (M=" << dM 254 << ", rExp=" << (int)rExp << ")\n"; 255 return false; 256 } 257 258 bValue = static_cast<int16_t>(std::round(dB)); 259 260 normalizeIntExp(bValue, bExp, dB); 261 262 // Unlike the multiplier, it is perfectly OK for bValue to be zero 263 return true; 264 } 265 266 static inline uint8_t 267 scaleIPMIValueFromDouble(const double value, const int16_t mValue, 268 const int8_t rExp, const int16_t bValue, 269 const int8_t bExp, const bool bSigned) 270 { 271 // Avoid division by zero below 272 if (mValue == 0) 273 { 274 throw std::out_of_range("Scaling multiplier is uninitialized"); 275 } 276 277 auto dM = static_cast<double>(mValue); 278 auto dB = static_cast<double>(bValue); 279 280 // Solve the IPMI equation for x, instead of y 281 // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+x 282 // x = (10^(-rExp) (y - B 10^(rExp + bExp)))/M and M 10^rExp!=0 283 // TODO(): Compare with this alternative solution from SageMathCell 284 // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasDlAlAMB8JP0=&lang=sage&interacts=eJyLjgUAARUAuQ== 285 double dX = 286 (std::pow(10.0, -rExp) * (value - (dB * std::pow(10.0, rExp + bExp)))) / 287 dM; 288 289 auto scaledValue = static_cast<int32_t>(std::round(dX)); 290 291 int32_t minClamp; 292 int32_t maxClamp; 293 294 // Because of rounding and integer truncation of scaling factors, 295 // sometimes the resulting byte is slightly out of range. 296 // Still allow this, but clamp the values to range. 297 if (bSigned) 298 { 299 minClamp = std::numeric_limits<int8_t>::lowest(); 300 maxClamp = std::numeric_limits<int8_t>::max(); 301 } 302 else 303 { 304 minClamp = std::numeric_limits<uint8_t>::lowest(); 305 maxClamp = std::numeric_limits<uint8_t>::max(); 306 } 307 308 auto clampedValue = std::clamp(scaledValue, minClamp, maxClamp); 309 310 // This works for both signed and unsigned, 311 // because it is the same underlying byte storage. 312 return static_cast<uint8_t>(clampedValue); 313 } 314 315 static inline uint8_t getScaledIPMIValue(const double value, const double max, 316 const double min) 317 { 318 int16_t mValue = 0; 319 int8_t rExp = 0; 320 int16_t bValue = 0; 321 int8_t bExp = 0; 322 bool bSigned = false; 323 324 bool result = getSensorAttributes(max, min, mValue, rExp, bValue, bExp, 325 bSigned); 326 if (!result) 327 { 328 throw std::runtime_error("Illegal sensor attributes"); 329 } 330 331 return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned); 332 } 333 334 } // namespace ipmi 335