1 /*
2 // Copyright (c) 2017 2018 Intel Corporation
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 */
16 
17 #pragma once
18 #include <algorithm>
19 #include <cmath>
20 #include <iostream>
21 
22 namespace ipmi
23 {
24 static constexpr int16_t maxInt10 = 0x1FF;
25 static constexpr int16_t minInt10 = -0x200;
26 static constexpr int8_t maxInt4 = 7;
27 static constexpr int8_t minInt4 = -8;
28 
29 // Helper function to avoid repeated complicated expression
30 // TODO(): Refactor to add a proper sensorutils.cpp file,
31 // instead of putting everything in this header as it is now,
32 // so that helper functions can be correctly hidden from callers.
33 static inline bool baseInRange(double base)
34 {
35     auto min10 = static_cast<double>(minInt10);
36     auto max10 = static_cast<double>(maxInt10);
37 
38     return ((base >= min10) && (base <= max10));
39 }
40 
41 // Helper function for internal use by getSensorAttributes()
42 // Ensures floating-point "base" is within bounds,
43 // and adjusts integer exponent "expShift" accordingly.
44 // To minimize data loss when later truncating to integer,
45 // the floating-point "base" will be as large as possible,
46 // but still within the bounds (minInt10,maxInt10).
47 // The bounds of "expShift" are (minInt4,maxInt4).
48 // Consider this equation: n = base * (10.0 ** expShift)
49 // This function will try to maximize "base",
50 // adjusting "expShift" to keep the value "n" unchanged,
51 // while keeping base and expShift within bounds.
52 // Returns true if successful, modifies values in-place
53 static inline bool scaleFloatExp(double& base, int8_t& expShift)
54 {
55     // Comparing with zero should be OK, zero is special in floating-point
56     // If base is exactly zero, no adjustment of the exponent is necessary
57     if (base == 0.0)
58     {
59         return true;
60     }
61 
62     // As long as base value is within allowed range, expand precision
63     // This will help to avoid loss when later rounding to integer
64     while (baseInRange(base))
65     {
66         if (expShift <= minInt4)
67         {
68             // Already at the minimum expShift, can not decrement it more
69             break;
70         }
71 
72         // Multiply by 10, but shift decimal point to the left, no net change
73         base *= 10.0;
74         --expShift;
75     }
76 
77     // As long as base value is *not* within range, shrink precision
78     // This will pull base value closer to zero, thus within range
79     while (!(baseInRange(base)))
80     {
81         if (expShift >= maxInt4)
82         {
83             // Already at the maximum expShift, can not increment it more
84             break;
85         }
86 
87         // Divide by 10, but shift decimal point to the right, no net change
88         base /= 10.0;
89         ++expShift;
90     }
91 
92     // If the above loop was not able to pull it back within range,
93     // the base value is beyond what expShift can represent, return false.
94     return baseInRange(base);
95 }
96 
97 // Helper function for internal use by getSensorAttributes()
98 // Ensures integer "ibase" is no larger than necessary,
99 // by normalizing it so that the decimal point shift is in the exponent,
100 // whenever possible.
101 // This provides more consistent results,
102 // as many equivalent solutions are collapsed into one consistent solution.
103 // If integer "ibase" is a clean multiple of 10,
104 // divide it by 10 (this is lossless), so it is closer to zero.
105 // Also modify floating-point "dbase" at the same time,
106 // as both integer and floating-point base share the same expShift.
107 // Example: (ibase=300, expShift=2) becomes (ibase=3, expShift=4)
108 // because the underlying value is the same: 200*(10**2) == 2*(10**4)
109 // Always successful, modifies values in-place
110 static inline void normalizeIntExp(int16_t& ibase, int8_t& expShift,
111                                    double& dbase)
112 {
113     for (;;)
114     {
115         // If zero, already normalized, ensure exponent also zero
116         if (ibase == 0)
117         {
118             expShift = 0;
119             break;
120         }
121 
122         // If not cleanly divisible by 10, already normalized
123         if ((ibase % 10) != 0)
124         {
125             break;
126         }
127 
128         // If exponent already at max, already normalized
129         if (expShift >= maxInt4)
130         {
131             break;
132         }
133 
134         // Bring values closer to zero, correspondingly shift exponent,
135         // without changing the underlying number that this all represents,
136         // similar to what is done by scaleFloatExp().
137         // The floating-point base must be kept in sync with the integer base,
138         // as both floating-point and integer share the same exponent.
139         ibase /= 10;
140         dbase /= 10.0;
141         ++expShift;
142     }
143 }
144 
145 // The IPMI equation:
146 // y = (Mx + (B * 10^(bExp))) * 10^(rExp)
147 // Section 36.3 of this document:
148 // https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
149 //
150 // The goal is to exactly match the math done by the ipmitool command,
151 // at the other side of the interface:
152 // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360
153 //
154 // To use with Wolfram Alpha, make all variables single letters
155 // bExp becomes E, rExp becomes R
156 // https://www.wolframalpha.com/input/?i=y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29
157 static inline bool getSensorAttributes(const double max, const double min,
158                                        int16_t& mValue, int8_t& rExp,
159                                        int16_t& bValue, int8_t& bExp,
160                                        bool& bSigned)
161 {
162     if (!(std::isfinite(min)))
163     {
164         std::cerr << "getSensorAttributes: Min value is unusable\n";
165         return false;
166     }
167     if (!(std::isfinite(max)))
168     {
169         std::cerr << "getSensorAttributes: Max value is unusable\n";
170         return false;
171     }
172 
173     // Because NAN has already been tested for, this comparison works
174     if (max <= min)
175     {
176         std::cerr << "getSensorAttributes: Max must be greater than min\n";
177         return false;
178     }
179 
180     // Given min and max, we must solve for M, B, bExp, rExp
181     // y comes in from D-Bus (the actual sensor reading)
182     // x is calculated from y by scaleIPMIValueFromDouble() below
183     // If y is min, x should equal = 0 (or -128 if signed)
184     // If y is max, x should equal 255 (or 127 if signed)
185     double fullRange = max - min;
186     double lowestX;
187 
188     rExp = 0;
189     bExp = 0;
190 
191     // TODO(): The IPMI document is ambiguous, as to whether
192     // the resulting byte should be signed or unsigned,
193     // essentially leaving it up to the caller.
194     // The document just refers to it as "raw reading",
195     // or "byte of reading", without giving further details.
196     // Previous code set it signed if min was less than zero,
197     // so I'm sticking with that, until I learn otherwise.
198     if (min < 0.0)
199     {
200         // TODO(): It would be worth experimenting with the range (-127,127),
201         // instead of the range (-128,127), because this
202         // would give good symmetry around zero, and make results look better.
203         // Divide by 254 instead of 255, and change -128 to -127 elsewhere.
204         bSigned = true;
205         lowestX = -128.0;
206     }
207     else
208     {
209         bSigned = false;
210         lowestX = 0.0;
211     }
212 
213     // Step 1: Set y to (max - min), set x to 255, set B to 0, solve for M
214     // This works, regardless of signed or unsigned,
215     // because total range is the same.
216     double dM = fullRange / 255.0;
217 
218     // Step 2: Constrain M, and set rExp accordingly
219     if (!(scaleFloatExp(dM, rExp)))
220     {
221         std::cerr << "getSensorAttributes: Multiplier range exceeds scale (M="
222                   << dM << ", rExp=" << (int)rExp << ")\n";
223         return false;
224     }
225 
226     mValue = static_cast<int16_t>(std::round(dM));
227 
228     normalizeIntExp(mValue, rExp, dM);
229 
230     // The multiplier can not be zero, for obvious reasons
231     if (mValue == 0)
232     {
233         std::cerr << "getSensorAttributes: Multiplier range below scale\n";
234         return false;
235     }
236 
237     // Step 3: set y to min, set x to min, keep M and rExp, solve for B
238     // If negative, x will be -128 (the most negative possible byte), not 0
239 
240     // Solve the IPMI equation for B, instead of y
241     // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+B
242     // B = 10^(-rExp - bExp) (y - M 10^rExp x)
243     // TODO(): Compare with this alternative solution from SageMathCell
244     // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasjoKTJgDAECTH&lang=sage&interacts=eJyLjgUAARUAuQ==
245     double dB = std::pow(10.0, ((-rExp) - bExp)) *
246                 (min - ((dM * std::pow(10.0, rExp) * lowestX)));
247 
248     // Step 4: Constrain B, and set bExp accordingly
249     if (!(scaleFloatExp(dB, bExp)))
250     {
251         std::cerr << "getSensorAttributes: Offset (B=" << dB
252                   << ", bExp=" << (int)bExp
253                   << ") exceeds multiplier scale (M=" << dM
254                   << ", rExp=" << (int)rExp << ")\n";
255         return false;
256     }
257 
258     bValue = static_cast<int16_t>(std::round(dB));
259 
260     normalizeIntExp(bValue, bExp, dB);
261 
262     // Unlike the multiplier, it is perfectly OK for bValue to be zero
263     return true;
264 }
265 
266 static inline uint8_t
267     scaleIPMIValueFromDouble(const double value, const int16_t mValue,
268                              const int8_t rExp, const int16_t bValue,
269                              const int8_t bExp, const bool bSigned)
270 {
271     // Avoid division by zero below
272     if (mValue == 0)
273     {
274         throw std::out_of_range("Scaling multiplier is uninitialized");
275     }
276 
277     auto dM = static_cast<double>(mValue);
278     auto dB = static_cast<double>(bValue);
279 
280     // Solve the IPMI equation for x, instead of y
281     // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+x
282     // x = (10^(-rExp) (y - B 10^(rExp + bExp)))/M and M 10^rExp!=0
283     // TODO(): Compare with this alternative solution from SageMathCell
284     // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasDlAlAMB8JP0=&lang=sage&interacts=eJyLjgUAARUAuQ==
285     double dX =
286         (std::pow(10.0, -rExp) * (value - (dB * std::pow(10.0, rExp + bExp)))) /
287         dM;
288 
289     auto scaledValue = static_cast<int32_t>(std::round(dX));
290 
291     int32_t minClamp;
292     int32_t maxClamp;
293 
294     // Because of rounding and integer truncation of scaling factors,
295     // sometimes the resulting byte is slightly out of range.
296     // Still allow this, but clamp the values to range.
297     if (bSigned)
298     {
299         minClamp = std::numeric_limits<int8_t>::lowest();
300         maxClamp = std::numeric_limits<int8_t>::max();
301     }
302     else
303     {
304         minClamp = std::numeric_limits<uint8_t>::lowest();
305         maxClamp = std::numeric_limits<uint8_t>::max();
306     }
307 
308     auto clampedValue = std::clamp(scaledValue, minClamp, maxClamp);
309 
310     // This works for both signed and unsigned,
311     // because it is the same underlying byte storage.
312     return static_cast<uint8_t>(clampedValue);
313 }
314 
315 static inline uint8_t getScaledIPMIValue(const double value, const double max,
316                                          const double min)
317 {
318     int16_t mValue = 0;
319     int8_t rExp = 0;
320     int16_t bValue = 0;
321     int8_t bExp = 0;
322     bool bSigned = false;
323 
324     bool result = getSensorAttributes(max, min, mValue, rExp, bValue, bExp,
325                                       bSigned);
326     if (!result)
327     {
328         throw std::runtime_error("Illegal sensor attributes");
329     }
330 
331     return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned);
332 }
333 
334 } // namespace ipmi
335