1 /*
2 // Copyright (c) 2017 2018 Intel Corporation
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 */
16 
17 #pragma once
18 #include <algorithm>
19 #include <cmath>
20 #include <cstdint>
21 #include <iostream>
22 
23 namespace ipmi
24 {
25 static constexpr int16_t maxInt10 = 0x1FF;
26 static constexpr int16_t minInt10 = -0x200;
27 static constexpr int8_t maxInt4 = 7;
28 static constexpr int8_t minInt4 = -8;
29 
30 // Helper function to avoid repeated complicated expression
31 // TODO(): Refactor to add a proper sensorutils.cpp file,
32 // instead of putting everything in this header as it is now,
33 // so that helper functions can be correctly hidden from callers.
34 static inline bool baseInRange(double base)
35 {
36     auto min10 = static_cast<double>(minInt10);
37     auto max10 = static_cast<double>(maxInt10);
38 
39     return ((base >= min10) && (base <= max10));
40 }
41 
42 // Helper function for internal use by getSensorAttributes()
43 // Ensures floating-point "base" is within bounds,
44 // and adjusts integer exponent "expShift" accordingly.
45 // To minimize data loss when later truncating to integer,
46 // the floating-point "base" will be as large as possible,
47 // but still within the bounds (minInt10,maxInt10).
48 // The bounds of "expShift" are (minInt4,maxInt4).
49 // Consider this equation: n = base * (10.0 ** expShift)
50 // This function will try to maximize "base",
51 // adjusting "expShift" to keep the value "n" unchanged,
52 // while keeping base and expShift within bounds.
53 // Returns true if successful, modifies values in-place
54 static inline bool scaleFloatExp(double& base, int8_t& expShift)
55 {
56     // Comparing with zero should be OK, zero is special in floating-point
57     // If base is exactly zero, no adjustment of the exponent is necessary
58     if (base == 0.0)
59     {
60         return true;
61     }
62 
63     // As long as base value is within allowed range, expand precision
64     // This will help to avoid loss when later rounding to integer
65     while (baseInRange(base))
66     {
67         if (expShift <= minInt4)
68         {
69             // Already at the minimum expShift, can not decrement it more
70             break;
71         }
72 
73         // Multiply by 10, but shift decimal point to the left, no net change
74         base *= 10.0;
75         --expShift;
76     }
77 
78     // As long as base value is *not* within range, shrink precision
79     // This will pull base value closer to zero, thus within range
80     while (!(baseInRange(base)))
81     {
82         if (expShift >= maxInt4)
83         {
84             // Already at the maximum expShift, can not increment it more
85             break;
86         }
87 
88         // Divide by 10, but shift decimal point to the right, no net change
89         base /= 10.0;
90         ++expShift;
91     }
92 
93     // If the above loop was not able to pull it back within range,
94     // the base value is beyond what expShift can represent, return false.
95     return baseInRange(base);
96 }
97 
98 // Helper function for internal use by getSensorAttributes()
99 // Ensures integer "ibase" is no larger than necessary,
100 // by normalizing it so that the decimal point shift is in the exponent,
101 // whenever possible.
102 // This provides more consistent results,
103 // as many equivalent solutions are collapsed into one consistent solution.
104 // If integer "ibase" is a clean multiple of 10,
105 // divide it by 10 (this is lossless), so it is closer to zero.
106 // Also modify floating-point "dbase" at the same time,
107 // as both integer and floating-point base share the same expShift.
108 // Example: (ibase=300, expShift=2) becomes (ibase=3, expShift=4)
109 // because the underlying value is the same: 200*(10**2) == 2*(10**4)
110 // Always successful, modifies values in-place
111 static inline void normalizeIntExp(int16_t& ibase, int8_t& expShift,
112                                    double& dbase)
113 {
114     for (;;)
115     {
116         // If zero, already normalized, ensure exponent also zero
117         if (ibase == 0)
118         {
119             expShift = 0;
120             break;
121         }
122 
123         // If not cleanly divisible by 10, already normalized
124         if ((ibase % 10) != 0)
125         {
126             break;
127         }
128 
129         // If exponent already at max, already normalized
130         if (expShift >= maxInt4)
131         {
132             break;
133         }
134 
135         // Bring values closer to zero, correspondingly shift exponent,
136         // without changing the underlying number that this all represents,
137         // similar to what is done by scaleFloatExp().
138         // The floating-point base must be kept in sync with the integer base,
139         // as both floating-point and integer share the same exponent.
140         ibase /= 10;
141         dbase /= 10.0;
142         ++expShift;
143     }
144 }
145 
146 // The IPMI equation:
147 // y = (Mx + (B * 10^(bExp))) * 10^(rExp)
148 // Section 36.3 of this document:
149 // https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
150 //
151 // The goal is to exactly match the math done by the ipmitool command,
152 // at the other side of the interface:
153 // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360
154 //
155 // To use with Wolfram Alpha, make all variables single letters
156 // bExp becomes E, rExp becomes R
157 // https://www.wolframalpha.com/input/?i=y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29
158 static inline bool getSensorAttributes(const double max, const double min,
159                                        int16_t& mValue, int8_t& rExp,
160                                        int16_t& bValue, int8_t& bExp,
161                                        bool& bSigned)
162 {
163     if (!(std::isfinite(min)))
164     {
165         std::cerr << "getSensorAttributes: Min value is unusable\n";
166         return false;
167     }
168     if (!(std::isfinite(max)))
169     {
170         std::cerr << "getSensorAttributes: Max value is unusable\n";
171         return false;
172     }
173 
174     // Because NAN has already been tested for, this comparison works
175     if (max <= min)
176     {
177         std::cerr << "getSensorAttributes: Max must be greater than min\n";
178         return false;
179     }
180 
181     // Given min and max, we must solve for M, B, bExp, rExp
182     // y comes in from D-Bus (the actual sensor reading)
183     // x is calculated from y by scaleIPMIValueFromDouble() below
184     // If y is min, x should equal = 0 (or -128 if signed)
185     // If y is max, x should equal 255 (or 127 if signed)
186     double fullRange = max - min;
187     double lowestX;
188 
189     rExp = 0;
190     bExp = 0;
191 
192     // TODO(): The IPMI document is ambiguous, as to whether
193     // the resulting byte should be signed or unsigned,
194     // essentially leaving it up to the caller.
195     // The document just refers to it as "raw reading",
196     // or "byte of reading", without giving further details.
197     // Previous code set it signed if min was less than zero,
198     // so I'm sticking with that, until I learn otherwise.
199     if (min < 0.0)
200     {
201         // TODO(): It would be worth experimenting with the range (-127,127),
202         // instead of the range (-128,127), because this
203         // would give good symmetry around zero, and make results look better.
204         // Divide by 254 instead of 255, and change -128 to -127 elsewhere.
205         bSigned = true;
206         lowestX = -128.0;
207     }
208     else
209     {
210         bSigned = false;
211         lowestX = 0.0;
212     }
213 
214     // Step 1: Set y to (max - min), set x to 255, set B to 0, solve for M
215     // This works, regardless of signed or unsigned,
216     // because total range is the same.
217     double dM = fullRange / 255.0;
218 
219     // Step 2: Constrain M, and set rExp accordingly
220     if (!(scaleFloatExp(dM, rExp)))
221     {
222         std::cerr << "getSensorAttributes: Multiplier range exceeds scale (M="
223                   << dM << ", rExp=" << (int)rExp << ")\n";
224         return false;
225     }
226 
227     mValue = static_cast<int16_t>(std::round(dM));
228 
229     normalizeIntExp(mValue, rExp, dM);
230 
231     // The multiplier can not be zero, for obvious reasons
232     if (mValue == 0)
233     {
234         std::cerr << "getSensorAttributes: Multiplier range below scale\n";
235         return false;
236     }
237 
238     // Step 3: set y to min, set x to min, keep M and rExp, solve for B
239     // If negative, x will be -128 (the most negative possible byte), not 0
240 
241     // Solve the IPMI equation for B, instead of y
242     // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+B
243     // B = 10^(-rExp - bExp) (y - M 10^rExp x)
244     // TODO(): Compare with this alternative solution from SageMathCell
245     // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasjoKTJgDAECTH&lang=sage&interacts=eJyLjgUAARUAuQ==
246     double dB = std::pow(10.0, ((-rExp) - bExp)) *
247                 (min - ((dM * std::pow(10.0, rExp) * lowestX)));
248 
249     // Step 4: Constrain B, and set bExp accordingly
250     if (!(scaleFloatExp(dB, bExp)))
251     {
252         std::cerr << "getSensorAttributes: Offset (B=" << dB
253                   << ", bExp=" << (int)bExp
254                   << ") exceeds multiplier scale (M=" << dM
255                   << ", rExp=" << (int)rExp << ")\n";
256         return false;
257     }
258 
259     bValue = static_cast<int16_t>(std::round(dB));
260 
261     normalizeIntExp(bValue, bExp, dB);
262 
263     // Unlike the multiplier, it is perfectly OK for bValue to be zero
264     return true;
265 }
266 
267 static inline uint8_t
268     scaleIPMIValueFromDouble(const double value, const int16_t mValue,
269                              const int8_t rExp, const int16_t bValue,
270                              const int8_t bExp, const bool bSigned)
271 {
272     // Avoid division by zero below
273     if (mValue == 0)
274     {
275         throw std::out_of_range("Scaling multiplier is uninitialized");
276     }
277 
278     auto dM = static_cast<double>(mValue);
279     auto dB = static_cast<double>(bValue);
280 
281     // Solve the IPMI equation for x, instead of y
282     // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+x
283     // x = (10^(-rExp) (y - B 10^(rExp + bExp)))/M and M 10^rExp!=0
284     // TODO(): Compare with this alternative solution from SageMathCell
285     // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasDlAlAMB8JP0=&lang=sage&interacts=eJyLjgUAARUAuQ==
286     double dX =
287         (std::pow(10.0, -rExp) * (value - (dB * std::pow(10.0, rExp + bExp)))) /
288         dM;
289 
290     auto scaledValue = static_cast<int32_t>(std::round(dX));
291 
292     int32_t minClamp;
293     int32_t maxClamp;
294 
295     // Because of rounding and integer truncation of scaling factors,
296     // sometimes the resulting byte is slightly out of range.
297     // Still allow this, but clamp the values to range.
298     if (bSigned)
299     {
300         minClamp = std::numeric_limits<int8_t>::lowest();
301         maxClamp = std::numeric_limits<int8_t>::max();
302     }
303     else
304     {
305         minClamp = std::numeric_limits<uint8_t>::lowest();
306         maxClamp = std::numeric_limits<uint8_t>::max();
307     }
308 
309     auto clampedValue = std::clamp(scaledValue, minClamp, maxClamp);
310 
311     // This works for both signed and unsigned,
312     // because it is the same underlying byte storage.
313     return static_cast<uint8_t>(clampedValue);
314 }
315 
316 static inline uint8_t getScaledIPMIValue(const double value, const double max,
317                                          const double min)
318 {
319     int16_t mValue = 0;
320     int8_t rExp = 0;
321     int16_t bValue = 0;
322     int8_t bExp = 0;
323     bool bSigned = false;
324 
325     bool result = getSensorAttributes(max, min, mValue, rExp, bValue, bExp,
326                                       bSigned);
327     if (!result)
328     {
329         throw std::runtime_error("Illegal sensor attributes");
330     }
331 
332     return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned);
333 }
334 
335 } // namespace ipmi
336