1 /* 2 // Copyright (c) 2017 2018 Intel Corporation 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 */ 16 17 #pragma once 18 #include <algorithm> 19 #include <cmath> 20 #include <cstdint> 21 #include <iostream> 22 23 namespace ipmi 24 { 25 static constexpr int16_t maxInt10 = 0x1FF; 26 static constexpr int16_t minInt10 = -0x200; 27 static constexpr int8_t maxInt4 = 7; 28 static constexpr int8_t minInt4 = -8; 29 30 // Helper function to avoid repeated complicated expression 31 // TODO(): Refactor to add a proper sensorutils.cpp file, 32 // instead of putting everything in this header as it is now, 33 // so that helper functions can be correctly hidden from callers. 34 static inline bool baseInRange(double base) 35 { 36 auto min10 = static_cast<double>(minInt10); 37 auto max10 = static_cast<double>(maxInt10); 38 39 return ((base >= min10) && (base <= max10)); 40 } 41 42 // Helper function for internal use by getSensorAttributes() 43 // Ensures floating-point "base" is within bounds, 44 // and adjusts integer exponent "expShift" accordingly. 45 // To minimize data loss when later truncating to integer, 46 // the floating-point "base" will be as large as possible, 47 // but still within the bounds (minInt10,maxInt10). 48 // The bounds of "expShift" are (minInt4,maxInt4). 49 // Consider this equation: n = base * (10.0 ** expShift) 50 // This function will try to maximize "base", 51 // adjusting "expShift" to keep the value "n" unchanged, 52 // while keeping base and expShift within bounds. 53 // Returns true if successful, modifies values in-place 54 static inline bool scaleFloatExp(double& base, int8_t& expShift) 55 { 56 // Comparing with zero should be OK, zero is special in floating-point 57 // If base is exactly zero, no adjustment of the exponent is necessary 58 if (base == 0.0) 59 { 60 return true; 61 } 62 63 // As long as base value is within allowed range, expand precision 64 // This will help to avoid loss when later rounding to integer 65 while (baseInRange(base)) 66 { 67 if (expShift <= minInt4) 68 { 69 // Already at the minimum expShift, can not decrement it more 70 break; 71 } 72 73 // Multiply by 10, but shift decimal point to the left, no net change 74 base *= 10.0; 75 --expShift; 76 } 77 78 // As long as base value is *not* within range, shrink precision 79 // This will pull base value closer to zero, thus within range 80 while (!(baseInRange(base))) 81 { 82 if (expShift >= maxInt4) 83 { 84 // Already at the maximum expShift, can not increment it more 85 break; 86 } 87 88 // Divide by 10, but shift decimal point to the right, no net change 89 base /= 10.0; 90 ++expShift; 91 } 92 93 // If the above loop was not able to pull it back within range, 94 // the base value is beyond what expShift can represent, return false. 95 return baseInRange(base); 96 } 97 98 // Helper function for internal use by getSensorAttributes() 99 // Ensures integer "ibase" is no larger than necessary, 100 // by normalizing it so that the decimal point shift is in the exponent, 101 // whenever possible. 102 // This provides more consistent results, 103 // as many equivalent solutions are collapsed into one consistent solution. 104 // If integer "ibase" is a clean multiple of 10, 105 // divide it by 10 (this is lossless), so it is closer to zero. 106 // Also modify floating-point "dbase" at the same time, 107 // as both integer and floating-point base share the same expShift. 108 // Example: (ibase=300, expShift=2) becomes (ibase=3, expShift=4) 109 // because the underlying value is the same: 200*(10**2) == 2*(10**4) 110 // Always successful, modifies values in-place 111 static inline void normalizeIntExp(int16_t& ibase, int8_t& expShift, 112 double& dbase) 113 { 114 for (;;) 115 { 116 // If zero, already normalized, ensure exponent also zero 117 if (ibase == 0) 118 { 119 expShift = 0; 120 break; 121 } 122 123 // If not cleanly divisible by 10, already normalized 124 if ((ibase % 10) != 0) 125 { 126 break; 127 } 128 129 // If exponent already at max, already normalized 130 if (expShift >= maxInt4) 131 { 132 break; 133 } 134 135 // Bring values closer to zero, correspondingly shift exponent, 136 // without changing the underlying number that this all represents, 137 // similar to what is done by scaleFloatExp(). 138 // The floating-point base must be kept in sync with the integer base, 139 // as both floating-point and integer share the same exponent. 140 ibase /= 10; 141 dbase /= 10.0; 142 ++expShift; 143 } 144 } 145 146 // The IPMI equation: 147 // y = (Mx + (B * 10^(bExp))) * 10^(rExp) 148 // Section 36.3 of this document: 149 // https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf 150 // 151 // The goal is to exactly match the math done by the ipmitool command, 152 // at the other side of the interface: 153 // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360 154 // 155 // To use with Wolfram Alpha, make all variables single letters 156 // bExp becomes E, rExp becomes R 157 // https://www.wolframalpha.com/input/?i=y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29 158 static inline bool getSensorAttributes(const double max, const double min, 159 int16_t& mValue, int8_t& rExp, 160 int16_t& bValue, int8_t& bExp, 161 bool& bSigned) 162 { 163 if (!(std::isfinite(min))) 164 { 165 std::cerr << "getSensorAttributes: Min value is unusable\n"; 166 return false; 167 } 168 if (!(std::isfinite(max))) 169 { 170 std::cerr << "getSensorAttributes: Max value is unusable\n"; 171 return false; 172 } 173 174 // Because NAN has already been tested for, this comparison works 175 if (max <= min) 176 { 177 std::cerr << "getSensorAttributes: Max must be greater than min\n"; 178 return false; 179 } 180 181 // Given min and max, we must solve for M, B, bExp, rExp 182 // y comes in from D-Bus (the actual sensor reading) 183 // x is calculated from y by scaleIPMIValueFromDouble() below 184 // If y is min, x should equal = 0 (or -128 if signed) 185 // If y is max, x should equal 255 (or 127 if signed) 186 double fullRange = max - min; 187 double lowestX; 188 189 rExp = 0; 190 bExp = 0; 191 192 // TODO(): The IPMI document is ambiguous, as to whether 193 // the resulting byte should be signed or unsigned, 194 // essentially leaving it up to the caller. 195 // The document just refers to it as "raw reading", 196 // or "byte of reading", without giving further details. 197 // Previous code set it signed if min was less than zero, 198 // so I'm sticking with that, until I learn otherwise. 199 if (min < 0.0) 200 { 201 // TODO(): It would be worth experimenting with the range (-127,127), 202 // instead of the range (-128,127), because this 203 // would give good symmetry around zero, and make results look better. 204 // Divide by 254 instead of 255, and change -128 to -127 elsewhere. 205 bSigned = true; 206 lowestX = -128.0; 207 } 208 else 209 { 210 bSigned = false; 211 lowestX = 0.0; 212 } 213 214 // Step 1: Set y to (max - min), set x to 255, set B to 0, solve for M 215 // This works, regardless of signed or unsigned, 216 // because total range is the same. 217 double dM = fullRange / 255.0; 218 219 // Step 2: Constrain M, and set rExp accordingly 220 if (!(scaleFloatExp(dM, rExp))) 221 { 222 std::cerr << "getSensorAttributes: Multiplier range exceeds scale (M=" 223 << dM << ", rExp=" << (int)rExp << ")\n"; 224 return false; 225 } 226 227 mValue = static_cast<int16_t>(std::round(dM)); 228 229 normalizeIntExp(mValue, rExp, dM); 230 231 // The multiplier can not be zero, for obvious reasons 232 if (mValue == 0) 233 { 234 std::cerr << "getSensorAttributes: Multiplier range below scale\n"; 235 return false; 236 } 237 238 // Step 3: set y to min, set x to min, keep M and rExp, solve for B 239 // If negative, x will be -128 (the most negative possible byte), not 0 240 241 // Solve the IPMI equation for B, instead of y 242 // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+B 243 // B = 10^(-rExp - bExp) (y - M 10^rExp x) 244 // TODO(): Compare with this alternative solution from SageMathCell 245 // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasjoKTJgDAECTH&lang=sage&interacts=eJyLjgUAARUAuQ== 246 double dB = std::pow(10.0, ((-rExp) - bExp)) * 247 (min - ((dM * std::pow(10.0, rExp) * lowestX))); 248 249 // Step 4: Constrain B, and set bExp accordingly 250 if (!(scaleFloatExp(dB, bExp))) 251 { 252 std::cerr << "getSensorAttributes: Offset (B=" << dB 253 << ", bExp=" << (int)bExp 254 << ") exceeds multiplier scale (M=" << dM 255 << ", rExp=" << (int)rExp << ")\n"; 256 return false; 257 } 258 259 bValue = static_cast<int16_t>(std::round(dB)); 260 261 normalizeIntExp(bValue, bExp, dB); 262 263 // Unlike the multiplier, it is perfectly OK for bValue to be zero 264 return true; 265 } 266 267 static inline uint8_t 268 scaleIPMIValueFromDouble(const double value, const int16_t mValue, 269 const int8_t rExp, const int16_t bValue, 270 const int8_t bExp, const bool bSigned) 271 { 272 // Avoid division by zero below 273 if (mValue == 0) 274 { 275 throw std::out_of_range("Scaling multiplier is uninitialized"); 276 } 277 278 auto dM = static_cast<double>(mValue); 279 auto dB = static_cast<double>(bValue); 280 281 // Solve the IPMI equation for x, instead of y 282 // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+x 283 // x = (10^(-rExp) (y - B 10^(rExp + bExp)))/M and M 10^rExp!=0 284 // TODO(): Compare with this alternative solution from SageMathCell 285 // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasDlAlAMB8JP0=&lang=sage&interacts=eJyLjgUAARUAuQ== 286 double dX = 287 (std::pow(10.0, -rExp) * (value - (dB * std::pow(10.0, rExp + bExp)))) / 288 dM; 289 290 auto scaledValue = static_cast<int32_t>(std::round(dX)); 291 292 int32_t minClamp; 293 int32_t maxClamp; 294 295 // Because of rounding and integer truncation of scaling factors, 296 // sometimes the resulting byte is slightly out of range. 297 // Still allow this, but clamp the values to range. 298 if (bSigned) 299 { 300 minClamp = std::numeric_limits<int8_t>::lowest(); 301 maxClamp = std::numeric_limits<int8_t>::max(); 302 } 303 else 304 { 305 minClamp = std::numeric_limits<uint8_t>::lowest(); 306 maxClamp = std::numeric_limits<uint8_t>::max(); 307 } 308 309 auto clampedValue = std::clamp(scaledValue, minClamp, maxClamp); 310 311 // This works for both signed and unsigned, 312 // because it is the same underlying byte storage. 313 return static_cast<uint8_t>(clampedValue); 314 } 315 316 static inline uint8_t getScaledIPMIValue(const double value, const double max, 317 const double min) 318 { 319 int16_t mValue = 0; 320 int8_t rExp = 0; 321 int16_t bValue = 0; 322 int8_t bExp = 0; 323 bool bSigned = false; 324 325 bool result = getSensorAttributes(max, min, mValue, rExp, bValue, bExp, 326 bSigned); 327 if (!result) 328 { 329 throw std::runtime_error("Illegal sensor attributes"); 330 } 331 332 return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned); 333 } 334 335 } // namespace ipmi 336