xref: /openbmc/entity-manager/src/fru_utils.cpp (revision a3ca14a64c5523a3e5709e34e7bc49f341add1ee)
1 /*
2 // Copyright (c) 2018 Intel Corporation
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 */
16 /// \file fru_utils.cpp
17 
18 #include "fru_utils.hpp"
19 
20 #include <array>
21 #include <cstddef>
22 #include <cstdint>
23 #include <filesystem>
24 #include <iomanip>
25 #include <iostream>
26 #include <numeric>
27 #include <set>
28 #include <sstream>
29 #include <string>
30 #include <vector>
31 
32 extern "C"
33 {
34 // Include for I2C_SMBUS_BLOCK_MAX
35 #include <linux/i2c.h>
36 }
37 
38 static constexpr bool debug = false;
39 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1
40 
41 std::tm intelEpoch()
42 {
43     std::tm val = {};
44     val.tm_year = 1996 - 1900;
45     val.tm_mday = 1;
46     return val;
47 }
48 
49 char sixBitToChar(uint8_t val)
50 {
51     return static_cast<char>((val & 0x3f) + ' ');
52 }
53 
54 char bcdPlusToChar(uint8_t val)
55 {
56     val &= 0xf;
57     return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10];
58 }
59 
60 enum FRUDataEncoding
61 {
62     binary = 0x0,
63     bcdPlus = 0x1,
64     sixBitASCII = 0x2,
65     languageDependent = 0x3,
66 };
67 
68 enum MultiRecordType : uint8_t
69 {
70     powerSupplyInfo = 0x00,
71     dcOutput = 0x01,
72     dcLoad = 0x02,
73     managementAccessRecord = 0x03,
74     baseCompatibilityRecord = 0x04,
75     extendedCompatibilityRecord = 0x05,
76     resvASFSMBusDeviceRecord = 0x06,
77     resvASFLegacyDeviceAlerts = 0x07,
78     resvASFRemoteControl = 0x08,
79     extendedDCOutput = 0x09,
80     extendedDCLoad = 0x0A
81 };
82 
83 enum SubManagementAccessRecord : uint8_t
84 {
85     systemManagementURL = 0x01,
86     systemName = 0x02,
87     systemPingAddress = 0x03,
88     componentManagementURL = 0x04,
89     componentName = 0x05,
90     componentPingAddress = 0x06,
91     systemUniqueID = 0x07
92 };
93 
94 /* Decode FRU data into a std::string, given an input iterator and end. If the
95  * state returned is fruDataOk, then the resulting string is the decoded FRU
96  * data. The input iterator is advanced past the data consumed.
97  *
98  * On fruDataErr, we have lost synchronisation with the length bytes, so the
99  * iterator is no longer usable.
100  */
101 std::pair<DecodeState, std::string>
102     decodeFRUData(std::vector<uint8_t>::const_iterator& iter,
103                   const std::vector<uint8_t>::const_iterator& end,
104                   bool isLangEng)
105 {
106     std::string value;
107     unsigned int i = 0;
108 
109     /* we need at least one byte to decode the type/len header */
110     if (iter == end)
111     {
112         std::cerr << "Truncated FRU data\n";
113         return make_pair(DecodeState::err, value);
114     }
115 
116     uint8_t c = *(iter++);
117 
118     /* 0xc1 is the end marker */
119     if (c == 0xc1)
120     {
121         return make_pair(DecodeState::end, value);
122     }
123 
124     /* decode type/len byte */
125     uint8_t type = static_cast<uint8_t>(c >> 6);
126     uint8_t len = static_cast<uint8_t>(c & 0x3f);
127 
128     /* we should have at least len bytes of data available overall */
129     if (iter + len > end)
130     {
131         std::cerr << "FRU data field extends past end of FRU area data\n";
132         return make_pair(DecodeState::err, value);
133     }
134 
135     switch (type)
136     {
137         case FRUDataEncoding::binary:
138         {
139             std::stringstream ss;
140             ss << std::hex << std::setfill('0');
141             for (i = 0; i < len; i++, iter++)
142             {
143                 uint8_t val = static_cast<uint8_t>(*iter);
144                 ss << std::setw(2) << static_cast<int>(val);
145             }
146             value = ss.str();
147             break;
148         }
149         case FRUDataEncoding::languageDependent:
150             /* For language-code dependent encodings, assume 8-bit ASCII */
151             value = std::string(iter, iter + len);
152             iter += len;
153 
154             /* English text is encoded in 8-bit ASCII + Latin 1. All other
155              * languages are required to use 2-byte unicode. FruDevice does not
156              * handle unicode.
157              */
158             if (!isLangEng)
159             {
160                 std::cerr << "Error: Non english string is not supported \n";
161                 return make_pair(DecodeState::err, value);
162             }
163 
164             break;
165 
166         case FRUDataEncoding::bcdPlus:
167             value = std::string();
168             for (i = 0; i < len; i++, iter++)
169             {
170                 uint8_t val = *iter;
171                 value.push_back(bcdPlusToChar(val >> 4));
172                 value.push_back(bcdPlusToChar(val & 0xf));
173             }
174             break;
175 
176         case FRUDataEncoding::sixBitASCII:
177         {
178             unsigned int accum = 0;
179             unsigned int accumBitLen = 0;
180             value = std::string();
181             for (i = 0; i < len; i++, iter++)
182             {
183                 accum |= *iter << accumBitLen;
184                 accumBitLen += 8;
185                 while (accumBitLen >= 6)
186                 {
187                     value.push_back(sixBitToChar(accum & 0x3f));
188                     accum >>= 6;
189                     accumBitLen -= 6;
190                 }
191             }
192         }
193         break;
194     }
195 
196     return make_pair(DecodeState::ok, value);
197 }
198 
199 bool checkLangEng(uint8_t lang)
200 {
201     // If Lang is not English then the encoding is defined as 2-byte UNICODE,
202     // but we don't support that.
203     if ((lang != 0U) && lang != 25)
204     {
205         std::cerr << "Warning: languages other than English is not "
206                      "supported\n";
207         // Return language flag as non english
208         return false;
209     }
210     return true;
211 }
212 
213 /* This function verifies for other offsets to check if they are not
214  * falling under other field area
215  *
216  * fruBytes:    Start of Fru data
217  * currentArea: Index of current area offset to be compared against all area
218  *              offset and it is a multiple of 8 bytes as per specification
219  * len:         Length of current area space and it is a multiple of 8 bytes
220  *              as per specification
221  */
222 bool verifyOffset(const std::vector<uint8_t>& fruBytes, fruAreas currentArea,
223                   uint8_t len)
224 {
225     unsigned int fruBytesSize = fruBytes.size();
226 
227     // check if Fru data has at least 8 byte header
228     if (fruBytesSize <= fruBlockSize)
229     {
230         std::cerr << "Error: trying to parse empty FRU\n";
231         return false;
232     }
233 
234     // Check range of passed currentArea value
235     if (currentArea > fruAreas::fruAreaMultirecord)
236     {
237         std::cerr << "Error: Fru area is out of range\n";
238         return false;
239     }
240 
241     unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea);
242     if (currentAreaIndex > fruBytesSize)
243     {
244         std::cerr << "Error: Fru area index is out of range\n";
245         return false;
246     }
247 
248     unsigned int start = fruBytes[currentAreaIndex];
249     unsigned int end = start + len;
250 
251     /* Verify each offset within the range of start and end */
252     for (fruAreas area = fruAreas::fruAreaInternal;
253          area <= fruAreas::fruAreaMultirecord; ++area)
254     {
255         // skip the current offset
256         if (area == currentArea)
257         {
258             continue;
259         }
260 
261         unsigned int areaIndex = getHeaderAreaFieldOffset(area);
262         if (areaIndex > fruBytesSize)
263         {
264             std::cerr << "Error: Fru area index is out of range\n";
265             return false;
266         }
267 
268         unsigned int areaOffset = fruBytes[areaIndex];
269         // if areaOffset is 0 means this area is not available so skip
270         if (areaOffset == 0)
271         {
272             continue;
273         }
274 
275         // check for overlapping of current offset with given areaoffset
276         if (areaOffset == start || (areaOffset > start && areaOffset < end))
277         {
278             std::cerr << getFruAreaName(currentArea)
279                       << " offset is overlapping with " << getFruAreaName(area)
280                       << " offset\n";
281             return false;
282         }
283     }
284     return true;
285 }
286 
287 static void parseMultirecordUUID(
288     const std::vector<uint8_t>& device,
289     boost::container::flat_map<std::string, std::string>& result)
290 {
291     constexpr size_t uuidDataLen = 16;
292     constexpr size_t multiRecordHeaderLen = 5;
293     /* UUID record data, plus one to skip past the sub-record type byte */
294     constexpr size_t uuidRecordData = multiRecordHeaderLen + 1;
295     constexpr size_t multiRecordEndOfListMask = 0x80;
296     /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented
297      * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD
298      * 0xEE 0xFF
299      */
300     const std::array<uint8_t, uuidDataLen> uuidCharOrder = {
301         3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
302     uint32_t areaOffset =
303         device.at(getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord));
304 
305     if (areaOffset == 0)
306     {
307         return;
308     }
309 
310     areaOffset *= fruBlockSize;
311     std::vector<uint8_t>::const_iterator fruBytesIter = device.begin() +
312                                                         areaOffset;
313 
314     /* Verify area offset */
315     if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter))
316     {
317         return;
318     }
319     while (areaOffset + uuidRecordData + uuidDataLen <= device.size())
320     {
321         if ((areaOffset < device.size()) &&
322             (device[areaOffset] ==
323              (uint8_t)MultiRecordType::managementAccessRecord))
324         {
325             if ((areaOffset + multiRecordHeaderLen < device.size()) &&
326                 (device[areaOffset + multiRecordHeaderLen] ==
327                  (uint8_t)SubManagementAccessRecord::systemUniqueID))
328             {
329                 /* Layout of UUID:
330                  * source: https://www.ietf.org/rfc/rfc4122.txt
331                  *
332                  * UUID binary format (16 bytes):
333                  * 4B-2B-2B-2B-6B (big endian)
334                  *
335                  * UUID string is 36 length of characters (36 bytes):
336                  * 0        9    14   19   24
337                  * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
338                  *    be     be   be   be       be
339                  * be means it should be converted to big endian.
340                  */
341                 /* Get UUID bytes to UUID string */
342                 std::stringstream tmp;
343                 tmp << std::hex << std::setfill('0');
344                 for (size_t i = 0; i < uuidDataLen; i++)
345                 {
346                     tmp << std::setw(2)
347                         << static_cast<uint16_t>(
348                                device[areaOffset + uuidRecordData +
349                                       uuidCharOrder[i]]);
350                 }
351                 std::string uuidStr = tmp.str();
352                 result["MULTIRECORD_UUID"] =
353                     uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' +
354                     uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' +
355                     uuidStr.substr(20, 12);
356                 break;
357             }
358         }
359         if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0)
360         {
361             break;
362         }
363         areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen;
364     }
365 }
366 
367 resCodes
368     formatIPMIFRU(const std::vector<uint8_t>& fruBytes,
369                   boost::container::flat_map<std::string, std::string>& result)
370 {
371     resCodes ret = resCodes::resOK;
372     if (fruBytes.size() <= fruBlockSize)
373     {
374         std::cerr << "Error: trying to parse empty FRU \n";
375         return resCodes::resErr;
376     }
377     result["Common_Format_Version"] =
378         std::to_string(static_cast<int>(*fruBytes.begin()));
379 
380     const std::vector<std::string>* fruAreaFieldNames = nullptr;
381 
382     // Don't parse Internal and Multirecord areas
383     for (fruAreas area = fruAreas::fruAreaChassis;
384          area <= fruAreas::fruAreaProduct; ++area)
385     {
386         size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area));
387         if (offset == 0)
388         {
389             continue;
390         }
391         offset *= fruBlockSize;
392         std::vector<uint8_t>::const_iterator fruBytesIter = fruBytes.begin() +
393                                                             offset;
394         if (fruBytesIter + fruBlockSize >= fruBytes.end())
395         {
396             std::cerr << "Not enough data to parse \n";
397             return resCodes::resErr;
398         }
399         // check for format version 1
400         if (*fruBytesIter != 0x01)
401         {
402             std::cerr << "Unexpected version " << *fruBytesIter << "\n";
403             return resCodes::resErr;
404         }
405         ++fruBytesIter;
406 
407         /* Verify other area offset for overlap with current area by passing
408          * length of current area offset pointed by *fruBytesIter
409          */
410         if (!verifyOffset(fruBytes, area, *fruBytesIter))
411         {
412             return resCodes::resErr;
413         }
414 
415         size_t fruAreaSize = *fruBytesIter * fruBlockSize;
416         std::vector<uint8_t>::const_iterator fruBytesIterEndArea =
417             fruBytes.begin() + offset + fruAreaSize - 1;
418         ++fruBytesIter;
419 
420         uint8_t fruComputedChecksum =
421             calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea);
422         if (fruComputedChecksum != *fruBytesIterEndArea)
423         {
424             std::stringstream ss;
425             ss << std::hex << std::setfill('0');
426             ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n";
427             ss << "\tComputed checksum: 0x" << std::setw(2)
428                << static_cast<int>(fruComputedChecksum) << "\n";
429             ss << "\tThe read checksum: 0x" << std::setw(2)
430                << static_cast<int>(*fruBytesIterEndArea) << "\n";
431             std::cerr << ss.str();
432             ret = resCodes::resWarn;
433         }
434 
435         /* Set default language flag to true as Chassis Fru area are always
436          * encoded in English defined in Section 10 of Fru specification
437          */
438 
439         bool isLangEng = true;
440         switch (area)
441         {
442             case fruAreas::fruAreaChassis:
443             {
444                 result["CHASSIS_TYPE"] =
445                     std::to_string(static_cast<int>(*fruBytesIter));
446                 fruBytesIter += 1;
447                 fruAreaFieldNames = &chassisFruAreas;
448                 break;
449             }
450             case fruAreas::fruAreaBoard:
451             {
452                 uint8_t lang = *fruBytesIter;
453                 result["BOARD_LANGUAGE_CODE"] =
454                     std::to_string(static_cast<int>(lang));
455                 isLangEng = checkLangEng(lang);
456                 fruBytesIter += 1;
457 
458                 unsigned int minutes = *fruBytesIter |
459                                        *(fruBytesIter + 1) << 8 |
460                                        *(fruBytesIter + 2) << 16;
461                 std::tm fruTime = intelEpoch();
462                 std::time_t timeValue = timegm(&fruTime);
463                 timeValue += static_cast<long>(minutes) * 60;
464                 fruTime = *std::gmtime(&timeValue);
465 
466                 // Tue Nov 20 23:08:00 2018
467                 std::array<char, 32> timeString = {};
468                 auto bytes = std::strftime(timeString.data(), timeString.size(),
469                                            "%Y-%m-%d - %H:%M:%S UTC", &fruTime);
470                 if (bytes == 0)
471                 {
472                     std::cerr << "invalid time string encountered\n";
473                     return resCodes::resErr;
474                 }
475 
476                 result["BOARD_MANUFACTURE_DATE"] =
477                     std::string_view(timeString.data(), bytes);
478                 fruBytesIter += 3;
479                 fruAreaFieldNames = &boardFruAreas;
480                 break;
481             }
482             case fruAreas::fruAreaProduct:
483             {
484                 uint8_t lang = *fruBytesIter;
485                 result["PRODUCT_LANGUAGE_CODE"] =
486                     std::to_string(static_cast<int>(lang));
487                 isLangEng = checkLangEng(lang);
488                 fruBytesIter += 1;
489                 fruAreaFieldNames = &productFruAreas;
490                 break;
491             }
492             default:
493             {
494                 std::cerr << "Internal error: unexpected FRU area index: "
495                           << static_cast<int>(area) << " \n";
496                 return resCodes::resErr;
497             }
498         }
499         size_t fieldIndex = 0;
500         DecodeState state = DecodeState::ok;
501         do
502         {
503             auto res = decodeFRUData(fruBytesIter, fruBytesIterEndArea,
504                                      isLangEng);
505             state = res.first;
506             std::string value = res.second;
507             std::string name;
508             if (fieldIndex < fruAreaFieldNames->size())
509             {
510                 name = std::string(getFruAreaName(area)) + "_" +
511                        fruAreaFieldNames->at(fieldIndex);
512             }
513             else
514             {
515                 name =
516                     std::string(getFruAreaName(area)) + "_" +
517                     fruCustomFieldName +
518                     std::to_string(fieldIndex - fruAreaFieldNames->size() + 1);
519             }
520 
521             if (state == DecodeState::ok)
522             {
523                 // Strip non null characters from the end
524                 value.erase(std::find_if(value.rbegin(), value.rend(),
525                                          [](char ch) {
526                     return ch != 0;
527                 }).base(),
528                             value.end());
529 
530                 result[name] = std::move(value);
531                 ++fieldIndex;
532             }
533             else if (state == DecodeState::err)
534             {
535                 std::cerr << "Error while parsing " << name << "\n";
536                 ret = resCodes::resWarn;
537                 // Cancel decoding if failed to parse any of mandatory
538                 // fields
539                 if (fieldIndex < fruAreaFieldNames->size())
540                 {
541                     std::cerr << "Failed to parse mandatory field \n";
542                     return resCodes::resErr;
543                 }
544             }
545             else
546             {
547                 if (fieldIndex < fruAreaFieldNames->size())
548                 {
549                     std::cerr << "Mandatory fields absent in FRU area "
550                               << getFruAreaName(area) << " after " << name
551                               << "\n";
552                     ret = resCodes::resWarn;
553                 }
554             }
555         } while (state == DecodeState::ok);
556         for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++)
557         {
558             uint8_t c = *fruBytesIter;
559             if (c != 0U)
560             {
561                 std::cerr << "Non-zero byte after EndOfFields in FRU area "
562                           << getFruAreaName(area) << "\n";
563                 ret = resCodes::resWarn;
564                 break;
565             }
566         }
567     }
568 
569     /* Parsing the Multirecord UUID */
570     parseMultirecordUUID(fruBytes, result);
571 
572     return ret;
573 }
574 
575 // Calculate new checksum for fru info area
576 uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter,
577                           std::vector<uint8_t>::const_iterator end)
578 {
579     constexpr int checksumMod = 256;
580     uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0));
581     return (checksumMod - sum) % checksumMod;
582 }
583 
584 uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData)
585 {
586     return calculateChecksum(fruAreaData.begin(), fruAreaData.end());
587 }
588 
589 // Update new fru area length &
590 // Update checksum at new checksum location
591 // Return the offset of the area checksum byte
592 unsigned int updateFRUAreaLenAndChecksum(std::vector<uint8_t>& fruData,
593                                          size_t fruAreaStart,
594                                          size_t fruAreaEndOfFieldsOffset,
595                                          size_t fruAreaEndOffset)
596 {
597     size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart;
598 
599     // fill zeros for any remaining unused space
600     std::fill(fruData.begin() + fruAreaEndOfFieldsOffset,
601               fruData.begin() + fruAreaEndOffset, 0);
602 
603     size_t mod = traverseFRUAreaIndex % fruBlockSize;
604     size_t checksumLoc = 0;
605     if (mod == 0U)
606     {
607         traverseFRUAreaIndex += (fruBlockSize);
608         checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1);
609     }
610     else
611     {
612         traverseFRUAreaIndex += (fruBlockSize - mod);
613         checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1);
614     }
615 
616     size_t newFRUAreaLen =
617         (traverseFRUAreaIndex / fruBlockSize) +
618         static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0);
619     size_t fruAreaLengthLoc = fruAreaStart + 1;
620     fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen);
621 
622     // Calculate new checksum
623     std::vector<uint8_t> finalFRUData;
624     std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart,
625                 std::back_inserter(finalFRUData));
626 
627     fruData[checksumLoc] = calculateChecksum(finalFRUData);
628     return checksumLoc;
629 }
630 
631 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue)
632 {
633     constexpr uint8_t typeLenMask = 0x3F;
634     constexpr uint8_t endOfFields = 0xC1;
635     if (fruFieldTypeLenValue == endOfFields)
636     {
637         return -1;
638     }
639     return fruFieldTypeLenValue & typeLenMask;
640 }
641 
642 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
643 {
644     // ipmi spec format version number is currently at 1, verify it
645     if (blockData[0] != fruVersion)
646     {
647         if (debug)
648         {
649             std::cerr << "FRU spec version " << (int)(blockData[0])
650                       << " not supported. Supported version is "
651                       << (int)(fruVersion) << "\n";
652         }
653         return false;
654     }
655 
656     // verify pad is set to 0
657     if (blockData[6] != 0x0)
658     {
659         if (debug)
660         {
661             std::cerr << "PAD value in header is non zero, value is "
662                       << (int)(blockData[6]) << "\n";
663         }
664         return false;
665     }
666 
667     // verify offsets are 0, or don't point to another offset
668     std::set<uint8_t> foundOffsets;
669     for (int ii = 1; ii < 6; ii++)
670     {
671         if (blockData[ii] == 0)
672         {
673             continue;
674         }
675         auto inserted = foundOffsets.insert(blockData[ii]);
676         if (!inserted.second)
677         {
678             return false;
679         }
680     }
681 
682     // validate checksum
683     size_t sum = 0;
684     for (int jj = 0; jj < 7; jj++)
685     {
686         sum += blockData[jj];
687     }
688     sum = (256 - sum) & 0xFF;
689 
690     if (sum != blockData[7])
691     {
692         if (debug)
693         {
694             std::cerr << "Checksum " << (int)(blockData[7])
695                       << " is invalid. calculated checksum is " << (int)(sum)
696                       << "\n";
697         }
698         return false;
699     }
700     return true;
701 }
702 
703 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp,
704                    std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData,
705                    off_t& baseOffset)
706 {
707     if (reader.read(baseOffset, 0x8, blockData.data()) < 0)
708     {
709         std::cerr << "failed to read " << errorHelp << " base offset "
710                   << baseOffset << "\n";
711         return false;
712     }
713 
714     // check the header checksum
715     if (validateHeader(blockData))
716     {
717         return true;
718     }
719 
720     // only continue the search if we just looked at 0x0.
721     if (baseOffset != 0)
722     {
723         return false;
724     }
725 
726     // now check for special cases where the IPMI data is at an offset
727 
728     // check if blockData starts with tyanHeader
729     const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'};
730     if (blockData.size() >= tyanHeader.size() &&
731         std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin()))
732     {
733         // look for the FRU header at offset 0x6000
734         baseOffset = 0x6000;
735         return findFRUHeader(reader, errorHelp, blockData, baseOffset);
736     }
737 
738     if (debug)
739     {
740         std::cerr << "Illegal header " << errorHelp << " base offset "
741                   << baseOffset << "\n";
742     }
743 
744     return false;
745 }
746 
747 std::pair<std::vector<uint8_t>, bool>
748     readFRUContents(FRUReader& reader, const std::string& errorHelp)
749 {
750     std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{};
751     off_t baseOffset = 0x0;
752 
753     if (!findFRUHeader(reader, errorHelp, blockData, baseOffset))
754     {
755         return {{}, false};
756     }
757 
758     std::vector<uint8_t> device;
759     device.insert(device.end(), blockData.begin(), blockData.begin() + 8);
760 
761     bool hasMultiRecords = false;
762     size_t fruLength = fruBlockSize; // At least FRU header is present
763     unsigned int prevOffset = 0;
764     for (fruAreas area = fruAreas::fruAreaInternal;
765          area <= fruAreas::fruAreaMultirecord; ++area)
766     {
767         // Offset value can be 255.
768         unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)];
769         if (areaOffset == 0)
770         {
771             continue;
772         }
773 
774         /* Check for offset order, as per Section 17 of FRU specification, FRU
775          * information areas are required to be in order in FRU data layout
776          * which means all offset value should be in increasing order or can be
777          * 0 if that area is not present
778          */
779         if (areaOffset <= prevOffset)
780         {
781             std::cerr << "Fru area offsets are not in required order as per "
782                          "Section 17 of Fru specification\n";
783             return {{}, true};
784         }
785         prevOffset = areaOffset;
786 
787         // MultiRecords are different. area is not tracking section, it's
788         // walking the common header.
789         if (area == fruAreas::fruAreaMultirecord)
790         {
791             hasMultiRecords = true;
792             break;
793         }
794 
795         areaOffset *= fruBlockSize;
796 
797         if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0)
798         {
799             std::cerr << "failed to read " << errorHelp << " base offset "
800                       << baseOffset << "\n";
801             return {{}, true};
802         }
803 
804         // Ignore data type (blockData is already unsigned).
805         size_t length = blockData[1] * fruBlockSize;
806         areaOffset += length;
807         fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
808     }
809 
810     if (hasMultiRecords)
811     {
812         // device[area count] is the index to the last area because the 0th
813         // entry is not an offset in the common header.
814         unsigned int areaOffset =
815             device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)];
816         areaOffset *= fruBlockSize;
817 
818         // the multi-area record header is 5 bytes long.
819         constexpr size_t multiRecordHeaderSize = 5;
820         constexpr uint8_t multiRecordEndOfListMask = 0x80;
821 
822         // Sanity hard-limit to 64KB.
823         while (areaOffset < std::numeric_limits<uint16_t>::max())
824         {
825             // In multi-area, the area offset points to the 0th record, each
826             // record has 3 bytes of the header we care about.
827             if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0)
828             {
829                 std::cerr << "failed to read " << errorHelp << " base offset "
830                           << baseOffset << "\n";
831                 return {{}, true};
832             }
833 
834             // Ok, let's check the record length, which is in bytes (unsigned,
835             // up to 255, so blockData should hold uint8_t not char)
836             size_t recordLength = blockData[2];
837             areaOffset += (recordLength + multiRecordHeaderSize);
838             fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
839 
840             // If this is the end of the list bail.
841             if ((blockData[1] & multiRecordEndOfListMask) != 0)
842             {
843                 break;
844             }
845         }
846     }
847 
848     // You already copied these first 8 bytes (the ipmi fru header size)
849     fruLength -= std::min(fruBlockSize, fruLength);
850 
851     int readOffset = fruBlockSize;
852 
853     while (fruLength > 0)
854     {
855         size_t requestLength =
856             std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength);
857 
858         if (reader.read(baseOffset + readOffset, requestLength,
859                         blockData.data()) < 0)
860         {
861             std::cerr << "failed to read " << errorHelp << " base offset "
862                       << baseOffset << "\n";
863             return {{}, true};
864         }
865 
866         device.insert(device.end(), blockData.begin(),
867                       blockData.begin() + requestLength);
868 
869         readOffset += requestLength;
870         fruLength -= std::min(requestLength, fruLength);
871     }
872 
873     return {device, true};
874 }
875 
876 unsigned int getHeaderAreaFieldOffset(fruAreas area)
877 {
878     return static_cast<unsigned int>(area) + 1;
879 }
880 
881 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address)
882 {
883     auto deviceMap = busMap.find(bus);
884     if (deviceMap == busMap.end())
885     {
886         throw std::invalid_argument("Invalid Bus.");
887     }
888     auto device = deviceMap->second->find(address);
889     if (device == deviceMap->second->end())
890     {
891         throw std::invalid_argument("Invalid Address.");
892     }
893     std::vector<uint8_t>& ret = device->second;
894 
895     return ret;
896 }
897 
898 // Iterate FruArea Names and find start and size of the fru area that contains
899 // the propertyName and the field start location for the property. fruAreaParams
900 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets
901 // updated/returned if successful.
902 
903 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData,
904                                  const std::string& propertyName,
905                                  struct FruArea& fruAreaParams)
906 {
907     const std::vector<std::string>* fruAreaFieldNames = nullptr;
908 
909     uint8_t fruAreaOffsetFieldValue = 0;
910     size_t offset = 0;
911     std::string areaName = propertyName.substr(0, propertyName.find('_'));
912     std::string propertyNamePrefix = areaName + "_";
913     auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName);
914     if (it == fruAreaNames.end())
915     {
916         std::cerr << "Can't parse area name for property " << propertyName
917                   << " \n";
918         return false;
919     }
920     fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin());
921     fruAreaOffsetFieldValue =
922         fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)];
923     switch (fruAreaToUpdate)
924     {
925         case fruAreas::fruAreaChassis:
926             offset = 3; // chassis part number offset. Skip fixed first 3 bytes
927             fruAreaFieldNames = &chassisFruAreas;
928             break;
929         case fruAreas::fruAreaBoard:
930             offset = 6; // board manufacturer offset. Skip fixed first 6 bytes
931             fruAreaFieldNames = &boardFruAreas;
932             break;
933         case fruAreas::fruAreaProduct:
934             // Manufacturer name offset. Skip fixed first 3 product fru bytes
935             // i.e. version, area length and language code
936             offset = 3;
937             fruAreaFieldNames = &productFruAreas;
938             break;
939         default:
940             std::cerr << "Invalid PropertyName " << propertyName << " \n";
941             return false;
942     }
943     if (fruAreaOffsetFieldValue == 0)
944     {
945         std::cerr << "FRU Area for " << propertyName << " not present \n";
946         return false;
947     }
948 
949     fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize;
950     fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize;
951     fruAreaParams.end = fruAreaParams.start + fruAreaParams.size;
952     size_t fruDataIter = fruAreaParams.start + offset;
953     size_t skipToFRUUpdateField = 0;
954     ssize_t fieldLength = 0;
955 
956     bool found = false;
957     for (const auto& field : *fruAreaFieldNames)
958     {
959         skipToFRUUpdateField++;
960         if (propertyName == propertyNamePrefix + field)
961         {
962             found = true;
963             break;
964         }
965     }
966     if (!found)
967     {
968         std::size_t pos = propertyName.find(fruCustomFieldName);
969         if (pos == std::string::npos)
970         {
971             std::cerr << "PropertyName doesn't exist in FRU Area Vectors: "
972                       << propertyName << "\n";
973             return false;
974         }
975         std::string fieldNumStr =
976             propertyName.substr(pos + fruCustomFieldName.length());
977         size_t fieldNum = std::stoi(fieldNumStr);
978         if (fieldNum == 0)
979         {
980             std::cerr << "PropertyName not recognized: " << propertyName
981                       << "\n";
982             return false;
983         }
984         skipToFRUUpdateField += fieldNum;
985     }
986 
987     for (size_t i = 1; i < skipToFRUUpdateField; i++)
988     {
989         if (fruDataIter < fruData.size())
990         {
991             fieldLength = getFieldLength(fruData[fruDataIter]);
992 
993             if (fieldLength < 0)
994             {
995                 break;
996             }
997             fruDataIter += 1 + fieldLength;
998         }
999     }
1000     fruAreaParams.updateFieldLoc = fruDataIter;
1001 
1002     return true;
1003 }
1004 
1005 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector.
1006 // Return true for success and false for failure.
1007 
1008 bool copyRestFRUArea(std::vector<uint8_t>& fruData,
1009                      const std::string& propertyName,
1010                      struct FruArea& fruAreaParams,
1011                      std::vector<uint8_t>& restFRUAreaFieldsData)
1012 {
1013     size_t fieldLoc = fruAreaParams.updateFieldLoc;
1014     size_t start = fruAreaParams.start;
1015     size_t fruAreaSize = fruAreaParams.size;
1016 
1017     // Push post update fru field bytes to a vector
1018     ssize_t fieldLength = getFieldLength(fruData[fieldLoc]);
1019     if (fieldLength < 0)
1020     {
1021         std::cerr << "Property " << propertyName << " not present \n";
1022         return false;
1023     }
1024 
1025     size_t fruDataIter = 0;
1026     fruDataIter = fieldLoc;
1027     fruDataIter += 1 + fieldLength;
1028     size_t restFRUFieldsLoc = fruDataIter;
1029     size_t endOfFieldsLoc = 0;
1030 
1031     if (fruDataIter < fruData.size())
1032     {
1033         while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0)
1034         {
1035             if (fruDataIter >= (start + fruAreaSize))
1036             {
1037                 fruDataIter = start + fruAreaSize;
1038                 break;
1039             }
1040             fruDataIter += 1 + fieldLength;
1041         }
1042         endOfFieldsLoc = fruDataIter;
1043     }
1044 
1045     std::copy_n(fruData.begin() + restFRUFieldsLoc,
1046                 endOfFieldsLoc - restFRUFieldsLoc + 1,
1047                 std::back_inserter(restFRUAreaFieldsData));
1048 
1049     fruAreaParams.restFieldsLoc = restFRUFieldsLoc;
1050     fruAreaParams.restFieldsEnd = endOfFieldsLoc;
1051 
1052     return true;
1053 }
1054 
1055 // Get all device dbus path and match path with product name using
1056 // regular expression and find the device index for all devices.
1057 
1058 std::optional<int> findIndexForFRU(
1059     boost::container::flat_map<
1060         std::pair<size_t, size_t>,
1061         std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
1062     std::string& productName)
1063 {
1064     int highest = -1;
1065     bool found = false;
1066 
1067     for (const auto& busIface : dbusInterfaceMap)
1068     {
1069         std::string path = busIface.second->get_object_path();
1070         if (std::regex_match(path, std::regex(productName + "(_\\d+|)$")))
1071         {
1072             // Check if the match named has extra information.
1073             found = true;
1074             std::smatch baseMatch;
1075 
1076             bool match = std::regex_match(path, baseMatch,
1077                                           std::regex(productName + "_(\\d+)$"));
1078             if (match)
1079             {
1080                 if (baseMatch.size() == 2)
1081                 {
1082                     std::ssub_match baseSubMatch = baseMatch[1];
1083                     std::string base = baseSubMatch.str();
1084 
1085                     int value = std::stoi(base);
1086                     highest = (value > highest) ? value : highest;
1087                 }
1088             }
1089         }
1090     } // end searching objects
1091 
1092     if (!found)
1093     {
1094         return std::nullopt;
1095     }
1096     return highest;
1097 }
1098 
1099 // This function does format fru data as per IPMI format and find the
1100 // productName in the formatted fru data, get that productName and return
1101 // productName if found or return NULL.
1102 
1103 std::optional<std::string> getProductName(
1104     std::vector<uint8_t>& device,
1105     boost::container::flat_map<std::string, std::string>& formattedFRU,
1106     uint32_t bus, uint32_t address, size_t& unknownBusObjectCount)
1107 {
1108     std::string productName;
1109 
1110     resCodes res = formatIPMIFRU(device, formattedFRU);
1111     if (res == resCodes::resErr)
1112     {
1113         std::cerr << "failed to parse FRU for device at bus " << bus
1114                   << " address " << address << "\n";
1115         return std::nullopt;
1116     }
1117     if (res == resCodes::resWarn)
1118     {
1119         std::cerr << "Warnings while parsing FRU for device at bus " << bus
1120                   << " address " << address << "\n";
1121     }
1122 
1123     auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME");
1124     // Not found under Board section or an empty string.
1125     if (productNameFind == formattedFRU.end() ||
1126         productNameFind->second.empty())
1127     {
1128         productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME");
1129     }
1130     // Found under Product section and not an empty string.
1131     if (productNameFind != formattedFRU.end() &&
1132         !productNameFind->second.empty())
1133     {
1134         productName = productNameFind->second;
1135         std::regex illegalObject("[^A-Za-z0-9_]");
1136         productName = std::regex_replace(productName, illegalObject, "_");
1137     }
1138     else
1139     {
1140         productName = "UNKNOWN" + std::to_string(unknownBusObjectCount);
1141         unknownBusObjectCount++;
1142     }
1143     return productName;
1144 }
1145 
1146 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address)
1147 {
1148     try
1149     {
1150         fruData = getFRUInfo(static_cast<uint16_t>(bus),
1151                              static_cast<uint8_t>(address));
1152     }
1153     catch (const std::invalid_argument& e)
1154     {
1155         std::cerr << "Failure getting FRU Info" << e.what() << "\n";
1156         return false;
1157     }
1158 
1159     return !fruData.empty();
1160 }
1161