1 /* 2 // Copyright (c) 2018 Intel Corporation 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 */ 16 /// \file fru_utils.cpp 17 18 #include "fru_utils.hpp" 19 20 #include <phosphor-logging/lg2.hpp> 21 22 #include <array> 23 #include <cstddef> 24 #include <cstdint> 25 #include <filesystem> 26 #include <iomanip> 27 #include <iostream> 28 #include <numeric> 29 #include <set> 30 #include <sstream> 31 #include <string> 32 #include <vector> 33 34 extern "C" 35 { 36 // Include for I2C_SMBUS_BLOCK_MAX 37 #include <linux/i2c.h> 38 } 39 40 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1 41 42 std::tm intelEpoch() 43 { 44 std::tm val = {}; 45 val.tm_year = 1996 - 1900; 46 val.tm_mday = 1; 47 return val; 48 } 49 50 char sixBitToChar(uint8_t val) 51 { 52 return static_cast<char>((val & 0x3f) + ' '); 53 } 54 55 char bcdPlusToChar(uint8_t val) 56 { 57 val &= 0xf; 58 return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10]; 59 } 60 61 enum FRUDataEncoding 62 { 63 binary = 0x0, 64 bcdPlus = 0x1, 65 sixBitASCII = 0x2, 66 languageDependent = 0x3, 67 }; 68 69 enum MultiRecordType : uint8_t 70 { 71 powerSupplyInfo = 0x00, 72 dcOutput = 0x01, 73 dcLoad = 0x02, 74 managementAccessRecord = 0x03, 75 baseCompatibilityRecord = 0x04, 76 extendedCompatibilityRecord = 0x05, 77 resvASFSMBusDeviceRecord = 0x06, 78 resvASFLegacyDeviceAlerts = 0x07, 79 resvASFRemoteControl = 0x08, 80 extendedDCOutput = 0x09, 81 extendedDCLoad = 0x0A 82 }; 83 84 enum SubManagementAccessRecord : uint8_t 85 { 86 systemManagementURL = 0x01, 87 systemName = 0x02, 88 systemPingAddress = 0x03, 89 componentManagementURL = 0x04, 90 componentName = 0x05, 91 componentPingAddress = 0x06, 92 systemUniqueID = 0x07 93 }; 94 95 /* Decode FRU data into a std::string, given an input iterator and end. If the 96 * state returned is fruDataOk, then the resulting string is the decoded FRU 97 * data. The input iterator is advanced past the data consumed. 98 * 99 * On fruDataErr, we have lost synchronisation with the length bytes, so the 100 * iterator is no longer usable. 101 */ 102 std::pair<DecodeState, std::string> decodeFRUData( 103 std::vector<uint8_t>::const_iterator& iter, 104 const std::vector<uint8_t>::const_iterator& end, bool isLangEng) 105 { 106 std::string value; 107 unsigned int i = 0; 108 109 /* we need at least one byte to decode the type/len header */ 110 if (iter == end) 111 { 112 std::cerr << "Truncated FRU data\n"; 113 return make_pair(DecodeState::err, value); 114 } 115 116 uint8_t c = *(iter++); 117 118 /* 0xc1 is the end marker */ 119 if (c == 0xc1) 120 { 121 return make_pair(DecodeState::end, value); 122 } 123 124 /* decode type/len byte */ 125 uint8_t type = static_cast<uint8_t>(c >> 6); 126 uint8_t len = static_cast<uint8_t>(c & 0x3f); 127 128 /* we should have at least len bytes of data available overall */ 129 if (iter + len > end) 130 { 131 std::cerr << "FRU data field extends past end of FRU area data\n"; 132 return make_pair(DecodeState::err, value); 133 } 134 135 switch (type) 136 { 137 case FRUDataEncoding::binary: 138 { 139 std::stringstream ss; 140 ss << std::hex << std::setfill('0'); 141 for (i = 0; i < len; i++, iter++) 142 { 143 uint8_t val = static_cast<uint8_t>(*iter); 144 ss << std::setw(2) << static_cast<int>(val); 145 } 146 value = ss.str(); 147 break; 148 } 149 case FRUDataEncoding::languageDependent: 150 /* For language-code dependent encodings, assume 8-bit ASCII */ 151 value = std::string(iter, iter + len); 152 iter += len; 153 154 /* English text is encoded in 8-bit ASCII + Latin 1. All other 155 * languages are required to use 2-byte unicode. FruDevice does not 156 * handle unicode. 157 */ 158 if (!isLangEng) 159 { 160 std::cerr << "Error: Non english string is not supported \n"; 161 return make_pair(DecodeState::err, value); 162 } 163 164 break; 165 166 case FRUDataEncoding::bcdPlus: 167 value = std::string(); 168 for (i = 0; i < len; i++, iter++) 169 { 170 uint8_t val = *iter; 171 value.push_back(bcdPlusToChar(val >> 4)); 172 value.push_back(bcdPlusToChar(val & 0xf)); 173 } 174 break; 175 176 case FRUDataEncoding::sixBitASCII: 177 { 178 unsigned int accum = 0; 179 unsigned int accumBitLen = 0; 180 value = std::string(); 181 for (i = 0; i < len; i++, iter++) 182 { 183 accum |= *iter << accumBitLen; 184 accumBitLen += 8; 185 while (accumBitLen >= 6) 186 { 187 value.push_back(sixBitToChar(accum & 0x3f)); 188 accum >>= 6; 189 accumBitLen -= 6; 190 } 191 } 192 } 193 break; 194 195 default: 196 { 197 return make_pair(DecodeState::err, value); 198 } 199 } 200 201 return make_pair(DecodeState::ok, value); 202 } 203 204 bool checkLangEng(uint8_t lang) 205 { 206 // If Lang is not English then the encoding is defined as 2-byte UNICODE, 207 // but we don't support that. 208 if ((lang != 0U) && lang != 25) 209 { 210 std::cerr << "Warning: languages other than English is not " 211 "supported\n"; 212 // Return language flag as non english 213 return false; 214 } 215 return true; 216 } 217 218 /* This function verifies for other offsets to check if they are not 219 * falling under other field area 220 * 221 * fruBytes: Start of Fru data 222 * currentArea: Index of current area offset to be compared against all area 223 * offset and it is a multiple of 8 bytes as per specification 224 * len: Length of current area space and it is a multiple of 8 bytes 225 * as per specification 226 */ 227 bool verifyOffset(const std::vector<uint8_t>& fruBytes, fruAreas currentArea, 228 uint8_t len) 229 { 230 unsigned int fruBytesSize = fruBytes.size(); 231 232 // check if Fru data has at least 8 byte header 233 if (fruBytesSize <= fruBlockSize) 234 { 235 std::cerr << "Error: trying to parse empty FRU\n"; 236 return false; 237 } 238 239 // Check range of passed currentArea value 240 if (currentArea > fruAreas::fruAreaMultirecord) 241 { 242 std::cerr << "Error: Fru area is out of range\n"; 243 return false; 244 } 245 246 unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea); 247 if (currentAreaIndex > fruBytesSize) 248 { 249 std::cerr << "Error: Fru area index is out of range\n"; 250 return false; 251 } 252 253 unsigned int start = fruBytes[currentAreaIndex]; 254 unsigned int end = start + len; 255 256 /* Verify each offset within the range of start and end */ 257 for (fruAreas area = fruAreas::fruAreaInternal; 258 area <= fruAreas::fruAreaMultirecord; ++area) 259 { 260 // skip the current offset 261 if (area == currentArea) 262 { 263 continue; 264 } 265 266 unsigned int areaIndex = getHeaderAreaFieldOffset(area); 267 if (areaIndex > fruBytesSize) 268 { 269 std::cerr << "Error: Fru area index is out of range\n"; 270 return false; 271 } 272 273 unsigned int areaOffset = fruBytes[areaIndex]; 274 // if areaOffset is 0 means this area is not available so skip 275 if (areaOffset == 0) 276 { 277 continue; 278 } 279 280 // check for overlapping of current offset with given areaoffset 281 if (areaOffset == start || (areaOffset > start && areaOffset < end)) 282 { 283 std::cerr << getFruAreaName(currentArea) 284 << " offset is overlapping with " << getFruAreaName(area) 285 << " offset\n"; 286 return false; 287 } 288 } 289 return true; 290 } 291 292 static void parseMultirecordUUID( 293 const std::vector<uint8_t>& device, 294 boost::container::flat_map<std::string, std::string>& result) 295 { 296 constexpr size_t uuidDataLen = 16; 297 constexpr size_t multiRecordHeaderLen = 5; 298 /* UUID record data, plus one to skip past the sub-record type byte */ 299 constexpr size_t uuidRecordData = multiRecordHeaderLen + 1; 300 constexpr size_t multiRecordEndOfListMask = 0x80; 301 /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented 302 * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD 303 * 0xEE 0xFF 304 */ 305 const std::array<uint8_t, uuidDataLen> uuidCharOrder = { 306 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15}; 307 uint32_t areaOffset = 308 device.at(getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)); 309 310 if (areaOffset == 0) 311 { 312 return; 313 } 314 315 areaOffset *= fruBlockSize; 316 std::vector<uint8_t>::const_iterator fruBytesIter = 317 device.begin() + areaOffset; 318 319 /* Verify area offset */ 320 if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter)) 321 { 322 return; 323 } 324 while (areaOffset + uuidRecordData + uuidDataLen <= device.size()) 325 { 326 if ((areaOffset < device.size()) && 327 (device[areaOffset] == 328 (uint8_t)MultiRecordType::managementAccessRecord)) 329 { 330 if ((areaOffset + multiRecordHeaderLen < device.size()) && 331 (device[areaOffset + multiRecordHeaderLen] == 332 (uint8_t)SubManagementAccessRecord::systemUniqueID)) 333 { 334 /* Layout of UUID: 335 * source: https://www.ietf.org/rfc/rfc4122.txt 336 * 337 * UUID binary format (16 bytes): 338 * 4B-2B-2B-2B-6B (big endian) 339 * 340 * UUID string is 36 length of characters (36 bytes): 341 * 0 9 14 19 24 342 * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 343 * be be be be be 344 * be means it should be converted to big endian. 345 */ 346 /* Get UUID bytes to UUID string */ 347 std::stringstream tmp; 348 tmp << std::hex << std::setfill('0'); 349 for (size_t i = 0; i < uuidDataLen; i++) 350 { 351 tmp << std::setw(2) 352 << static_cast<uint16_t>( 353 device[areaOffset + uuidRecordData + 354 uuidCharOrder[i]]); 355 } 356 std::string uuidStr = tmp.str(); 357 result["MULTIRECORD_UUID"] = 358 uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' + 359 uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' + 360 uuidStr.substr(20, 12); 361 break; 362 } 363 } 364 if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0) 365 { 366 break; 367 } 368 areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen; 369 } 370 } 371 372 resCodes 373 formatIPMIFRU(const std::vector<uint8_t>& fruBytes, 374 boost::container::flat_map<std::string, std::string>& result) 375 { 376 resCodes ret = resCodes::resOK; 377 if (fruBytes.size() <= fruBlockSize) 378 { 379 std::cerr << "Error: trying to parse empty FRU \n"; 380 return resCodes::resErr; 381 } 382 result["Common_Format_Version"] = 383 std::to_string(static_cast<int>(*fruBytes.begin())); 384 385 const std::vector<std::string>* fruAreaFieldNames = nullptr; 386 387 // Don't parse Internal and Multirecord areas 388 for (fruAreas area = fruAreas::fruAreaChassis; 389 area <= fruAreas::fruAreaProduct; ++area) 390 { 391 size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area)); 392 if (offset == 0) 393 { 394 continue; 395 } 396 offset *= fruBlockSize; 397 std::vector<uint8_t>::const_iterator fruBytesIter = 398 fruBytes.begin() + offset; 399 if (fruBytesIter + fruBlockSize >= fruBytes.end()) 400 { 401 std::cerr << "Not enough data to parse \n"; 402 return resCodes::resErr; 403 } 404 // check for format version 1 405 if (*fruBytesIter != 0x01) 406 { 407 std::cerr << "Unexpected version " << *fruBytesIter << "\n"; 408 return resCodes::resErr; 409 } 410 ++fruBytesIter; 411 412 /* Verify other area offset for overlap with current area by passing 413 * length of current area offset pointed by *fruBytesIter 414 */ 415 if (!verifyOffset(fruBytes, area, *fruBytesIter)) 416 { 417 return resCodes::resErr; 418 } 419 420 size_t fruAreaSize = *fruBytesIter * fruBlockSize; 421 std::vector<uint8_t>::const_iterator fruBytesIterEndArea = 422 fruBytes.begin() + offset + fruAreaSize - 1; 423 ++fruBytesIter; 424 425 uint8_t fruComputedChecksum = 426 calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea); 427 if (fruComputedChecksum != *fruBytesIterEndArea) 428 { 429 std::stringstream ss; 430 ss << std::hex << std::setfill('0'); 431 ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n"; 432 ss << "\tComputed checksum: 0x" << std::setw(2) 433 << static_cast<int>(fruComputedChecksum) << "\n"; 434 ss << "\tThe read checksum: 0x" << std::setw(2) 435 << static_cast<int>(*fruBytesIterEndArea) << "\n"; 436 std::cerr << ss.str(); 437 ret = resCodes::resWarn; 438 } 439 440 /* Set default language flag to true as Chassis Fru area are always 441 * encoded in English defined in Section 10 of Fru specification 442 */ 443 444 bool isLangEng = true; 445 switch (area) 446 { 447 case fruAreas::fruAreaChassis: 448 { 449 result["CHASSIS_TYPE"] = 450 std::to_string(static_cast<int>(*fruBytesIter)); 451 fruBytesIter += 1; 452 fruAreaFieldNames = &chassisFruAreas; 453 break; 454 } 455 case fruAreas::fruAreaBoard: 456 { 457 uint8_t lang = *fruBytesIter; 458 result["BOARD_LANGUAGE_CODE"] = 459 std::to_string(static_cast<int>(lang)); 460 isLangEng = checkLangEng(lang); 461 fruBytesIter += 1; 462 463 unsigned int minutes = 464 *fruBytesIter | *(fruBytesIter + 1) << 8 | 465 *(fruBytesIter + 2) << 16; 466 std::tm fruTime = intelEpoch(); 467 std::time_t timeValue = timegm(&fruTime); 468 timeValue += static_cast<long>(minutes) * 60; 469 fruTime = *std::gmtime(&timeValue); 470 471 // Tue Nov 20 23:08:00 2018 472 std::array<char, 32> timeString = {}; 473 auto bytes = std::strftime(timeString.data(), timeString.size(), 474 "%Y%m%dT%H%M%SZ", &fruTime); 475 if (bytes == 0) 476 { 477 std::cerr << "invalid time string encountered\n"; 478 return resCodes::resErr; 479 } 480 481 result["BOARD_MANUFACTURE_DATE"] = 482 std::string_view(timeString.data(), bytes); 483 fruBytesIter += 3; 484 fruAreaFieldNames = &boardFruAreas; 485 break; 486 } 487 case fruAreas::fruAreaProduct: 488 { 489 uint8_t lang = *fruBytesIter; 490 result["PRODUCT_LANGUAGE_CODE"] = 491 std::to_string(static_cast<int>(lang)); 492 isLangEng = checkLangEng(lang); 493 fruBytesIter += 1; 494 fruAreaFieldNames = &productFruAreas; 495 break; 496 } 497 default: 498 { 499 std::cerr << "Internal error: unexpected FRU area index: " 500 << static_cast<int>(area) << " \n"; 501 return resCodes::resErr; 502 } 503 } 504 size_t fieldIndex = 0; 505 DecodeState state = DecodeState::ok; 506 do 507 { 508 auto res = 509 decodeFRUData(fruBytesIter, fruBytesIterEndArea, isLangEng); 510 state = res.first; 511 std::string value = res.second; 512 std::string name; 513 if (fieldIndex < fruAreaFieldNames->size()) 514 { 515 name = std::string(getFruAreaName(area)) + "_" + 516 fruAreaFieldNames->at(fieldIndex); 517 } 518 else 519 { 520 name = 521 std::string(getFruAreaName(area)) + "_" + 522 fruCustomFieldName + 523 std::to_string(fieldIndex - fruAreaFieldNames->size() + 1); 524 } 525 526 if (state == DecodeState::ok) 527 { 528 // Strip non null characters and trailing spaces from the end 529 value.erase(std::find_if(value.rbegin(), value.rend(), 530 [](char ch) { 531 return ((ch != 0) && (ch != ' ')); 532 }) 533 .base(), 534 value.end()); 535 536 result[name] = std::move(value); 537 ++fieldIndex; 538 } 539 else if (state == DecodeState::err) 540 { 541 std::cerr << "Error while parsing " << name << "\n"; 542 ret = resCodes::resWarn; 543 // Cancel decoding if failed to parse any of mandatory 544 // fields 545 if (fieldIndex < fruAreaFieldNames->size()) 546 { 547 std::cerr << "Failed to parse mandatory field \n"; 548 return resCodes::resErr; 549 } 550 } 551 else 552 { 553 if (fieldIndex < fruAreaFieldNames->size()) 554 { 555 std::cerr 556 << "Mandatory fields absent in FRU area " 557 << getFruAreaName(area) << " after " << name << "\n"; 558 ret = resCodes::resWarn; 559 } 560 } 561 } while (state == DecodeState::ok); 562 for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++) 563 { 564 uint8_t c = *fruBytesIter; 565 if (c != 0U) 566 { 567 std::cerr << "Non-zero byte after EndOfFields in FRU area " 568 << getFruAreaName(area) << "\n"; 569 ret = resCodes::resWarn; 570 break; 571 } 572 } 573 } 574 575 /* Parsing the Multirecord UUID */ 576 parseMultirecordUUID(fruBytes, result); 577 578 return ret; 579 } 580 581 // Calculate new checksum for fru info area 582 uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter, 583 std::vector<uint8_t>::const_iterator end) 584 { 585 constexpr int checksumMod = 256; 586 uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0)); 587 return (checksumMod - sum) % checksumMod; 588 } 589 590 uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData) 591 { 592 return calculateChecksum(fruAreaData.begin(), fruAreaData.end()); 593 } 594 595 // Update new fru area length & 596 // Update checksum at new checksum location 597 // Return the offset of the area checksum byte 598 unsigned int updateFRUAreaLenAndChecksum( 599 std::vector<uint8_t>& fruData, size_t fruAreaStart, 600 size_t fruAreaEndOfFieldsOffset, size_t fruAreaEndOffset) 601 { 602 size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart; 603 604 // fill zeros for any remaining unused space 605 std::fill(fruData.begin() + fruAreaEndOfFieldsOffset, 606 fruData.begin() + fruAreaEndOffset, 0); 607 608 size_t mod = traverseFRUAreaIndex % fruBlockSize; 609 size_t checksumLoc = 0; 610 if (mod == 0U) 611 { 612 traverseFRUAreaIndex += (fruBlockSize); 613 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1); 614 } 615 else 616 { 617 traverseFRUAreaIndex += (fruBlockSize - mod); 618 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1); 619 } 620 621 size_t newFRUAreaLen = 622 (traverseFRUAreaIndex / fruBlockSize) + 623 static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0); 624 size_t fruAreaLengthLoc = fruAreaStart + 1; 625 fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen); 626 627 // Calculate new checksum 628 std::vector<uint8_t> finalFRUData; 629 std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart, 630 std::back_inserter(finalFRUData)); 631 632 fruData[checksumLoc] = calculateChecksum(finalFRUData); 633 return checksumLoc; 634 } 635 636 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue) 637 { 638 constexpr uint8_t typeLenMask = 0x3F; 639 constexpr uint8_t endOfFields = 0xC1; 640 if (fruFieldTypeLenValue == endOfFields) 641 { 642 return -1; 643 } 644 return fruFieldTypeLenValue & typeLenMask; 645 } 646 647 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData) 648 { 649 // ipmi spec format version number is currently at 1, verify it 650 if (blockData[0] != fruVersion) 651 { 652 lg2::debug( 653 "FRU spec version {VERSION} not supported. Supported version is {SUPPORTED_VERSION}", 654 "VERSION", lg2::hex, blockData[0], "SUPPORTED_VERSION", lg2::hex, 655 fruVersion); 656 return false; 657 } 658 659 // verify pad is set to 0 660 if (blockData[6] != 0x0) 661 { 662 lg2::debug("Pad value in header is non zero, value is {VALUE}", "VALUE", 663 lg2::hex, blockData[6]); 664 return false; 665 } 666 667 // verify offsets are 0, or don't point to another offset 668 std::set<uint8_t> foundOffsets; 669 for (int ii = 1; ii < 6; ii++) 670 { 671 if (blockData[ii] == 0) 672 { 673 continue; 674 } 675 auto inserted = foundOffsets.insert(blockData[ii]); 676 if (!inserted.second) 677 { 678 return false; 679 } 680 } 681 682 // validate checksum 683 size_t sum = 0; 684 for (int jj = 0; jj < 7; jj++) 685 { 686 sum += blockData[jj]; 687 } 688 sum = (256 - sum) & 0xFF; 689 690 if (sum != blockData[7]) 691 { 692 lg2::debug( 693 "Checksum {CHECKSUM} is invalid. calculated checksum is {CALCULATED_CHECKSUM}", 694 "CHECKSUM", lg2::hex, blockData[7], "CALCULATED_CHECKSUM", lg2::hex, 695 sum); 696 return false; 697 } 698 return true; 699 } 700 701 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp, 702 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData, 703 off_t& baseOffset) 704 { 705 if (reader.read(baseOffset, 0x8, blockData.data()) < 0) 706 { 707 std::cerr << "failed to read " << errorHelp << " base offset " 708 << baseOffset << "\n"; 709 return false; 710 } 711 712 // check the header checksum 713 if (validateHeader(blockData)) 714 { 715 return true; 716 } 717 718 // only continue the search if we just looked at 0x0. 719 if (baseOffset != 0) 720 { 721 return false; 722 } 723 724 // now check for special cases where the IPMI data is at an offset 725 726 // check if blockData starts with tyanHeader 727 const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'}; 728 if (blockData.size() >= tyanHeader.size() && 729 std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin())) 730 { 731 // look for the FRU header at offset 0x6000 732 baseOffset = 0x6000; 733 return findFRUHeader(reader, errorHelp, blockData, baseOffset); 734 } 735 736 lg2::debug("Illegal header {HEADER} base offset {OFFSET}", "HEADER", 737 errorHelp, "OFFSET", baseOffset); 738 739 return false; 740 } 741 742 std::pair<std::vector<uint8_t>, bool> 743 readFRUContents(FRUReader& reader, const std::string& errorHelp) 744 { 745 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{}; 746 off_t baseOffset = 0x0; 747 748 if (!findFRUHeader(reader, errorHelp, blockData, baseOffset)) 749 { 750 return {{}, false}; 751 } 752 753 std::vector<uint8_t> device; 754 device.insert(device.end(), blockData.begin(), blockData.begin() + 8); 755 756 bool hasMultiRecords = false; 757 size_t fruLength = fruBlockSize; // At least FRU header is present 758 unsigned int prevOffset = 0; 759 for (fruAreas area = fruAreas::fruAreaInternal; 760 area <= fruAreas::fruAreaMultirecord; ++area) 761 { 762 // Offset value can be 255. 763 unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)]; 764 if (areaOffset == 0) 765 { 766 continue; 767 } 768 769 /* Check for offset order, as per Section 17 of FRU specification, FRU 770 * information areas are required to be in order in FRU data layout 771 * which means all offset value should be in increasing order or can be 772 * 0 if that area is not present 773 */ 774 if (areaOffset <= prevOffset) 775 { 776 std::cerr << "Fru area offsets are not in required order as per " 777 "Section 17 of Fru specification\n"; 778 return {{}, true}; 779 } 780 prevOffset = areaOffset; 781 782 // MultiRecords are different. area is not tracking section, it's 783 // walking the common header. 784 if (area == fruAreas::fruAreaMultirecord) 785 { 786 hasMultiRecords = true; 787 break; 788 } 789 790 areaOffset *= fruBlockSize; 791 792 if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0) 793 { 794 std::cerr << "failed to read " << errorHelp << " base offset " 795 << baseOffset << "\n"; 796 return {{}, true}; 797 } 798 799 // Ignore data type (blockData is already unsigned). 800 size_t length = blockData[1] * fruBlockSize; 801 areaOffset += length; 802 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength; 803 } 804 805 if (hasMultiRecords) 806 { 807 // device[area count] is the index to the last area because the 0th 808 // entry is not an offset in the common header. 809 unsigned int areaOffset = 810 device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)]; 811 areaOffset *= fruBlockSize; 812 813 // the multi-area record header is 5 bytes long. 814 constexpr size_t multiRecordHeaderSize = 5; 815 constexpr uint8_t multiRecordEndOfListMask = 0x80; 816 817 // Sanity hard-limit to 64KB. 818 while (areaOffset < std::numeric_limits<uint16_t>::max()) 819 { 820 // In multi-area, the area offset points to the 0th record, each 821 // record has 3 bytes of the header we care about. 822 if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0) 823 { 824 std::cerr << "failed to read " << errorHelp << " base offset " 825 << baseOffset << "\n"; 826 return {{}, true}; 827 } 828 829 // Ok, let's check the record length, which is in bytes (unsigned, 830 // up to 255, so blockData should hold uint8_t not char) 831 size_t recordLength = blockData[2]; 832 areaOffset += (recordLength + multiRecordHeaderSize); 833 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength; 834 835 // If this is the end of the list bail. 836 if ((blockData[1] & multiRecordEndOfListMask) != 0) 837 { 838 break; 839 } 840 } 841 } 842 843 // You already copied these first 8 bytes (the ipmi fru header size) 844 fruLength -= std::min(fruBlockSize, fruLength); 845 846 int readOffset = fruBlockSize; 847 848 while (fruLength > 0) 849 { 850 size_t requestLength = 851 std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength); 852 853 if (reader.read(baseOffset + readOffset, requestLength, 854 blockData.data()) < 0) 855 { 856 std::cerr << "failed to read " << errorHelp << " base offset " 857 << baseOffset << "\n"; 858 return {{}, true}; 859 } 860 861 device.insert(device.end(), blockData.begin(), 862 blockData.begin() + requestLength); 863 864 readOffset += requestLength; 865 fruLength -= std::min(requestLength, fruLength); 866 } 867 868 return {device, true}; 869 } 870 871 unsigned int getHeaderAreaFieldOffset(fruAreas area) 872 { 873 return static_cast<unsigned int>(area) + 1; 874 } 875 876 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address) 877 { 878 auto deviceMap = busMap.find(bus); 879 if (deviceMap == busMap.end()) 880 { 881 throw std::invalid_argument("Invalid Bus."); 882 } 883 auto device = deviceMap->second->find(address); 884 if (device == deviceMap->second->end()) 885 { 886 throw std::invalid_argument("Invalid Address."); 887 } 888 std::vector<uint8_t>& ret = device->second; 889 890 return ret; 891 } 892 893 // Iterate FruArea Names and find start and size of the fru area that contains 894 // the propertyName and the field start location for the property. fruAreaParams 895 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets 896 // updated/returned if successful. 897 898 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData, 899 const std::string& propertyName, 900 struct FruArea& fruAreaParams) 901 { 902 const std::vector<std::string>* fruAreaFieldNames = nullptr; 903 904 uint8_t fruAreaOffsetFieldValue = 0; 905 size_t offset = 0; 906 std::string areaName = propertyName.substr(0, propertyName.find('_')); 907 std::string propertyNamePrefix = areaName + "_"; 908 auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName); 909 if (it == fruAreaNames.end()) 910 { 911 std::cerr << "Can't parse area name for property " << propertyName 912 << " \n"; 913 return false; 914 } 915 fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin()); 916 fruAreaOffsetFieldValue = 917 fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)]; 918 switch (fruAreaToUpdate) 919 { 920 case fruAreas::fruAreaChassis: 921 offset = 3; // chassis part number offset. Skip fixed first 3 bytes 922 fruAreaFieldNames = &chassisFruAreas; 923 break; 924 case fruAreas::fruAreaBoard: 925 offset = 6; // board manufacturer offset. Skip fixed first 6 bytes 926 fruAreaFieldNames = &boardFruAreas; 927 break; 928 case fruAreas::fruAreaProduct: 929 // Manufacturer name offset. Skip fixed first 3 product fru bytes 930 // i.e. version, area length and language code 931 offset = 3; 932 fruAreaFieldNames = &productFruAreas; 933 break; 934 default: 935 std::cerr << "Invalid PropertyName " << propertyName << " \n"; 936 return false; 937 } 938 if (fruAreaOffsetFieldValue == 0) 939 { 940 std::cerr << "FRU Area for " << propertyName << " not present \n"; 941 return false; 942 } 943 944 fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize; 945 fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize; 946 fruAreaParams.end = fruAreaParams.start + fruAreaParams.size; 947 size_t fruDataIter = fruAreaParams.start + offset; 948 size_t skipToFRUUpdateField = 0; 949 ssize_t fieldLength = 0; 950 951 bool found = false; 952 for (const auto& field : *fruAreaFieldNames) 953 { 954 skipToFRUUpdateField++; 955 if (propertyName == propertyNamePrefix + field) 956 { 957 found = true; 958 break; 959 } 960 } 961 if (!found) 962 { 963 std::size_t pos = propertyName.find(fruCustomFieldName); 964 if (pos == std::string::npos) 965 { 966 std::cerr << "PropertyName doesn't exist in FRU Area Vectors: " 967 << propertyName << "\n"; 968 return false; 969 } 970 std::string fieldNumStr = 971 propertyName.substr(pos + fruCustomFieldName.length()); 972 size_t fieldNum = std::stoi(fieldNumStr); 973 if (fieldNum == 0) 974 { 975 std::cerr << "PropertyName not recognized: " << propertyName 976 << "\n"; 977 return false; 978 } 979 skipToFRUUpdateField += fieldNum; 980 } 981 982 for (size_t i = 1; i < skipToFRUUpdateField; i++) 983 { 984 if (fruDataIter < fruData.size()) 985 { 986 fieldLength = getFieldLength(fruData[fruDataIter]); 987 988 if (fieldLength < 0) 989 { 990 break; 991 } 992 fruDataIter += 1 + fieldLength; 993 } 994 } 995 fruAreaParams.updateFieldLoc = fruDataIter; 996 997 return true; 998 } 999 1000 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector. 1001 // Return true for success and false for failure. 1002 1003 bool copyRestFRUArea(std::vector<uint8_t>& fruData, 1004 const std::string& propertyName, 1005 struct FruArea& fruAreaParams, 1006 std::vector<uint8_t>& restFRUAreaFieldsData) 1007 { 1008 size_t fieldLoc = fruAreaParams.updateFieldLoc; 1009 size_t start = fruAreaParams.start; 1010 size_t fruAreaSize = fruAreaParams.size; 1011 1012 // Push post update fru field bytes to a vector 1013 ssize_t fieldLength = getFieldLength(fruData[fieldLoc]); 1014 if (fieldLength < 0) 1015 { 1016 std::cerr << "Property " << propertyName << " not present \n"; 1017 return false; 1018 } 1019 1020 size_t fruDataIter = 0; 1021 fruDataIter = fieldLoc; 1022 fruDataIter += 1 + fieldLength; 1023 size_t restFRUFieldsLoc = fruDataIter; 1024 size_t endOfFieldsLoc = 0; 1025 1026 if (fruDataIter < fruData.size()) 1027 { 1028 while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0) 1029 { 1030 if (fruDataIter >= (start + fruAreaSize)) 1031 { 1032 fruDataIter = start + fruAreaSize; 1033 break; 1034 } 1035 fruDataIter += 1 + fieldLength; 1036 } 1037 endOfFieldsLoc = fruDataIter; 1038 } 1039 1040 std::copy_n(fruData.begin() + restFRUFieldsLoc, 1041 endOfFieldsLoc - restFRUFieldsLoc + 1, 1042 std::back_inserter(restFRUAreaFieldsData)); 1043 1044 fruAreaParams.restFieldsLoc = restFRUFieldsLoc; 1045 fruAreaParams.restFieldsEnd = endOfFieldsLoc; 1046 1047 return true; 1048 } 1049 1050 // Get all device dbus path and match path with product name using 1051 // regular expression and find the device index for all devices. 1052 1053 std::optional<int> findIndexForFRU( 1054 boost::container::flat_map< 1055 std::pair<size_t, size_t>, 1056 std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap, 1057 std::string& productName) 1058 { 1059 int highest = -1; 1060 bool found = false; 1061 1062 for (const auto& busIface : dbusInterfaceMap) 1063 { 1064 std::string path = busIface.second->get_object_path(); 1065 if (std::regex_match(path, std::regex(productName + "(_\\d+|)$"))) 1066 { 1067 // Check if the match named has extra information. 1068 found = true; 1069 std::smatch baseMatch; 1070 1071 bool match = std::regex_match(path, baseMatch, 1072 std::regex(productName + "_(\\d+)$")); 1073 if (match) 1074 { 1075 if (baseMatch.size() == 2) 1076 { 1077 std::ssub_match baseSubMatch = baseMatch[1]; 1078 std::string base = baseSubMatch.str(); 1079 1080 int value = std::stoi(base); 1081 highest = (value > highest) ? value : highest; 1082 } 1083 } 1084 } 1085 } // end searching objects 1086 1087 if (!found) 1088 { 1089 return std::nullopt; 1090 } 1091 return highest; 1092 } 1093 1094 // This function does format fru data as per IPMI format and find the 1095 // productName in the formatted fru data, get that productName and return 1096 // productName if found or return NULL. 1097 1098 std::optional<std::string> getProductName( 1099 std::vector<uint8_t>& device, 1100 boost::container::flat_map<std::string, std::string>& formattedFRU, 1101 uint32_t bus, uint32_t address, size_t& unknownBusObjectCount) 1102 { 1103 std::string productName; 1104 1105 resCodes res = formatIPMIFRU(device, formattedFRU); 1106 if (res == resCodes::resErr) 1107 { 1108 std::cerr << "failed to parse FRU for device at bus " << bus 1109 << " address " << address << "\n"; 1110 return std::nullopt; 1111 } 1112 if (res == resCodes::resWarn) 1113 { 1114 std::cerr << "Warnings while parsing FRU for device at bus " << bus 1115 << " address " << address << "\n"; 1116 } 1117 1118 auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME"); 1119 // Not found under Board section or an empty string. 1120 if (productNameFind == formattedFRU.end() || 1121 productNameFind->second.empty()) 1122 { 1123 productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME"); 1124 } 1125 // Found under Product section and not an empty string. 1126 if (productNameFind != formattedFRU.end() && 1127 !productNameFind->second.empty()) 1128 { 1129 productName = productNameFind->second; 1130 std::regex illegalObject("[^A-Za-z0-9_]"); 1131 productName = std::regex_replace(productName, illegalObject, "_"); 1132 } 1133 else 1134 { 1135 productName = "UNKNOWN" + std::to_string(unknownBusObjectCount); 1136 unknownBusObjectCount++; 1137 } 1138 return productName; 1139 } 1140 1141 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address) 1142 { 1143 try 1144 { 1145 fruData = getFRUInfo(static_cast<uint16_t>(bus), 1146 static_cast<uint8_t>(address)); 1147 } 1148 catch (const std::invalid_argument& e) 1149 { 1150 std::cerr << "Failure getting FRU Info" << e.what() << "\n"; 1151 return false; 1152 } 1153 1154 return !fruData.empty(); 1155 } 1156