xref: /openbmc/entity-manager/src/fru_utils.cpp (revision 3f98b5eb60595b54509f33f61764d1d5ef14952b)
1 /*
2 // Copyright (c) 2018 Intel Corporation
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 */
16 /// \file fru_utils.cpp
17 
18 #include "fru_utils.hpp"
19 
20 #include <array>
21 #include <cstddef>
22 #include <cstdint>
23 #include <filesystem>
24 #include <iomanip>
25 #include <iostream>
26 #include <numeric>
27 #include <set>
28 #include <sstream>
29 #include <string>
30 #include <vector>
31 
32 extern "C"
33 {
34 // Include for I2C_SMBUS_BLOCK_MAX
35 #include <linux/i2c.h>
36 }
37 
38 static constexpr bool debug = false;
39 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1
40 
41 std::tm intelEpoch(void)
42 {
43     std::tm val = {};
44     val.tm_year = 1996 - 1900;
45     val.tm_mday = 1;
46     return val;
47 }
48 
49 char sixBitToChar(uint8_t val)
50 {
51     return static_cast<char>((val & 0x3f) + ' ');
52 }
53 
54 char bcdPlusToChar(uint8_t val)
55 {
56     val &= 0xf;
57     return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10];
58 }
59 
60 enum FRUDataEncoding
61 {
62     binary = 0x0,
63     bcdPlus = 0x1,
64     sixBitASCII = 0x2,
65     languageDependent = 0x3,
66 };
67 
68 enum MultiRecordType : uint8_t
69 {
70     powerSupplyInfo = 0x00,
71     dcOutput = 0x01,
72     dcLoad = 0x02,
73     managementAccessRecord = 0x03,
74     baseCompatibilityRecord = 0x04,
75     extendedCompatibilityRecord = 0x05,
76     resvASFSMBusDeviceRecord = 0x06,
77     resvASFLegacyDeviceAlerts = 0x07,
78     resvASFRemoteControl = 0x08,
79     extendedDCOutput = 0x09,
80     extendedDCLoad = 0x0A
81 };
82 
83 enum SubManagementAccessRecord : uint8_t
84 {
85     systemManagementURL = 0x01,
86     systemName = 0x02,
87     systemPingAddress = 0x03,
88     componentManagementURL = 0x04,
89     componentName = 0x05,
90     componentPingAddress = 0x06,
91     systemUniqueID = 0x07
92 };
93 
94 /* Decode FRU data into a std::string, given an input iterator and end. If the
95  * state returned is fruDataOk, then the resulting string is the decoded FRU
96  * data. The input iterator is advanced past the data consumed.
97  *
98  * On fruDataErr, we have lost synchronisation with the length bytes, so the
99  * iterator is no longer usable.
100  */
101 std::pair<DecodeState, std::string>
102     decodeFRUData(std::vector<uint8_t>::const_iterator& iter,
103                   const std::vector<uint8_t>::const_iterator& end,
104                   bool isLangEng)
105 {
106     std::string value;
107     unsigned int i = 0;
108 
109     /* we need at least one byte to decode the type/len header */
110     if (iter == end)
111     {
112         std::cerr << "Truncated FRU data\n";
113         return make_pair(DecodeState::err, value);
114     }
115 
116     uint8_t c = *(iter++);
117 
118     /* 0xc1 is the end marker */
119     if (c == 0xc1)
120     {
121         return make_pair(DecodeState::end, value);
122     }
123 
124     /* decode type/len byte */
125     uint8_t type = static_cast<uint8_t>(c >> 6);
126     uint8_t len = static_cast<uint8_t>(c & 0x3f);
127 
128     /* we should have at least len bytes of data available overall */
129     if (iter + len > end)
130     {
131         std::cerr << "FRU data field extends past end of FRU area data\n";
132         return make_pair(DecodeState::err, value);
133     }
134 
135     switch (type)
136     {
137         case FRUDataEncoding::binary:
138         {
139             std::stringstream ss;
140             ss << std::hex << std::setfill('0');
141             for (i = 0; i < len; i++, iter++)
142             {
143                 uint8_t val = static_cast<uint8_t>(*iter);
144                 ss << std::setw(2) << static_cast<int>(val);
145             }
146             value = ss.str();
147             break;
148         }
149         case FRUDataEncoding::languageDependent:
150             /* For language-code dependent encodings, assume 8-bit ASCII */
151             value = std::string(iter, iter + len);
152             iter += len;
153 
154             /* English text is encoded in 8-bit ASCII + Latin 1. All other
155              * languages are required to use 2-byte unicode. FruDevice does not
156              * handle unicode.
157              */
158             if (!isLangEng)
159             {
160                 std::cerr << "Error: Non english string is not supported \n";
161                 return make_pair(DecodeState::err, value);
162             }
163 
164             break;
165 
166         case FRUDataEncoding::bcdPlus:
167             value = std::string();
168             for (i = 0; i < len; i++, iter++)
169             {
170                 uint8_t val = *iter;
171                 value.push_back(bcdPlusToChar(val >> 4));
172                 value.push_back(bcdPlusToChar(val & 0xf));
173             }
174             break;
175 
176         case FRUDataEncoding::sixBitASCII:
177         {
178             unsigned int accum = 0;
179             unsigned int accumBitLen = 0;
180             value = std::string();
181             for (i = 0; i < len; i++, iter++)
182             {
183                 accum |= *iter << accumBitLen;
184                 accumBitLen += 8;
185                 while (accumBitLen >= 6)
186                 {
187                     value.push_back(sixBitToChar(accum & 0x3f));
188                     accum >>= 6;
189                     accumBitLen -= 6;
190                 }
191             }
192         }
193         break;
194     }
195 
196     return make_pair(DecodeState::ok, value);
197 }
198 
199 bool checkLangEng(uint8_t lang)
200 {
201     // If Lang is not English then the encoding is defined as 2-byte UNICODE,
202     // but we don't support that.
203     if ((lang != 0U) && lang != 25)
204     {
205         std::cerr << "Warning: languages other than English is not "
206                      "supported\n";
207         // Return language flag as non english
208         return false;
209     }
210     return true;
211 }
212 
213 /* This function verifies for other offsets to check if they are not
214  * falling under other field area
215  *
216  * fruBytes:    Start of Fru data
217  * currentArea: Index of current area offset to be compared against all area
218  *              offset and it is a multiple of 8 bytes as per specification
219  * len:         Length of current area space and it is a multiple of 8 bytes
220  *              as per specification
221  */
222 bool verifyOffset(const std::vector<uint8_t>& fruBytes, fruAreas currentArea,
223                   uint8_t len)
224 {
225     unsigned int fruBytesSize = fruBytes.size();
226 
227     // check if Fru data has at least 8 byte header
228     if (fruBytesSize <= fruBlockSize)
229     {
230         std::cerr << "Error: trying to parse empty FRU\n";
231         return false;
232     }
233 
234     // Check range of passed currentArea value
235     if (currentArea > fruAreas::fruAreaMultirecord)
236     {
237         std::cerr << "Error: Fru area is out of range\n";
238         return false;
239     }
240 
241     unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea);
242     if (currentAreaIndex > fruBytesSize)
243     {
244         std::cerr << "Error: Fru area index is out of range\n";
245         return false;
246     }
247 
248     unsigned int start = fruBytes[currentAreaIndex];
249     unsigned int end = start + len;
250 
251     /* Verify each offset within the range of start and end */
252     for (fruAreas area = fruAreas::fruAreaInternal;
253          area <= fruAreas::fruAreaMultirecord; ++area)
254     {
255         // skip the current offset
256         if (area == currentArea)
257         {
258             continue;
259         }
260 
261         unsigned int areaIndex = getHeaderAreaFieldOffset(area);
262         if (areaIndex > fruBytesSize)
263         {
264             std::cerr << "Error: Fru area index is out of range\n";
265             return false;
266         }
267 
268         unsigned int areaOffset = fruBytes[areaIndex];
269         // if areaOffset is 0 means this area is not available so skip
270         if (areaOffset == 0)
271         {
272             continue;
273         }
274 
275         // check for overlapping of current offset with given areaoffset
276         if (areaOffset == start || (areaOffset > start && areaOffset < end))
277         {
278             std::cerr << getFruAreaName(currentArea)
279                       << " offset is overlapping with " << getFruAreaName(area)
280                       << " offset\n";
281             return false;
282         }
283     }
284     return true;
285 }
286 
287 static void parseMultirecordUUID(
288     const std::vector<uint8_t>& device,
289     boost::container::flat_map<std::string, std::string>& result)
290 {
291     constexpr size_t uuidDataLen = 16;
292     constexpr size_t multiRecordHeaderLen = 5;
293     /* UUID record data, plus one to skip past the sub-record type byte */
294     constexpr size_t uuidRecordData = multiRecordHeaderLen + 1;
295     constexpr size_t multiRecordEndOfListMask = 0x80;
296     /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented
297      * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD
298      * 0xEE 0xFF
299      */
300     const std::array<uint8_t, uuidDataLen> uuidCharOrder = {
301         3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
302     uint32_t areaOffset =
303         device.at(getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord));
304 
305     if (areaOffset == 0)
306     {
307         return;
308     }
309 
310     areaOffset *= fruBlockSize;
311     std::vector<uint8_t>::const_iterator fruBytesIter = device.begin() +
312                                                         areaOffset;
313 
314     /* Verify area offset */
315     if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter))
316     {
317         return;
318     }
319     while (areaOffset + uuidRecordData + uuidDataLen <= device.size())
320     {
321         if ((areaOffset < device.size()) &&
322             (device[areaOffset] ==
323              (uint8_t)MultiRecordType::managementAccessRecord))
324         {
325             if ((areaOffset + multiRecordHeaderLen < device.size()) &&
326                 (device[areaOffset + multiRecordHeaderLen] ==
327                  (uint8_t)SubManagementAccessRecord::systemUniqueID))
328             {
329                 /* Layout of UUID:
330                  * source: https://www.ietf.org/rfc/rfc4122.txt
331                  *
332                  * UUID binary format (16 bytes):
333                  * 4B-2B-2B-2B-6B (big endian)
334                  *
335                  * UUID string is 36 length of characters (36 bytes):
336                  * 0        9    14   19   24
337                  * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
338                  *    be     be   be   be       be
339                  * be means it should be converted to big endian.
340                  */
341                 /* Get UUID bytes to UUID string */
342                 std::stringstream tmp;
343                 tmp << std::hex << std::setfill('0');
344                 for (size_t i = 0; i < uuidDataLen; i++)
345                 {
346                     tmp << std::setw(2)
347                         << static_cast<uint16_t>(
348                                device[areaOffset + uuidRecordData +
349                                       uuidCharOrder[i]]);
350                 }
351                 std::string uuidStr = tmp.str();
352                 result["MULTIRECORD_UUID"] =
353                     uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' +
354                     uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' +
355                     uuidStr.substr(20, 12);
356                 break;
357             }
358         }
359         if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0)
360         {
361             break;
362         }
363         areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen;
364     }
365 }
366 
367 resCodes
368     formatIPMIFRU(const std::vector<uint8_t>& fruBytes,
369                   boost::container::flat_map<std::string, std::string>& result)
370 {
371     resCodes ret = resCodes::resOK;
372     if (fruBytes.size() <= fruBlockSize)
373     {
374         std::cerr << "Error: trying to parse empty FRU \n";
375         return resCodes::resErr;
376     }
377     result["Common_Format_Version"] =
378         std::to_string(static_cast<int>(*fruBytes.begin()));
379 
380     const std::vector<std::string>* fruAreaFieldNames = nullptr;
381 
382     // Don't parse Internal and Multirecord areas
383     for (fruAreas area = fruAreas::fruAreaChassis;
384          area <= fruAreas::fruAreaProduct; ++area)
385     {
386         size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area));
387         if (offset == 0)
388         {
389             continue;
390         }
391         offset *= fruBlockSize;
392         std::vector<uint8_t>::const_iterator fruBytesIter = fruBytes.begin() +
393                                                             offset;
394         if (fruBytesIter + fruBlockSize >= fruBytes.end())
395         {
396             std::cerr << "Not enough data to parse \n";
397             return resCodes::resErr;
398         }
399         // check for format version 1
400         if (*fruBytesIter != 0x01)
401         {
402             std::cerr << "Unexpected version " << *fruBytesIter << "\n";
403             return resCodes::resErr;
404         }
405         ++fruBytesIter;
406 
407         /* Verify other area offset for overlap with current area by passing
408          * length of current area offset pointed by *fruBytesIter
409          */
410         if (!verifyOffset(fruBytes, area, *fruBytesIter))
411         {
412             return resCodes::resErr;
413         }
414 
415         size_t fruAreaSize = *fruBytesIter * fruBlockSize;
416         std::vector<uint8_t>::const_iterator fruBytesIterEndArea =
417             fruBytes.begin() + offset + fruAreaSize - 1;
418         ++fruBytesIter;
419 
420         uint8_t fruComputedChecksum =
421             calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea);
422         if (fruComputedChecksum != *fruBytesIterEndArea)
423         {
424             std::stringstream ss;
425             ss << std::hex << std::setfill('0');
426             ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n";
427             ss << "\tComputed checksum: 0x" << std::setw(2)
428                << static_cast<int>(fruComputedChecksum) << "\n";
429             ss << "\tThe read checksum: 0x" << std::setw(2)
430                << static_cast<int>(*fruBytesIterEndArea) << "\n";
431             std::cerr << ss.str();
432             ret = resCodes::resWarn;
433         }
434 
435         /* Set default language flag to true as Chassis Fru area are always
436          * encoded in English defined in Section 10 of Fru specification
437          */
438 
439         bool isLangEng = true;
440         switch (area)
441         {
442             case fruAreas::fruAreaChassis:
443             {
444                 result["CHASSIS_TYPE"] =
445                     std::to_string(static_cast<int>(*fruBytesIter));
446                 fruBytesIter += 1;
447                 fruAreaFieldNames = &chassisFruAreas;
448                 break;
449             }
450             case fruAreas::fruAreaBoard:
451             {
452                 uint8_t lang = *fruBytesIter;
453                 result["BOARD_LANGUAGE_CODE"] =
454                     std::to_string(static_cast<int>(lang));
455                 isLangEng = checkLangEng(lang);
456                 fruBytesIter += 1;
457 
458                 unsigned int minutes = *fruBytesIter |
459                                        *(fruBytesIter + 1) << 8 |
460                                        *(fruBytesIter + 2) << 16;
461                 std::tm fruTime = intelEpoch();
462                 std::time_t timeValue = timegm(&fruTime);
463                 timeValue += static_cast<long>(minutes) * 60;
464                 fruTime = *std::gmtime(&timeValue);
465 
466                 // Tue Nov 20 23:08:00 2018
467                 std::array<char, 32> timeString = {};
468                 auto bytes = std::strftime(timeString.data(), timeString.size(),
469                                            "%Y-%m-%d - %H:%M:%S UTC", &fruTime);
470                 if (bytes == 0)
471                 {
472                     std::cerr << "invalid time string encountered\n";
473                     return resCodes::resErr;
474                 }
475 
476                 result["BOARD_MANUFACTURE_DATE"] =
477                     std::string_view(timeString.data(), bytes);
478                 fruBytesIter += 3;
479                 fruAreaFieldNames = &boardFruAreas;
480                 break;
481             }
482             case fruAreas::fruAreaProduct:
483             {
484                 uint8_t lang = *fruBytesIter;
485                 result["PRODUCT_LANGUAGE_CODE"] =
486                     std::to_string(static_cast<int>(lang));
487                 isLangEng = checkLangEng(lang);
488                 fruBytesIter += 1;
489                 fruAreaFieldNames = &productFruAreas;
490                 break;
491             }
492             default:
493             {
494                 std::cerr << "Internal error: unexpected FRU area index: "
495                           << static_cast<int>(area) << " \n";
496                 return resCodes::resErr;
497             }
498         }
499         size_t fieldIndex = 0;
500         DecodeState state = DecodeState::ok;
501         do
502         {
503             auto res = decodeFRUData(fruBytesIter, fruBytesIterEndArea,
504                                      isLangEng);
505             state = res.first;
506             std::string value = res.second;
507             std::string name;
508             if (fieldIndex < fruAreaFieldNames->size())
509             {
510                 name = std::string(getFruAreaName(area)) + "_" +
511                        fruAreaFieldNames->at(fieldIndex);
512             }
513             else
514             {
515                 name =
516                     std::string(getFruAreaName(area)) + "_" +
517                     fruCustomFieldName +
518                     std::to_string(fieldIndex - fruAreaFieldNames->size() + 1);
519             }
520 
521             if (state == DecodeState::ok)
522             {
523                 // Strip non null characters from the end
524                 value.erase(std::find_if(value.rbegin(), value.rend(),
525                                          [](char ch) { return ch != 0; })
526                                 .base(),
527                             value.end());
528 
529                 result[name] = std::move(value);
530                 ++fieldIndex;
531             }
532             else if (state == DecodeState::err)
533             {
534                 std::cerr << "Error while parsing " << name << "\n";
535                 ret = resCodes::resWarn;
536                 // Cancel decoding if failed to parse any of mandatory
537                 // fields
538                 if (fieldIndex < fruAreaFieldNames->size())
539                 {
540                     std::cerr << "Failed to parse mandatory field \n";
541                     return resCodes::resErr;
542                 }
543             }
544             else
545             {
546                 if (fieldIndex < fruAreaFieldNames->size())
547                 {
548                     std::cerr << "Mandatory fields absent in FRU area "
549                               << getFruAreaName(area) << " after " << name
550                               << "\n";
551                     ret = resCodes::resWarn;
552                 }
553             }
554         } while (state == DecodeState::ok);
555         for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++)
556         {
557             uint8_t c = *fruBytesIter;
558             if (c != 0U)
559             {
560                 std::cerr << "Non-zero byte after EndOfFields in FRU area "
561                           << getFruAreaName(area) << "\n";
562                 ret = resCodes::resWarn;
563                 break;
564             }
565         }
566     }
567 
568     /* Parsing the Multirecord UUID */
569     parseMultirecordUUID(fruBytes, result);
570 
571     return ret;
572 }
573 
574 // Calculate new checksum for fru info area
575 uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter,
576                           std::vector<uint8_t>::const_iterator end)
577 {
578     constexpr int checksumMod = 256;
579     uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0));
580     return (checksumMod - sum) % checksumMod;
581 }
582 
583 uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData)
584 {
585     return calculateChecksum(fruAreaData.begin(), fruAreaData.end());
586 }
587 
588 // Update new fru area length &
589 // Update checksum at new checksum location
590 // Return the offset of the area checksum byte
591 unsigned int updateFRUAreaLenAndChecksum(std::vector<uint8_t>& fruData,
592                                          size_t fruAreaStart,
593                                          size_t fruAreaEndOfFieldsOffset,
594                                          size_t fruAreaEndOffset)
595 {
596     size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart;
597 
598     // fill zeros for any remaining unused space
599     std::fill(fruData.begin() + fruAreaEndOfFieldsOffset,
600               fruData.begin() + fruAreaEndOffset, 0);
601 
602     size_t mod = traverseFRUAreaIndex % fruBlockSize;
603     size_t checksumLoc = 0;
604     if (mod == 0U)
605     {
606         traverseFRUAreaIndex += (fruBlockSize);
607         checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1);
608     }
609     else
610     {
611         traverseFRUAreaIndex += (fruBlockSize - mod);
612         checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1);
613     }
614 
615     size_t newFRUAreaLen =
616         (traverseFRUAreaIndex / fruBlockSize) +
617         static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0);
618     size_t fruAreaLengthLoc = fruAreaStart + 1;
619     fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen);
620 
621     // Calculate new checksum
622     std::vector<uint8_t> finalFRUData;
623     std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart,
624                 std::back_inserter(finalFRUData));
625 
626     fruData[checksumLoc] = calculateChecksum(finalFRUData);
627     return checksumLoc;
628 }
629 
630 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue)
631 {
632     constexpr uint8_t typeLenMask = 0x3F;
633     constexpr uint8_t endOfFields = 0xC1;
634     if (fruFieldTypeLenValue == endOfFields)
635     {
636         return -1;
637     }
638     return fruFieldTypeLenValue & typeLenMask;
639 }
640 
641 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
642 {
643     // ipmi spec format version number is currently at 1, verify it
644     if (blockData[0] != fruVersion)
645     {
646         if (debug)
647         {
648             std::cerr << "FRU spec version " << (int)(blockData[0])
649                       << " not supported. Supported version is "
650                       << (int)(fruVersion) << "\n";
651         }
652         return false;
653     }
654 
655     // verify pad is set to 0
656     if (blockData[6] != 0x0)
657     {
658         if (debug)
659         {
660             std::cerr << "PAD value in header is non zero, value is "
661                       << (int)(blockData[6]) << "\n";
662         }
663         return false;
664     }
665 
666     // verify offsets are 0, or don't point to another offset
667     std::set<uint8_t> foundOffsets;
668     for (int ii = 1; ii < 6; ii++)
669     {
670         if (blockData[ii] == 0)
671         {
672             continue;
673         }
674         auto inserted = foundOffsets.insert(blockData[ii]);
675         if (!inserted.second)
676         {
677             return false;
678         }
679     }
680 
681     // validate checksum
682     size_t sum = 0;
683     for (int jj = 0; jj < 7; jj++)
684     {
685         sum += blockData[jj];
686     }
687     sum = (256 - sum) & 0xFF;
688 
689     if (sum != blockData[7])
690     {
691         if (debug)
692         {
693             std::cerr << "Checksum " << (int)(blockData[7])
694                       << " is invalid. calculated checksum is " << (int)(sum)
695                       << "\n";
696         }
697         return false;
698     }
699     return true;
700 }
701 
702 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp,
703                    std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData,
704                    off_t& baseOffset)
705 {
706     if (reader.read(baseOffset, 0x8, blockData.data()) < 0)
707     {
708         std::cerr << "failed to read " << errorHelp << " base offset "
709                   << baseOffset << "\n";
710         return false;
711     }
712 
713     // check the header checksum
714     if (validateHeader(blockData))
715     {
716         return true;
717     }
718 
719     // only continue the search if we just looked at 0x0.
720     if (baseOffset != 0)
721     {
722         return false;
723     }
724 
725     // now check for special cases where the IPMI data is at an offset
726 
727     // check if blockData starts with tyanHeader
728     const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'};
729     if (blockData.size() >= tyanHeader.size() &&
730         std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin()))
731     {
732         // look for the FRU header at offset 0x6000
733         baseOffset = 0x6000;
734         return findFRUHeader(reader, errorHelp, blockData, baseOffset);
735     }
736 
737     if (debug)
738     {
739         std::cerr << "Illegal header " << errorHelp << " base offset "
740                   << baseOffset << "\n";
741     }
742 
743     return false;
744 }
745 
746 std::pair<std::vector<uint8_t>, bool>
747     readFRUContents(FRUReader& reader, const std::string& errorHelp)
748 {
749     std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{};
750     off_t baseOffset = 0x0;
751 
752     if (!findFRUHeader(reader, errorHelp, blockData, baseOffset))
753     {
754         return {{}, false};
755     }
756 
757     std::vector<uint8_t> device;
758     device.insert(device.end(), blockData.begin(), blockData.begin() + 8);
759 
760     bool hasMultiRecords = false;
761     size_t fruLength = fruBlockSize; // At least FRU header is present
762     unsigned int prevOffset = 0;
763     for (fruAreas area = fruAreas::fruAreaInternal;
764          area <= fruAreas::fruAreaMultirecord; ++area)
765     {
766         // Offset value can be 255.
767         unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)];
768         if (areaOffset == 0)
769         {
770             continue;
771         }
772 
773         /* Check for offset order, as per Section 17 of FRU specification, FRU
774          * information areas are required to be in order in FRU data layout
775          * which means all offset value should be in increasing order or can be
776          * 0 if that area is not present
777          */
778         if (areaOffset <= prevOffset)
779         {
780             std::cerr << "Fru area offsets are not in required order as per "
781                          "Section 17 of Fru specification\n";
782             return {{}, true};
783         }
784         prevOffset = areaOffset;
785 
786         // MultiRecords are different. area is not tracking section, it's
787         // walking the common header.
788         if (area == fruAreas::fruAreaMultirecord)
789         {
790             hasMultiRecords = true;
791             break;
792         }
793 
794         areaOffset *= fruBlockSize;
795 
796         if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0)
797         {
798             std::cerr << "failed to read " << errorHelp << " base offset "
799                       << baseOffset << "\n";
800             return {{}, true};
801         }
802 
803         // Ignore data type (blockData is already unsigned).
804         size_t length = blockData[1] * fruBlockSize;
805         areaOffset += length;
806         fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
807     }
808 
809     if (hasMultiRecords)
810     {
811         // device[area count] is the index to the last area because the 0th
812         // entry is not an offset in the common header.
813         unsigned int areaOffset =
814             device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)];
815         areaOffset *= fruBlockSize;
816 
817         // the multi-area record header is 5 bytes long.
818         constexpr size_t multiRecordHeaderSize = 5;
819         constexpr uint8_t multiRecordEndOfListMask = 0x80;
820 
821         // Sanity hard-limit to 64KB.
822         while (areaOffset < std::numeric_limits<uint16_t>::max())
823         {
824             // In multi-area, the area offset points to the 0th record, each
825             // record has 3 bytes of the header we care about.
826             if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0)
827             {
828                 std::cerr << "failed to read " << errorHelp << " base offset "
829                           << baseOffset << "\n";
830                 return {{}, true};
831             }
832 
833             // Ok, let's check the record length, which is in bytes (unsigned,
834             // up to 255, so blockData should hold uint8_t not char)
835             size_t recordLength = blockData[2];
836             areaOffset += (recordLength + multiRecordHeaderSize);
837             fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
838 
839             // If this is the end of the list bail.
840             if ((blockData[1] & multiRecordEndOfListMask) != 0)
841             {
842                 break;
843             }
844         }
845     }
846 
847     // You already copied these first 8 bytes (the ipmi fru header size)
848     fruLength -= std::min(fruBlockSize, fruLength);
849 
850     int readOffset = fruBlockSize;
851 
852     while (fruLength > 0)
853     {
854         size_t requestLength =
855             std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength);
856 
857         if (reader.read(baseOffset + readOffset, requestLength,
858                         blockData.data()) < 0)
859         {
860             std::cerr << "failed to read " << errorHelp << " base offset "
861                       << baseOffset << "\n";
862             return {{}, true};
863         }
864 
865         device.insert(device.end(), blockData.begin(),
866                       blockData.begin() + requestLength);
867 
868         readOffset += requestLength;
869         fruLength -= std::min(requestLength, fruLength);
870     }
871 
872     return {device, true};
873 }
874 
875 unsigned int getHeaderAreaFieldOffset(fruAreas area)
876 {
877     return static_cast<unsigned int>(area) + 1;
878 }
879 
880 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address)
881 {
882     auto deviceMap = busMap.find(bus);
883     if (deviceMap == busMap.end())
884     {
885         throw std::invalid_argument("Invalid Bus.");
886     }
887     auto device = deviceMap->second->find(address);
888     if (device == deviceMap->second->end())
889     {
890         throw std::invalid_argument("Invalid Address.");
891     }
892     std::vector<uint8_t>& ret = device->second;
893 
894     return ret;
895 }
896 
897 // Iterate FruArea Names and find start and size of the fru area that contains
898 // the propertyName and the field start location for the property. fruAreaParams
899 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets
900 // updated/returned if successful.
901 
902 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData,
903                                  const std::string& propertyName,
904                                  struct FruArea& fruAreaParams)
905 {
906     const std::vector<std::string>* fruAreaFieldNames = nullptr;
907 
908     uint8_t fruAreaOffsetFieldValue = 0;
909     size_t offset = 0;
910     std::string areaName = propertyName.substr(0, propertyName.find('_'));
911     std::string propertyNamePrefix = areaName + "_";
912     auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName);
913     if (it == fruAreaNames.end())
914     {
915         std::cerr << "Can't parse area name for property " << propertyName
916                   << " \n";
917         return false;
918     }
919     fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin());
920     fruAreaOffsetFieldValue =
921         fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)];
922     switch (fruAreaToUpdate)
923     {
924         case fruAreas::fruAreaChassis:
925             offset = 3; // chassis part number offset. Skip fixed first 3 bytes
926             fruAreaFieldNames = &chassisFruAreas;
927             break;
928         case fruAreas::fruAreaBoard:
929             offset = 6; // board manufacturer offset. Skip fixed first 6 bytes
930             fruAreaFieldNames = &boardFruAreas;
931             break;
932         case fruAreas::fruAreaProduct:
933             // Manufacturer name offset. Skip fixed first 3 product fru bytes
934             // i.e. version, area length and language code
935             offset = 3;
936             fruAreaFieldNames = &productFruAreas;
937             break;
938         default:
939             std::cerr << "Invalid PropertyName " << propertyName << " \n";
940             return false;
941     }
942     if (fruAreaOffsetFieldValue == 0)
943     {
944         std::cerr << "FRU Area for " << propertyName << " not present \n";
945         return false;
946     }
947 
948     fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize;
949     fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize;
950     fruAreaParams.end = fruAreaParams.start + fruAreaParams.size;
951     size_t fruDataIter = fruAreaParams.start + offset;
952     size_t skipToFRUUpdateField = 0;
953     ssize_t fieldLength = 0;
954 
955     bool found = false;
956     for (const auto& field : *fruAreaFieldNames)
957     {
958         skipToFRUUpdateField++;
959         if (propertyName == propertyNamePrefix + field)
960         {
961             found = true;
962             break;
963         }
964     }
965     if (!found)
966     {
967         std::size_t pos = propertyName.find(fruCustomFieldName);
968         if (pos == std::string::npos)
969         {
970             std::cerr << "PropertyName doesn't exist in FRU Area Vectors: "
971                       << propertyName << "\n";
972             return false;
973         }
974         std::string fieldNumStr =
975             propertyName.substr(pos + fruCustomFieldName.length());
976         size_t fieldNum = std::stoi(fieldNumStr);
977         if (fieldNum == 0)
978         {
979             std::cerr << "PropertyName not recognized: " << propertyName
980                       << "\n";
981             return false;
982         }
983         skipToFRUUpdateField += fieldNum;
984     }
985 
986     for (size_t i = 1; i < skipToFRUUpdateField; i++)
987     {
988         if (fruDataIter < fruData.size())
989         {
990             fieldLength = getFieldLength(fruData[fruDataIter]);
991 
992             if (fieldLength < 0)
993             {
994                 break;
995             }
996             fruDataIter += 1 + fieldLength;
997         }
998     }
999     fruAreaParams.updateFieldLoc = fruDataIter;
1000 
1001     return true;
1002 }
1003 
1004 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector.
1005 // Return true for success and false for failure.
1006 
1007 bool copyRestFRUArea(std::vector<uint8_t>& fruData,
1008                      const std::string& propertyName,
1009                      struct FruArea& fruAreaParams,
1010                      std::vector<uint8_t>& restFRUAreaFieldsData)
1011 {
1012     size_t fieldLoc = fruAreaParams.updateFieldLoc;
1013     size_t start = fruAreaParams.start;
1014     size_t fruAreaSize = fruAreaParams.size;
1015 
1016     // Push post update fru field bytes to a vector
1017     ssize_t fieldLength = getFieldLength(fruData[fieldLoc]);
1018     if (fieldLength < 0)
1019     {
1020         std::cerr << "Property " << propertyName << " not present \n";
1021         return false;
1022     }
1023 
1024     size_t fruDataIter = 0;
1025     fruDataIter = fieldLoc;
1026     fruDataIter += 1 + fieldLength;
1027     size_t restFRUFieldsLoc = fruDataIter;
1028     size_t endOfFieldsLoc = 0;
1029 
1030     if (fruDataIter < fruData.size())
1031     {
1032         while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0)
1033         {
1034             if (fruDataIter >= (start + fruAreaSize))
1035             {
1036                 fruDataIter = start + fruAreaSize;
1037                 break;
1038             }
1039             fruDataIter += 1 + fieldLength;
1040         }
1041         endOfFieldsLoc = fruDataIter;
1042     }
1043 
1044     std::copy_n(fruData.begin() + restFRUFieldsLoc,
1045                 endOfFieldsLoc - restFRUFieldsLoc + 1,
1046                 std::back_inserter(restFRUAreaFieldsData));
1047 
1048     fruAreaParams.restFieldsLoc = restFRUFieldsLoc;
1049     fruAreaParams.restFieldsEnd = endOfFieldsLoc;
1050 
1051     return true;
1052 }
1053 
1054 // Get all device dbus path and match path with product name using
1055 // regular expression and find the device index for all devices.
1056 
1057 std::optional<int> findIndexForFRU(
1058     boost::container::flat_map<
1059         std::pair<size_t, size_t>,
1060         std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
1061     std::string& productName)
1062 {
1063     int highest = -1;
1064     bool found = false;
1065 
1066     for (const auto& busIface : dbusInterfaceMap)
1067     {
1068         std::string path = busIface.second->get_object_path();
1069         if (std::regex_match(path, std::regex(productName + "(_\\d+|)$")))
1070         {
1071             // Check if the match named has extra information.
1072             found = true;
1073             std::smatch baseMatch;
1074 
1075             bool match = std::regex_match(path, baseMatch,
1076                                           std::regex(productName + "_(\\d+)$"));
1077             if (match)
1078             {
1079                 if (baseMatch.size() == 2)
1080                 {
1081                     std::ssub_match baseSubMatch = baseMatch[1];
1082                     std::string base = baseSubMatch.str();
1083 
1084                     int value = std::stoi(base);
1085                     highest = (value > highest) ? value : highest;
1086                 }
1087             }
1088         }
1089     } // end searching objects
1090 
1091     if (!found)
1092     {
1093         return std::nullopt;
1094     }
1095     return highest;
1096 }
1097 
1098 // This function does format fru data as per IPMI format and find the
1099 // productName in the formatted fru data, get that productName and return
1100 // productName if found or return NULL.
1101 
1102 std::optional<std::string> getProductName(
1103     std::vector<uint8_t>& device,
1104     boost::container::flat_map<std::string, std::string>& formattedFRU,
1105     uint32_t bus, uint32_t address, size_t& unknownBusObjectCount)
1106 {
1107     std::string productName;
1108 
1109     resCodes res = formatIPMIFRU(device, formattedFRU);
1110     if (res == resCodes::resErr)
1111     {
1112         std::cerr << "failed to parse FRU for device at bus " << bus
1113                   << " address " << address << "\n";
1114         return std::nullopt;
1115     }
1116     if (res == resCodes::resWarn)
1117     {
1118         std::cerr << "Warnings while parsing FRU for device at bus " << bus
1119                   << " address " << address << "\n";
1120     }
1121 
1122     auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME");
1123     // Not found under Board section or an empty string.
1124     if (productNameFind == formattedFRU.end() ||
1125         productNameFind->second.empty())
1126     {
1127         productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME");
1128     }
1129     // Found under Product section and not an empty string.
1130     if (productNameFind != formattedFRU.end() &&
1131         !productNameFind->second.empty())
1132     {
1133         productName = productNameFind->second;
1134         std::regex illegalObject("[^A-Za-z0-9_]");
1135         productName = std::regex_replace(productName, illegalObject, "_");
1136     }
1137     else
1138     {
1139         productName = "UNKNOWN" + std::to_string(unknownBusObjectCount);
1140         unknownBusObjectCount++;
1141     }
1142     return productName;
1143 }
1144 
1145 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address)
1146 {
1147     try
1148     {
1149         fruData = getFRUInfo(static_cast<uint16_t>(bus),
1150                              static_cast<uint8_t>(address));
1151     }
1152     catch (const std::invalid_argument& e)
1153     {
1154         std::cerr << "Failure getting FRU Info" << e.what() << "\n";
1155         return false;
1156     }
1157 
1158     return !fruData.empty();
1159 }
1160