1 /* 2 // Copyright (c) 2018 Intel Corporation 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 */ 16 /// \file fru_utils.cpp 17 18 #include "fru_utils.hpp" 19 20 #include <array> 21 #include <cstddef> 22 #include <cstdint> 23 #include <filesystem> 24 #include <iomanip> 25 #include <iostream> 26 #include <numeric> 27 #include <set> 28 #include <sstream> 29 #include <string> 30 #include <vector> 31 32 extern "C" 33 { 34 // Include for I2C_SMBUS_BLOCK_MAX 35 #include <linux/i2c.h> 36 } 37 38 static constexpr bool debug = false; 39 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1 40 41 std::tm intelEpoch() 42 { 43 std::tm val = {}; 44 val.tm_year = 1996 - 1900; 45 val.tm_mday = 1; 46 return val; 47 } 48 49 char sixBitToChar(uint8_t val) 50 { 51 return static_cast<char>((val & 0x3f) + ' '); 52 } 53 54 char bcdPlusToChar(uint8_t val) 55 { 56 val &= 0xf; 57 return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10]; 58 } 59 60 enum FRUDataEncoding 61 { 62 binary = 0x0, 63 bcdPlus = 0x1, 64 sixBitASCII = 0x2, 65 languageDependent = 0x3, 66 }; 67 68 enum MultiRecordType : uint8_t 69 { 70 powerSupplyInfo = 0x00, 71 dcOutput = 0x01, 72 dcLoad = 0x02, 73 managementAccessRecord = 0x03, 74 baseCompatibilityRecord = 0x04, 75 extendedCompatibilityRecord = 0x05, 76 resvASFSMBusDeviceRecord = 0x06, 77 resvASFLegacyDeviceAlerts = 0x07, 78 resvASFRemoteControl = 0x08, 79 extendedDCOutput = 0x09, 80 extendedDCLoad = 0x0A 81 }; 82 83 enum SubManagementAccessRecord : uint8_t 84 { 85 systemManagementURL = 0x01, 86 systemName = 0x02, 87 systemPingAddress = 0x03, 88 componentManagementURL = 0x04, 89 componentName = 0x05, 90 componentPingAddress = 0x06, 91 systemUniqueID = 0x07 92 }; 93 94 /* Decode FRU data into a std::string, given an input iterator and end. If the 95 * state returned is fruDataOk, then the resulting string is the decoded FRU 96 * data. The input iterator is advanced past the data consumed. 97 * 98 * On fruDataErr, we have lost synchronisation with the length bytes, so the 99 * iterator is no longer usable. 100 */ 101 std::pair<DecodeState, std::string> 102 decodeFRUData(std::vector<uint8_t>::const_iterator& iter, 103 const std::vector<uint8_t>::const_iterator& end, 104 bool isLangEng) 105 { 106 std::string value; 107 unsigned int i = 0; 108 109 /* we need at least one byte to decode the type/len header */ 110 if (iter == end) 111 { 112 std::cerr << "Truncated FRU data\n"; 113 return make_pair(DecodeState::err, value); 114 } 115 116 uint8_t c = *(iter++); 117 118 /* 0xc1 is the end marker */ 119 if (c == 0xc1) 120 { 121 return make_pair(DecodeState::end, value); 122 } 123 124 /* decode type/len byte */ 125 uint8_t type = static_cast<uint8_t>(c >> 6); 126 uint8_t len = static_cast<uint8_t>(c & 0x3f); 127 128 /* we should have at least len bytes of data available overall */ 129 if (iter + len > end) 130 { 131 std::cerr << "FRU data field extends past end of FRU area data\n"; 132 return make_pair(DecodeState::err, value); 133 } 134 135 switch (type) 136 { 137 case FRUDataEncoding::binary: 138 { 139 std::stringstream ss; 140 ss << std::hex << std::setfill('0'); 141 for (i = 0; i < len; i++, iter++) 142 { 143 uint8_t val = static_cast<uint8_t>(*iter); 144 ss << std::setw(2) << static_cast<int>(val); 145 } 146 value = ss.str(); 147 break; 148 } 149 case FRUDataEncoding::languageDependent: 150 /* For language-code dependent encodings, assume 8-bit ASCII */ 151 value = std::string(iter, iter + len); 152 iter += len; 153 154 /* English text is encoded in 8-bit ASCII + Latin 1. All other 155 * languages are required to use 2-byte unicode. FruDevice does not 156 * handle unicode. 157 */ 158 if (!isLangEng) 159 { 160 std::cerr << "Error: Non english string is not supported \n"; 161 return make_pair(DecodeState::err, value); 162 } 163 164 break; 165 166 case FRUDataEncoding::bcdPlus: 167 value = std::string(); 168 for (i = 0; i < len; i++, iter++) 169 { 170 uint8_t val = *iter; 171 value.push_back(bcdPlusToChar(val >> 4)); 172 value.push_back(bcdPlusToChar(val & 0xf)); 173 } 174 break; 175 176 case FRUDataEncoding::sixBitASCII: 177 { 178 unsigned int accum = 0; 179 unsigned int accumBitLen = 0; 180 value = std::string(); 181 for (i = 0; i < len; i++, iter++) 182 { 183 accum |= *iter << accumBitLen; 184 accumBitLen += 8; 185 while (accumBitLen >= 6) 186 { 187 value.push_back(sixBitToChar(accum & 0x3f)); 188 accum >>= 6; 189 accumBitLen -= 6; 190 } 191 } 192 } 193 break; 194 195 default: 196 { 197 return make_pair(DecodeState::err, value); 198 } 199 } 200 201 return make_pair(DecodeState::ok, value); 202 } 203 204 bool checkLangEng(uint8_t lang) 205 { 206 // If Lang is not English then the encoding is defined as 2-byte UNICODE, 207 // but we don't support that. 208 if ((lang != 0U) && lang != 25) 209 { 210 std::cerr << "Warning: languages other than English is not " 211 "supported\n"; 212 // Return language flag as non english 213 return false; 214 } 215 return true; 216 } 217 218 /* This function verifies for other offsets to check if they are not 219 * falling under other field area 220 * 221 * fruBytes: Start of Fru data 222 * currentArea: Index of current area offset to be compared against all area 223 * offset and it is a multiple of 8 bytes as per specification 224 * len: Length of current area space and it is a multiple of 8 bytes 225 * as per specification 226 */ 227 bool verifyOffset(const std::vector<uint8_t>& fruBytes, fruAreas currentArea, 228 uint8_t len) 229 { 230 unsigned int fruBytesSize = fruBytes.size(); 231 232 // check if Fru data has at least 8 byte header 233 if (fruBytesSize <= fruBlockSize) 234 { 235 std::cerr << "Error: trying to parse empty FRU\n"; 236 return false; 237 } 238 239 // Check range of passed currentArea value 240 if (currentArea > fruAreas::fruAreaMultirecord) 241 { 242 std::cerr << "Error: Fru area is out of range\n"; 243 return false; 244 } 245 246 unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea); 247 if (currentAreaIndex > fruBytesSize) 248 { 249 std::cerr << "Error: Fru area index is out of range\n"; 250 return false; 251 } 252 253 unsigned int start = fruBytes[currentAreaIndex]; 254 unsigned int end = start + len; 255 256 /* Verify each offset within the range of start and end */ 257 for (fruAreas area = fruAreas::fruAreaInternal; 258 area <= fruAreas::fruAreaMultirecord; ++area) 259 { 260 // skip the current offset 261 if (area == currentArea) 262 { 263 continue; 264 } 265 266 unsigned int areaIndex = getHeaderAreaFieldOffset(area); 267 if (areaIndex > fruBytesSize) 268 { 269 std::cerr << "Error: Fru area index is out of range\n"; 270 return false; 271 } 272 273 unsigned int areaOffset = fruBytes[areaIndex]; 274 // if areaOffset is 0 means this area is not available so skip 275 if (areaOffset == 0) 276 { 277 continue; 278 } 279 280 // check for overlapping of current offset with given areaoffset 281 if (areaOffset == start || (areaOffset > start && areaOffset < end)) 282 { 283 std::cerr << getFruAreaName(currentArea) 284 << " offset is overlapping with " << getFruAreaName(area) 285 << " offset\n"; 286 return false; 287 } 288 } 289 return true; 290 } 291 292 static void parseMultirecordUUID( 293 const std::vector<uint8_t>& device, 294 boost::container::flat_map<std::string, std::string>& result) 295 { 296 constexpr size_t uuidDataLen = 16; 297 constexpr size_t multiRecordHeaderLen = 5; 298 /* UUID record data, plus one to skip past the sub-record type byte */ 299 constexpr size_t uuidRecordData = multiRecordHeaderLen + 1; 300 constexpr size_t multiRecordEndOfListMask = 0x80; 301 /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented 302 * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD 303 * 0xEE 0xFF 304 */ 305 const std::array<uint8_t, uuidDataLen> uuidCharOrder = { 306 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15}; 307 uint32_t areaOffset = 308 device.at(getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)); 309 310 if (areaOffset == 0) 311 { 312 return; 313 } 314 315 areaOffset *= fruBlockSize; 316 std::vector<uint8_t>::const_iterator fruBytesIter = device.begin() + 317 areaOffset; 318 319 /* Verify area offset */ 320 if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter)) 321 { 322 return; 323 } 324 while (areaOffset + uuidRecordData + uuidDataLen <= device.size()) 325 { 326 if ((areaOffset < device.size()) && 327 (device[areaOffset] == 328 (uint8_t)MultiRecordType::managementAccessRecord)) 329 { 330 if ((areaOffset + multiRecordHeaderLen < device.size()) && 331 (device[areaOffset + multiRecordHeaderLen] == 332 (uint8_t)SubManagementAccessRecord::systemUniqueID)) 333 { 334 /* Layout of UUID: 335 * source: https://www.ietf.org/rfc/rfc4122.txt 336 * 337 * UUID binary format (16 bytes): 338 * 4B-2B-2B-2B-6B (big endian) 339 * 340 * UUID string is 36 length of characters (36 bytes): 341 * 0 9 14 19 24 342 * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 343 * be be be be be 344 * be means it should be converted to big endian. 345 */ 346 /* Get UUID bytes to UUID string */ 347 std::stringstream tmp; 348 tmp << std::hex << std::setfill('0'); 349 for (size_t i = 0; i < uuidDataLen; i++) 350 { 351 tmp << std::setw(2) 352 << static_cast<uint16_t>( 353 device[areaOffset + uuidRecordData + 354 uuidCharOrder[i]]); 355 } 356 std::string uuidStr = tmp.str(); 357 result["MULTIRECORD_UUID"] = 358 uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' + 359 uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' + 360 uuidStr.substr(20, 12); 361 break; 362 } 363 } 364 if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0) 365 { 366 break; 367 } 368 areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen; 369 } 370 } 371 372 resCodes 373 formatIPMIFRU(const std::vector<uint8_t>& fruBytes, 374 boost::container::flat_map<std::string, std::string>& result) 375 { 376 resCodes ret = resCodes::resOK; 377 if (fruBytes.size() <= fruBlockSize) 378 { 379 std::cerr << "Error: trying to parse empty FRU \n"; 380 return resCodes::resErr; 381 } 382 result["Common_Format_Version"] = 383 std::to_string(static_cast<int>(*fruBytes.begin())); 384 385 const std::vector<std::string>* fruAreaFieldNames = nullptr; 386 387 // Don't parse Internal and Multirecord areas 388 for (fruAreas area = fruAreas::fruAreaChassis; 389 area <= fruAreas::fruAreaProduct; ++area) 390 { 391 size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area)); 392 if (offset == 0) 393 { 394 continue; 395 } 396 offset *= fruBlockSize; 397 std::vector<uint8_t>::const_iterator fruBytesIter = fruBytes.begin() + 398 offset; 399 if (fruBytesIter + fruBlockSize >= fruBytes.end()) 400 { 401 std::cerr << "Not enough data to parse \n"; 402 return resCodes::resErr; 403 } 404 // check for format version 1 405 if (*fruBytesIter != 0x01) 406 { 407 std::cerr << "Unexpected version " << *fruBytesIter << "\n"; 408 return resCodes::resErr; 409 } 410 ++fruBytesIter; 411 412 /* Verify other area offset for overlap with current area by passing 413 * length of current area offset pointed by *fruBytesIter 414 */ 415 if (!verifyOffset(fruBytes, area, *fruBytesIter)) 416 { 417 return resCodes::resErr; 418 } 419 420 size_t fruAreaSize = *fruBytesIter * fruBlockSize; 421 std::vector<uint8_t>::const_iterator fruBytesIterEndArea = 422 fruBytes.begin() + offset + fruAreaSize - 1; 423 ++fruBytesIter; 424 425 uint8_t fruComputedChecksum = 426 calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea); 427 if (fruComputedChecksum != *fruBytesIterEndArea) 428 { 429 std::stringstream ss; 430 ss << std::hex << std::setfill('0'); 431 ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n"; 432 ss << "\tComputed checksum: 0x" << std::setw(2) 433 << static_cast<int>(fruComputedChecksum) << "\n"; 434 ss << "\tThe read checksum: 0x" << std::setw(2) 435 << static_cast<int>(*fruBytesIterEndArea) << "\n"; 436 std::cerr << ss.str(); 437 ret = resCodes::resWarn; 438 } 439 440 /* Set default language flag to true as Chassis Fru area are always 441 * encoded in English defined in Section 10 of Fru specification 442 */ 443 444 bool isLangEng = true; 445 switch (area) 446 { 447 case fruAreas::fruAreaChassis: 448 { 449 result["CHASSIS_TYPE"] = 450 std::to_string(static_cast<int>(*fruBytesIter)); 451 fruBytesIter += 1; 452 fruAreaFieldNames = &chassisFruAreas; 453 break; 454 } 455 case fruAreas::fruAreaBoard: 456 { 457 uint8_t lang = *fruBytesIter; 458 result["BOARD_LANGUAGE_CODE"] = 459 std::to_string(static_cast<int>(lang)); 460 isLangEng = checkLangEng(lang); 461 fruBytesIter += 1; 462 463 unsigned int minutes = *fruBytesIter | 464 *(fruBytesIter + 1) << 8 | 465 *(fruBytesIter + 2) << 16; 466 std::tm fruTime = intelEpoch(); 467 std::time_t timeValue = timegm(&fruTime); 468 timeValue += static_cast<long>(minutes) * 60; 469 fruTime = *std::gmtime(&timeValue); 470 471 // Tue Nov 20 23:08:00 2018 472 std::array<char, 32> timeString = {}; 473 auto bytes = std::strftime(timeString.data(), timeString.size(), 474 "%Y%m%dT%H%M%SZ", &fruTime); 475 if (bytes == 0) 476 { 477 std::cerr << "invalid time string encountered\n"; 478 return resCodes::resErr; 479 } 480 481 result["BOARD_MANUFACTURE_DATE"] = 482 std::string_view(timeString.data(), bytes); 483 fruBytesIter += 3; 484 fruAreaFieldNames = &boardFruAreas; 485 break; 486 } 487 case fruAreas::fruAreaProduct: 488 { 489 uint8_t lang = *fruBytesIter; 490 result["PRODUCT_LANGUAGE_CODE"] = 491 std::to_string(static_cast<int>(lang)); 492 isLangEng = checkLangEng(lang); 493 fruBytesIter += 1; 494 fruAreaFieldNames = &productFruAreas; 495 break; 496 } 497 default: 498 { 499 std::cerr << "Internal error: unexpected FRU area index: " 500 << static_cast<int>(area) << " \n"; 501 return resCodes::resErr; 502 } 503 } 504 size_t fieldIndex = 0; 505 DecodeState state = DecodeState::ok; 506 do 507 { 508 auto res = decodeFRUData(fruBytesIter, fruBytesIterEndArea, 509 isLangEng); 510 state = res.first; 511 std::string value = res.second; 512 std::string name; 513 if (fieldIndex < fruAreaFieldNames->size()) 514 { 515 name = std::string(getFruAreaName(area)) + "_" + 516 fruAreaFieldNames->at(fieldIndex); 517 } 518 else 519 { 520 name = 521 std::string(getFruAreaName(area)) + "_" + 522 fruCustomFieldName + 523 std::to_string(fieldIndex - fruAreaFieldNames->size() + 1); 524 } 525 526 if (state == DecodeState::ok) 527 { 528 // Strip non null characters from the end 529 value.erase(std::find_if(value.rbegin(), value.rend(), 530 [](char ch) { 531 return ch != 0; 532 }).base(), 533 value.end()); 534 535 result[name] = std::move(value); 536 ++fieldIndex; 537 } 538 else if (state == DecodeState::err) 539 { 540 std::cerr << "Error while parsing " << name << "\n"; 541 ret = resCodes::resWarn; 542 // Cancel decoding if failed to parse any of mandatory 543 // fields 544 if (fieldIndex < fruAreaFieldNames->size()) 545 { 546 std::cerr << "Failed to parse mandatory field \n"; 547 return resCodes::resErr; 548 } 549 } 550 else 551 { 552 if (fieldIndex < fruAreaFieldNames->size()) 553 { 554 std::cerr << "Mandatory fields absent in FRU area " 555 << getFruAreaName(area) << " after " << name 556 << "\n"; 557 ret = resCodes::resWarn; 558 } 559 } 560 } while (state == DecodeState::ok); 561 for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++) 562 { 563 uint8_t c = *fruBytesIter; 564 if (c != 0U) 565 { 566 std::cerr << "Non-zero byte after EndOfFields in FRU area " 567 << getFruAreaName(area) << "\n"; 568 ret = resCodes::resWarn; 569 break; 570 } 571 } 572 } 573 574 /* Parsing the Multirecord UUID */ 575 parseMultirecordUUID(fruBytes, result); 576 577 return ret; 578 } 579 580 // Calculate new checksum for fru info area 581 uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter, 582 std::vector<uint8_t>::const_iterator end) 583 { 584 constexpr int checksumMod = 256; 585 uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0)); 586 return (checksumMod - sum) % checksumMod; 587 } 588 589 uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData) 590 { 591 return calculateChecksum(fruAreaData.begin(), fruAreaData.end()); 592 } 593 594 // Update new fru area length & 595 // Update checksum at new checksum location 596 // Return the offset of the area checksum byte 597 unsigned int updateFRUAreaLenAndChecksum(std::vector<uint8_t>& fruData, 598 size_t fruAreaStart, 599 size_t fruAreaEndOfFieldsOffset, 600 size_t fruAreaEndOffset) 601 { 602 size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart; 603 604 // fill zeros for any remaining unused space 605 std::fill(fruData.begin() + fruAreaEndOfFieldsOffset, 606 fruData.begin() + fruAreaEndOffset, 0); 607 608 size_t mod = traverseFRUAreaIndex % fruBlockSize; 609 size_t checksumLoc = 0; 610 if (mod == 0U) 611 { 612 traverseFRUAreaIndex += (fruBlockSize); 613 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1); 614 } 615 else 616 { 617 traverseFRUAreaIndex += (fruBlockSize - mod); 618 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1); 619 } 620 621 size_t newFRUAreaLen = 622 (traverseFRUAreaIndex / fruBlockSize) + 623 static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0); 624 size_t fruAreaLengthLoc = fruAreaStart + 1; 625 fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen); 626 627 // Calculate new checksum 628 std::vector<uint8_t> finalFRUData; 629 std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart, 630 std::back_inserter(finalFRUData)); 631 632 fruData[checksumLoc] = calculateChecksum(finalFRUData); 633 return checksumLoc; 634 } 635 636 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue) 637 { 638 constexpr uint8_t typeLenMask = 0x3F; 639 constexpr uint8_t endOfFields = 0xC1; 640 if (fruFieldTypeLenValue == endOfFields) 641 { 642 return -1; 643 } 644 return fruFieldTypeLenValue & typeLenMask; 645 } 646 647 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData) 648 { 649 // ipmi spec format version number is currently at 1, verify it 650 if (blockData[0] != fruVersion) 651 { 652 if (debug) 653 { 654 std::cerr << "FRU spec version " << (int)(blockData[0]) 655 << " not supported. Supported version is " 656 << (int)(fruVersion) << "\n"; 657 } 658 return false; 659 } 660 661 // verify pad is set to 0 662 if (blockData[6] != 0x0) 663 { 664 if (debug) 665 { 666 std::cerr << "PAD value in header is non zero, value is " 667 << (int)(blockData[6]) << "\n"; 668 } 669 return false; 670 } 671 672 // verify offsets are 0, or don't point to another offset 673 std::set<uint8_t> foundOffsets; 674 for (int ii = 1; ii < 6; ii++) 675 { 676 if (blockData[ii] == 0) 677 { 678 continue; 679 } 680 auto inserted = foundOffsets.insert(blockData[ii]); 681 if (!inserted.second) 682 { 683 return false; 684 } 685 } 686 687 // validate checksum 688 size_t sum = 0; 689 for (int jj = 0; jj < 7; jj++) 690 { 691 sum += blockData[jj]; 692 } 693 sum = (256 - sum) & 0xFF; 694 695 if (sum != blockData[7]) 696 { 697 if (debug) 698 { 699 std::cerr << "Checksum " << (int)(blockData[7]) 700 << " is invalid. calculated checksum is " << (int)(sum) 701 << "\n"; 702 } 703 return false; 704 } 705 return true; 706 } 707 708 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp, 709 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData, 710 off_t& baseOffset) 711 { 712 if (reader.read(baseOffset, 0x8, blockData.data()) < 0) 713 { 714 std::cerr << "failed to read " << errorHelp << " base offset " 715 << baseOffset << "\n"; 716 return false; 717 } 718 719 // check the header checksum 720 if (validateHeader(blockData)) 721 { 722 return true; 723 } 724 725 // only continue the search if we just looked at 0x0. 726 if (baseOffset != 0) 727 { 728 return false; 729 } 730 731 // now check for special cases where the IPMI data is at an offset 732 733 // check if blockData starts with tyanHeader 734 const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'}; 735 if (blockData.size() >= tyanHeader.size() && 736 std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin())) 737 { 738 // look for the FRU header at offset 0x6000 739 baseOffset = 0x6000; 740 return findFRUHeader(reader, errorHelp, blockData, baseOffset); 741 } 742 743 if (debug) 744 { 745 std::cerr << "Illegal header " << errorHelp << " base offset " 746 << baseOffset << "\n"; 747 } 748 749 return false; 750 } 751 752 std::pair<std::vector<uint8_t>, bool> 753 readFRUContents(FRUReader& reader, const std::string& errorHelp) 754 { 755 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{}; 756 off_t baseOffset = 0x0; 757 758 if (!findFRUHeader(reader, errorHelp, blockData, baseOffset)) 759 { 760 return {{}, false}; 761 } 762 763 std::vector<uint8_t> device; 764 device.insert(device.end(), blockData.begin(), blockData.begin() + 8); 765 766 bool hasMultiRecords = false; 767 size_t fruLength = fruBlockSize; // At least FRU header is present 768 unsigned int prevOffset = 0; 769 for (fruAreas area = fruAreas::fruAreaInternal; 770 area <= fruAreas::fruAreaMultirecord; ++area) 771 { 772 // Offset value can be 255. 773 unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)]; 774 if (areaOffset == 0) 775 { 776 continue; 777 } 778 779 /* Check for offset order, as per Section 17 of FRU specification, FRU 780 * information areas are required to be in order in FRU data layout 781 * which means all offset value should be in increasing order or can be 782 * 0 if that area is not present 783 */ 784 if (areaOffset <= prevOffset) 785 { 786 std::cerr << "Fru area offsets are not in required order as per " 787 "Section 17 of Fru specification\n"; 788 return {{}, true}; 789 } 790 prevOffset = areaOffset; 791 792 // MultiRecords are different. area is not tracking section, it's 793 // walking the common header. 794 if (area == fruAreas::fruAreaMultirecord) 795 { 796 hasMultiRecords = true; 797 break; 798 } 799 800 areaOffset *= fruBlockSize; 801 802 if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0) 803 { 804 std::cerr << "failed to read " << errorHelp << " base offset " 805 << baseOffset << "\n"; 806 return {{}, true}; 807 } 808 809 // Ignore data type (blockData is already unsigned). 810 size_t length = blockData[1] * fruBlockSize; 811 areaOffset += length; 812 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength; 813 } 814 815 if (hasMultiRecords) 816 { 817 // device[area count] is the index to the last area because the 0th 818 // entry is not an offset in the common header. 819 unsigned int areaOffset = 820 device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)]; 821 areaOffset *= fruBlockSize; 822 823 // the multi-area record header is 5 bytes long. 824 constexpr size_t multiRecordHeaderSize = 5; 825 constexpr uint8_t multiRecordEndOfListMask = 0x80; 826 827 // Sanity hard-limit to 64KB. 828 while (areaOffset < std::numeric_limits<uint16_t>::max()) 829 { 830 // In multi-area, the area offset points to the 0th record, each 831 // record has 3 bytes of the header we care about. 832 if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0) 833 { 834 std::cerr << "failed to read " << errorHelp << " base offset " 835 << baseOffset << "\n"; 836 return {{}, true}; 837 } 838 839 // Ok, let's check the record length, which is in bytes (unsigned, 840 // up to 255, so blockData should hold uint8_t not char) 841 size_t recordLength = blockData[2]; 842 areaOffset += (recordLength + multiRecordHeaderSize); 843 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength; 844 845 // If this is the end of the list bail. 846 if ((blockData[1] & multiRecordEndOfListMask) != 0) 847 { 848 break; 849 } 850 } 851 } 852 853 // You already copied these first 8 bytes (the ipmi fru header size) 854 fruLength -= std::min(fruBlockSize, fruLength); 855 856 int readOffset = fruBlockSize; 857 858 while (fruLength > 0) 859 { 860 size_t requestLength = 861 std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength); 862 863 if (reader.read(baseOffset + readOffset, requestLength, 864 blockData.data()) < 0) 865 { 866 std::cerr << "failed to read " << errorHelp << " base offset " 867 << baseOffset << "\n"; 868 return {{}, true}; 869 } 870 871 device.insert(device.end(), blockData.begin(), 872 blockData.begin() + requestLength); 873 874 readOffset += requestLength; 875 fruLength -= std::min(requestLength, fruLength); 876 } 877 878 return {device, true}; 879 } 880 881 unsigned int getHeaderAreaFieldOffset(fruAreas area) 882 { 883 return static_cast<unsigned int>(area) + 1; 884 } 885 886 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address) 887 { 888 auto deviceMap = busMap.find(bus); 889 if (deviceMap == busMap.end()) 890 { 891 throw std::invalid_argument("Invalid Bus."); 892 } 893 auto device = deviceMap->second->find(address); 894 if (device == deviceMap->second->end()) 895 { 896 throw std::invalid_argument("Invalid Address."); 897 } 898 std::vector<uint8_t>& ret = device->second; 899 900 return ret; 901 } 902 903 // Iterate FruArea Names and find start and size of the fru area that contains 904 // the propertyName and the field start location for the property. fruAreaParams 905 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets 906 // updated/returned if successful. 907 908 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData, 909 const std::string& propertyName, 910 struct FruArea& fruAreaParams) 911 { 912 const std::vector<std::string>* fruAreaFieldNames = nullptr; 913 914 uint8_t fruAreaOffsetFieldValue = 0; 915 size_t offset = 0; 916 std::string areaName = propertyName.substr(0, propertyName.find('_')); 917 std::string propertyNamePrefix = areaName + "_"; 918 auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName); 919 if (it == fruAreaNames.end()) 920 { 921 std::cerr << "Can't parse area name for property " << propertyName 922 << " \n"; 923 return false; 924 } 925 fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin()); 926 fruAreaOffsetFieldValue = 927 fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)]; 928 switch (fruAreaToUpdate) 929 { 930 case fruAreas::fruAreaChassis: 931 offset = 3; // chassis part number offset. Skip fixed first 3 bytes 932 fruAreaFieldNames = &chassisFruAreas; 933 break; 934 case fruAreas::fruAreaBoard: 935 offset = 6; // board manufacturer offset. Skip fixed first 6 bytes 936 fruAreaFieldNames = &boardFruAreas; 937 break; 938 case fruAreas::fruAreaProduct: 939 // Manufacturer name offset. Skip fixed first 3 product fru bytes 940 // i.e. version, area length and language code 941 offset = 3; 942 fruAreaFieldNames = &productFruAreas; 943 break; 944 default: 945 std::cerr << "Invalid PropertyName " << propertyName << " \n"; 946 return false; 947 } 948 if (fruAreaOffsetFieldValue == 0) 949 { 950 std::cerr << "FRU Area for " << propertyName << " not present \n"; 951 return false; 952 } 953 954 fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize; 955 fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize; 956 fruAreaParams.end = fruAreaParams.start + fruAreaParams.size; 957 size_t fruDataIter = fruAreaParams.start + offset; 958 size_t skipToFRUUpdateField = 0; 959 ssize_t fieldLength = 0; 960 961 bool found = false; 962 for (const auto& field : *fruAreaFieldNames) 963 { 964 skipToFRUUpdateField++; 965 if (propertyName == propertyNamePrefix + field) 966 { 967 found = true; 968 break; 969 } 970 } 971 if (!found) 972 { 973 std::size_t pos = propertyName.find(fruCustomFieldName); 974 if (pos == std::string::npos) 975 { 976 std::cerr << "PropertyName doesn't exist in FRU Area Vectors: " 977 << propertyName << "\n"; 978 return false; 979 } 980 std::string fieldNumStr = 981 propertyName.substr(pos + fruCustomFieldName.length()); 982 size_t fieldNum = std::stoi(fieldNumStr); 983 if (fieldNum == 0) 984 { 985 std::cerr << "PropertyName not recognized: " << propertyName 986 << "\n"; 987 return false; 988 } 989 skipToFRUUpdateField += fieldNum; 990 } 991 992 for (size_t i = 1; i < skipToFRUUpdateField; i++) 993 { 994 if (fruDataIter < fruData.size()) 995 { 996 fieldLength = getFieldLength(fruData[fruDataIter]); 997 998 if (fieldLength < 0) 999 { 1000 break; 1001 } 1002 fruDataIter += 1 + fieldLength; 1003 } 1004 } 1005 fruAreaParams.updateFieldLoc = fruDataIter; 1006 1007 return true; 1008 } 1009 1010 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector. 1011 // Return true for success and false for failure. 1012 1013 bool copyRestFRUArea(std::vector<uint8_t>& fruData, 1014 const std::string& propertyName, 1015 struct FruArea& fruAreaParams, 1016 std::vector<uint8_t>& restFRUAreaFieldsData) 1017 { 1018 size_t fieldLoc = fruAreaParams.updateFieldLoc; 1019 size_t start = fruAreaParams.start; 1020 size_t fruAreaSize = fruAreaParams.size; 1021 1022 // Push post update fru field bytes to a vector 1023 ssize_t fieldLength = getFieldLength(fruData[fieldLoc]); 1024 if (fieldLength < 0) 1025 { 1026 std::cerr << "Property " << propertyName << " not present \n"; 1027 return false; 1028 } 1029 1030 size_t fruDataIter = 0; 1031 fruDataIter = fieldLoc; 1032 fruDataIter += 1 + fieldLength; 1033 size_t restFRUFieldsLoc = fruDataIter; 1034 size_t endOfFieldsLoc = 0; 1035 1036 if (fruDataIter < fruData.size()) 1037 { 1038 while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0) 1039 { 1040 if (fruDataIter >= (start + fruAreaSize)) 1041 { 1042 fruDataIter = start + fruAreaSize; 1043 break; 1044 } 1045 fruDataIter += 1 + fieldLength; 1046 } 1047 endOfFieldsLoc = fruDataIter; 1048 } 1049 1050 std::copy_n(fruData.begin() + restFRUFieldsLoc, 1051 endOfFieldsLoc - restFRUFieldsLoc + 1, 1052 std::back_inserter(restFRUAreaFieldsData)); 1053 1054 fruAreaParams.restFieldsLoc = restFRUFieldsLoc; 1055 fruAreaParams.restFieldsEnd = endOfFieldsLoc; 1056 1057 return true; 1058 } 1059 1060 // Get all device dbus path and match path with product name using 1061 // regular expression and find the device index for all devices. 1062 1063 std::optional<int> findIndexForFRU( 1064 boost::container::flat_map< 1065 std::pair<size_t, size_t>, 1066 std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap, 1067 std::string& productName) 1068 { 1069 int highest = -1; 1070 bool found = false; 1071 1072 for (const auto& busIface : dbusInterfaceMap) 1073 { 1074 std::string path = busIface.second->get_object_path(); 1075 if (std::regex_match(path, std::regex(productName + "(_\\d+|)$"))) 1076 { 1077 // Check if the match named has extra information. 1078 found = true; 1079 std::smatch baseMatch; 1080 1081 bool match = std::regex_match(path, baseMatch, 1082 std::regex(productName + "_(\\d+)$")); 1083 if (match) 1084 { 1085 if (baseMatch.size() == 2) 1086 { 1087 std::ssub_match baseSubMatch = baseMatch[1]; 1088 std::string base = baseSubMatch.str(); 1089 1090 int value = std::stoi(base); 1091 highest = (value > highest) ? value : highest; 1092 } 1093 } 1094 } 1095 } // end searching objects 1096 1097 if (!found) 1098 { 1099 return std::nullopt; 1100 } 1101 return highest; 1102 } 1103 1104 // This function does format fru data as per IPMI format and find the 1105 // productName in the formatted fru data, get that productName and return 1106 // productName if found or return NULL. 1107 1108 std::optional<std::string> getProductName( 1109 std::vector<uint8_t>& device, 1110 boost::container::flat_map<std::string, std::string>& formattedFRU, 1111 uint32_t bus, uint32_t address, size_t& unknownBusObjectCount) 1112 { 1113 std::string productName; 1114 1115 resCodes res = formatIPMIFRU(device, formattedFRU); 1116 if (res == resCodes::resErr) 1117 { 1118 std::cerr << "failed to parse FRU for device at bus " << bus 1119 << " address " << address << "\n"; 1120 return std::nullopt; 1121 } 1122 if (res == resCodes::resWarn) 1123 { 1124 std::cerr << "Warnings while parsing FRU for device at bus " << bus 1125 << " address " << address << "\n"; 1126 } 1127 1128 auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME"); 1129 // Not found under Board section or an empty string. 1130 if (productNameFind == formattedFRU.end() || 1131 productNameFind->second.empty()) 1132 { 1133 productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME"); 1134 } 1135 // Found under Product section and not an empty string. 1136 if (productNameFind != formattedFRU.end() && 1137 !productNameFind->second.empty()) 1138 { 1139 productName = productNameFind->second; 1140 std::regex illegalObject("[^A-Za-z0-9_]"); 1141 productName = std::regex_replace(productName, illegalObject, "_"); 1142 } 1143 else 1144 { 1145 productName = "UNKNOWN" + std::to_string(unknownBusObjectCount); 1146 unknownBusObjectCount++; 1147 } 1148 return productName; 1149 } 1150 1151 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address) 1152 { 1153 try 1154 { 1155 fruData = getFRUInfo(static_cast<uint16_t>(bus), 1156 static_cast<uint8_t>(address)); 1157 } 1158 catch (const std::invalid_argument& e) 1159 { 1160 std::cerr << "Failure getting FRU Info" << e.what() << "\n"; 1161 return false; 1162 } 1163 1164 return !fruData.empty(); 1165 } 1166