xref: /openbmc/entity-manager/src/fru_utils.cpp (revision 2f2f4b87)
1 /*
2 // Copyright (c) 2018 Intel Corporation
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 */
16 /// \file fru_utils.cpp
17 
18 #include "fru_utils.hpp"
19 
20 #include <array>
21 #include <cstddef>
22 #include <cstdint>
23 #include <filesystem>
24 #include <iomanip>
25 #include <iostream>
26 #include <numeric>
27 #include <set>
28 #include <sstream>
29 #include <string>
30 #include <vector>
31 
32 extern "C"
33 {
34 // Include for I2C_SMBUS_BLOCK_MAX
35 #include <linux/i2c.h>
36 }
37 
38 static constexpr bool debug = false;
39 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1
40 
41 std::tm intelEpoch()
42 {
43     std::tm val = {};
44     val.tm_year = 1996 - 1900;
45     val.tm_mday = 1;
46     return val;
47 }
48 
49 char sixBitToChar(uint8_t val)
50 {
51     return static_cast<char>((val & 0x3f) + ' ');
52 }
53 
54 char bcdPlusToChar(uint8_t val)
55 {
56     val &= 0xf;
57     return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10];
58 }
59 
60 enum FRUDataEncoding
61 {
62     binary = 0x0,
63     bcdPlus = 0x1,
64     sixBitASCII = 0x2,
65     languageDependent = 0x3,
66 };
67 
68 enum MultiRecordType : uint8_t
69 {
70     powerSupplyInfo = 0x00,
71     dcOutput = 0x01,
72     dcLoad = 0x02,
73     managementAccessRecord = 0x03,
74     baseCompatibilityRecord = 0x04,
75     extendedCompatibilityRecord = 0x05,
76     resvASFSMBusDeviceRecord = 0x06,
77     resvASFLegacyDeviceAlerts = 0x07,
78     resvASFRemoteControl = 0x08,
79     extendedDCOutput = 0x09,
80     extendedDCLoad = 0x0A
81 };
82 
83 enum SubManagementAccessRecord : uint8_t
84 {
85     systemManagementURL = 0x01,
86     systemName = 0x02,
87     systemPingAddress = 0x03,
88     componentManagementURL = 0x04,
89     componentName = 0x05,
90     componentPingAddress = 0x06,
91     systemUniqueID = 0x07
92 };
93 
94 /* Decode FRU data into a std::string, given an input iterator and end. If the
95  * state returned is fruDataOk, then the resulting string is the decoded FRU
96  * data. The input iterator is advanced past the data consumed.
97  *
98  * On fruDataErr, we have lost synchronisation with the length bytes, so the
99  * iterator is no longer usable.
100  */
101 std::pair<DecodeState, std::string> decodeFRUData(
102     std::vector<uint8_t>::const_iterator& iter,
103     const std::vector<uint8_t>::const_iterator& end, bool isLangEng)
104 {
105     std::string value;
106     unsigned int i = 0;
107 
108     /* we need at least one byte to decode the type/len header */
109     if (iter == end)
110     {
111         std::cerr << "Truncated FRU data\n";
112         return make_pair(DecodeState::err, value);
113     }
114 
115     uint8_t c = *(iter++);
116 
117     /* 0xc1 is the end marker */
118     if (c == 0xc1)
119     {
120         return make_pair(DecodeState::end, value);
121     }
122 
123     /* decode type/len byte */
124     uint8_t type = static_cast<uint8_t>(c >> 6);
125     uint8_t len = static_cast<uint8_t>(c & 0x3f);
126 
127     /* we should have at least len bytes of data available overall */
128     if (iter + len > end)
129     {
130         std::cerr << "FRU data field extends past end of FRU area data\n";
131         return make_pair(DecodeState::err, value);
132     }
133 
134     switch (type)
135     {
136         case FRUDataEncoding::binary:
137         {
138             std::stringstream ss;
139             ss << std::hex << std::setfill('0');
140             for (i = 0; i < len; i++, iter++)
141             {
142                 uint8_t val = static_cast<uint8_t>(*iter);
143                 ss << std::setw(2) << static_cast<int>(val);
144             }
145             value = ss.str();
146             break;
147         }
148         case FRUDataEncoding::languageDependent:
149             /* For language-code dependent encodings, assume 8-bit ASCII */
150             value = std::string(iter, iter + len);
151             iter += len;
152 
153             /* English text is encoded in 8-bit ASCII + Latin 1. All other
154              * languages are required to use 2-byte unicode. FruDevice does not
155              * handle unicode.
156              */
157             if (!isLangEng)
158             {
159                 std::cerr << "Error: Non english string is not supported \n";
160                 return make_pair(DecodeState::err, value);
161             }
162 
163             break;
164 
165         case FRUDataEncoding::bcdPlus:
166             value = std::string();
167             for (i = 0; i < len; i++, iter++)
168             {
169                 uint8_t val = *iter;
170                 value.push_back(bcdPlusToChar(val >> 4));
171                 value.push_back(bcdPlusToChar(val & 0xf));
172             }
173             break;
174 
175         case FRUDataEncoding::sixBitASCII:
176         {
177             unsigned int accum = 0;
178             unsigned int accumBitLen = 0;
179             value = std::string();
180             for (i = 0; i < len; i++, iter++)
181             {
182                 accum |= *iter << accumBitLen;
183                 accumBitLen += 8;
184                 while (accumBitLen >= 6)
185                 {
186                     value.push_back(sixBitToChar(accum & 0x3f));
187                     accum >>= 6;
188                     accumBitLen -= 6;
189                 }
190             }
191         }
192         break;
193 
194         default:
195         {
196             return make_pair(DecodeState::err, value);
197         }
198     }
199 
200     return make_pair(DecodeState::ok, value);
201 }
202 
203 bool checkLangEng(uint8_t lang)
204 {
205     // If Lang is not English then the encoding is defined as 2-byte UNICODE,
206     // but we don't support that.
207     if ((lang != 0U) && lang != 25)
208     {
209         std::cerr << "Warning: languages other than English is not "
210                      "supported\n";
211         // Return language flag as non english
212         return false;
213     }
214     return true;
215 }
216 
217 /* This function verifies for other offsets to check if they are not
218  * falling under other field area
219  *
220  * fruBytes:    Start of Fru data
221  * currentArea: Index of current area offset to be compared against all area
222  *              offset and it is a multiple of 8 bytes as per specification
223  * len:         Length of current area space and it is a multiple of 8 bytes
224  *              as per specification
225  */
226 bool verifyOffset(const std::vector<uint8_t>& fruBytes, fruAreas currentArea,
227                   uint8_t len)
228 {
229     unsigned int fruBytesSize = fruBytes.size();
230 
231     // check if Fru data has at least 8 byte header
232     if (fruBytesSize <= fruBlockSize)
233     {
234         std::cerr << "Error: trying to parse empty FRU\n";
235         return false;
236     }
237 
238     // Check range of passed currentArea value
239     if (currentArea > fruAreas::fruAreaMultirecord)
240     {
241         std::cerr << "Error: Fru area is out of range\n";
242         return false;
243     }
244 
245     unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea);
246     if (currentAreaIndex > fruBytesSize)
247     {
248         std::cerr << "Error: Fru area index is out of range\n";
249         return false;
250     }
251 
252     unsigned int start = fruBytes[currentAreaIndex];
253     unsigned int end = start + len;
254 
255     /* Verify each offset within the range of start and end */
256     for (fruAreas area = fruAreas::fruAreaInternal;
257          area <= fruAreas::fruAreaMultirecord; ++area)
258     {
259         // skip the current offset
260         if (area == currentArea)
261         {
262             continue;
263         }
264 
265         unsigned int areaIndex = getHeaderAreaFieldOffset(area);
266         if (areaIndex > fruBytesSize)
267         {
268             std::cerr << "Error: Fru area index is out of range\n";
269             return false;
270         }
271 
272         unsigned int areaOffset = fruBytes[areaIndex];
273         // if areaOffset is 0 means this area is not available so skip
274         if (areaOffset == 0)
275         {
276             continue;
277         }
278 
279         // check for overlapping of current offset with given areaoffset
280         if (areaOffset == start || (areaOffset > start && areaOffset < end))
281         {
282             std::cerr << getFruAreaName(currentArea)
283                       << " offset is overlapping with " << getFruAreaName(area)
284                       << " offset\n";
285             return false;
286         }
287     }
288     return true;
289 }
290 
291 static void parseMultirecordUUID(
292     const std::vector<uint8_t>& device,
293     boost::container::flat_map<std::string, std::string>& result)
294 {
295     constexpr size_t uuidDataLen = 16;
296     constexpr size_t multiRecordHeaderLen = 5;
297     /* UUID record data, plus one to skip past the sub-record type byte */
298     constexpr size_t uuidRecordData = multiRecordHeaderLen + 1;
299     constexpr size_t multiRecordEndOfListMask = 0x80;
300     /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented
301      * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD
302      * 0xEE 0xFF
303      */
304     const std::array<uint8_t, uuidDataLen> uuidCharOrder = {
305         3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
306     uint32_t areaOffset =
307         device.at(getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord));
308 
309     if (areaOffset == 0)
310     {
311         return;
312     }
313 
314     areaOffset *= fruBlockSize;
315     std::vector<uint8_t>::const_iterator fruBytesIter =
316         device.begin() + areaOffset;
317 
318     /* Verify area offset */
319     if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter))
320     {
321         return;
322     }
323     while (areaOffset + uuidRecordData + uuidDataLen <= device.size())
324     {
325         if ((areaOffset < device.size()) &&
326             (device[areaOffset] ==
327              (uint8_t)MultiRecordType::managementAccessRecord))
328         {
329             if ((areaOffset + multiRecordHeaderLen < device.size()) &&
330                 (device[areaOffset + multiRecordHeaderLen] ==
331                  (uint8_t)SubManagementAccessRecord::systemUniqueID))
332             {
333                 /* Layout of UUID:
334                  * source: https://www.ietf.org/rfc/rfc4122.txt
335                  *
336                  * UUID binary format (16 bytes):
337                  * 4B-2B-2B-2B-6B (big endian)
338                  *
339                  * UUID string is 36 length of characters (36 bytes):
340                  * 0        9    14   19   24
341                  * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
342                  *    be     be   be   be       be
343                  * be means it should be converted to big endian.
344                  */
345                 /* Get UUID bytes to UUID string */
346                 std::stringstream tmp;
347                 tmp << std::hex << std::setfill('0');
348                 for (size_t i = 0; i < uuidDataLen; i++)
349                 {
350                     tmp << std::setw(2)
351                         << static_cast<uint16_t>(
352                                device[areaOffset + uuidRecordData +
353                                       uuidCharOrder[i]]);
354                 }
355                 std::string uuidStr = tmp.str();
356                 result["MULTIRECORD_UUID"] =
357                     uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' +
358                     uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' +
359                     uuidStr.substr(20, 12);
360                 break;
361             }
362         }
363         if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0)
364         {
365             break;
366         }
367         areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen;
368     }
369 }
370 
371 resCodes
372     formatIPMIFRU(const std::vector<uint8_t>& fruBytes,
373                   boost::container::flat_map<std::string, std::string>& result)
374 {
375     resCodes ret = resCodes::resOK;
376     if (fruBytes.size() <= fruBlockSize)
377     {
378         std::cerr << "Error: trying to parse empty FRU \n";
379         return resCodes::resErr;
380     }
381     result["Common_Format_Version"] =
382         std::to_string(static_cast<int>(*fruBytes.begin()));
383 
384     const std::vector<std::string>* fruAreaFieldNames = nullptr;
385 
386     // Don't parse Internal and Multirecord areas
387     for (fruAreas area = fruAreas::fruAreaChassis;
388          area <= fruAreas::fruAreaProduct; ++area)
389     {
390         size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area));
391         if (offset == 0)
392         {
393             continue;
394         }
395         offset *= fruBlockSize;
396         std::vector<uint8_t>::const_iterator fruBytesIter =
397             fruBytes.begin() + offset;
398         if (fruBytesIter + fruBlockSize >= fruBytes.end())
399         {
400             std::cerr << "Not enough data to parse \n";
401             return resCodes::resErr;
402         }
403         // check for format version 1
404         if (*fruBytesIter != 0x01)
405         {
406             std::cerr << "Unexpected version " << *fruBytesIter << "\n";
407             return resCodes::resErr;
408         }
409         ++fruBytesIter;
410 
411         /* Verify other area offset for overlap with current area by passing
412          * length of current area offset pointed by *fruBytesIter
413          */
414         if (!verifyOffset(fruBytes, area, *fruBytesIter))
415         {
416             return resCodes::resErr;
417         }
418 
419         size_t fruAreaSize = *fruBytesIter * fruBlockSize;
420         std::vector<uint8_t>::const_iterator fruBytesIterEndArea =
421             fruBytes.begin() + offset + fruAreaSize - 1;
422         ++fruBytesIter;
423 
424         uint8_t fruComputedChecksum =
425             calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea);
426         if (fruComputedChecksum != *fruBytesIterEndArea)
427         {
428             std::stringstream ss;
429             ss << std::hex << std::setfill('0');
430             ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n";
431             ss << "\tComputed checksum: 0x" << std::setw(2)
432                << static_cast<int>(fruComputedChecksum) << "\n";
433             ss << "\tThe read checksum: 0x" << std::setw(2)
434                << static_cast<int>(*fruBytesIterEndArea) << "\n";
435             std::cerr << ss.str();
436             ret = resCodes::resWarn;
437         }
438 
439         /* Set default language flag to true as Chassis Fru area are always
440          * encoded in English defined in Section 10 of Fru specification
441          */
442 
443         bool isLangEng = true;
444         switch (area)
445         {
446             case fruAreas::fruAreaChassis:
447             {
448                 result["CHASSIS_TYPE"] =
449                     std::to_string(static_cast<int>(*fruBytesIter));
450                 fruBytesIter += 1;
451                 fruAreaFieldNames = &chassisFruAreas;
452                 break;
453             }
454             case fruAreas::fruAreaBoard:
455             {
456                 uint8_t lang = *fruBytesIter;
457                 result["BOARD_LANGUAGE_CODE"] =
458                     std::to_string(static_cast<int>(lang));
459                 isLangEng = checkLangEng(lang);
460                 fruBytesIter += 1;
461 
462                 unsigned int minutes =
463                     *fruBytesIter | *(fruBytesIter + 1) << 8 |
464                     *(fruBytesIter + 2) << 16;
465                 std::tm fruTime = intelEpoch();
466                 std::time_t timeValue = timegm(&fruTime);
467                 timeValue += static_cast<long>(minutes) * 60;
468                 fruTime = *std::gmtime(&timeValue);
469 
470                 // Tue Nov 20 23:08:00 2018
471                 std::array<char, 32> timeString = {};
472                 auto bytes = std::strftime(timeString.data(), timeString.size(),
473                                            "%Y%m%dT%H%M%SZ", &fruTime);
474                 if (bytes == 0)
475                 {
476                     std::cerr << "invalid time string encountered\n";
477                     return resCodes::resErr;
478                 }
479 
480                 result["BOARD_MANUFACTURE_DATE"] =
481                     std::string_view(timeString.data(), bytes);
482                 fruBytesIter += 3;
483                 fruAreaFieldNames = &boardFruAreas;
484                 break;
485             }
486             case fruAreas::fruAreaProduct:
487             {
488                 uint8_t lang = *fruBytesIter;
489                 result["PRODUCT_LANGUAGE_CODE"] =
490                     std::to_string(static_cast<int>(lang));
491                 isLangEng = checkLangEng(lang);
492                 fruBytesIter += 1;
493                 fruAreaFieldNames = &productFruAreas;
494                 break;
495             }
496             default:
497             {
498                 std::cerr << "Internal error: unexpected FRU area index: "
499                           << static_cast<int>(area) << " \n";
500                 return resCodes::resErr;
501             }
502         }
503         size_t fieldIndex = 0;
504         DecodeState state = DecodeState::ok;
505         do
506         {
507             auto res =
508                 decodeFRUData(fruBytesIter, fruBytesIterEndArea, isLangEng);
509             state = res.first;
510             std::string value = res.second;
511             std::string name;
512             if (fieldIndex < fruAreaFieldNames->size())
513             {
514                 name = std::string(getFruAreaName(area)) + "_" +
515                        fruAreaFieldNames->at(fieldIndex);
516             }
517             else
518             {
519                 name =
520                     std::string(getFruAreaName(area)) + "_" +
521                     fruCustomFieldName +
522                     std::to_string(fieldIndex - fruAreaFieldNames->size() + 1);
523             }
524 
525             if (state == DecodeState::ok)
526             {
527                 // Strip non null characters from the end
528                 value.erase(std::find_if(value.rbegin(), value.rend(),
529                                          [](char ch) { return ch != 0; })
530                                 .base(),
531                             value.end());
532 
533                 result[name] = std::move(value);
534                 ++fieldIndex;
535             }
536             else if (state == DecodeState::err)
537             {
538                 std::cerr << "Error while parsing " << name << "\n";
539                 ret = resCodes::resWarn;
540                 // Cancel decoding if failed to parse any of mandatory
541                 // fields
542                 if (fieldIndex < fruAreaFieldNames->size())
543                 {
544                     std::cerr << "Failed to parse mandatory field \n";
545                     return resCodes::resErr;
546                 }
547             }
548             else
549             {
550                 if (fieldIndex < fruAreaFieldNames->size())
551                 {
552                     std::cerr
553                         << "Mandatory fields absent in FRU area "
554                         << getFruAreaName(area) << " after " << name << "\n";
555                     ret = resCodes::resWarn;
556                 }
557             }
558         } while (state == DecodeState::ok);
559         for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++)
560         {
561             uint8_t c = *fruBytesIter;
562             if (c != 0U)
563             {
564                 std::cerr << "Non-zero byte after EndOfFields in FRU area "
565                           << getFruAreaName(area) << "\n";
566                 ret = resCodes::resWarn;
567                 break;
568             }
569         }
570     }
571 
572     /* Parsing the Multirecord UUID */
573     parseMultirecordUUID(fruBytes, result);
574 
575     return ret;
576 }
577 
578 // Calculate new checksum for fru info area
579 uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter,
580                           std::vector<uint8_t>::const_iterator end)
581 {
582     constexpr int checksumMod = 256;
583     uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0));
584     return (checksumMod - sum) % checksumMod;
585 }
586 
587 uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData)
588 {
589     return calculateChecksum(fruAreaData.begin(), fruAreaData.end());
590 }
591 
592 // Update new fru area length &
593 // Update checksum at new checksum location
594 // Return the offset of the area checksum byte
595 unsigned int updateFRUAreaLenAndChecksum(
596     std::vector<uint8_t>& fruData, size_t fruAreaStart,
597     size_t fruAreaEndOfFieldsOffset, size_t fruAreaEndOffset)
598 {
599     size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart;
600 
601     // fill zeros for any remaining unused space
602     std::fill(fruData.begin() + fruAreaEndOfFieldsOffset,
603               fruData.begin() + fruAreaEndOffset, 0);
604 
605     size_t mod = traverseFRUAreaIndex % fruBlockSize;
606     size_t checksumLoc = 0;
607     if (mod == 0U)
608     {
609         traverseFRUAreaIndex += (fruBlockSize);
610         checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1);
611     }
612     else
613     {
614         traverseFRUAreaIndex += (fruBlockSize - mod);
615         checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1);
616     }
617 
618     size_t newFRUAreaLen =
619         (traverseFRUAreaIndex / fruBlockSize) +
620         static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0);
621     size_t fruAreaLengthLoc = fruAreaStart + 1;
622     fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen);
623 
624     // Calculate new checksum
625     std::vector<uint8_t> finalFRUData;
626     std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart,
627                 std::back_inserter(finalFRUData));
628 
629     fruData[checksumLoc] = calculateChecksum(finalFRUData);
630     return checksumLoc;
631 }
632 
633 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue)
634 {
635     constexpr uint8_t typeLenMask = 0x3F;
636     constexpr uint8_t endOfFields = 0xC1;
637     if (fruFieldTypeLenValue == endOfFields)
638     {
639         return -1;
640     }
641     return fruFieldTypeLenValue & typeLenMask;
642 }
643 
644 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
645 {
646     // ipmi spec format version number is currently at 1, verify it
647     if (blockData[0] != fruVersion)
648     {
649         if (debug)
650         {
651             std::cerr << "FRU spec version " << (int)(blockData[0])
652                       << " not supported. Supported version is "
653                       << (int)(fruVersion) << "\n";
654         }
655         return false;
656     }
657 
658     // verify pad is set to 0
659     if (blockData[6] != 0x0)
660     {
661         if (debug)
662         {
663             std::cerr << "PAD value in header is non zero, value is "
664                       << (int)(blockData[6]) << "\n";
665         }
666         return false;
667     }
668 
669     // verify offsets are 0, or don't point to another offset
670     std::set<uint8_t> foundOffsets;
671     for (int ii = 1; ii < 6; ii++)
672     {
673         if (blockData[ii] == 0)
674         {
675             continue;
676         }
677         auto inserted = foundOffsets.insert(blockData[ii]);
678         if (!inserted.second)
679         {
680             return false;
681         }
682     }
683 
684     // validate checksum
685     size_t sum = 0;
686     for (int jj = 0; jj < 7; jj++)
687     {
688         sum += blockData[jj];
689     }
690     sum = (256 - sum) & 0xFF;
691 
692     if (sum != blockData[7])
693     {
694         if (debug)
695         {
696             std::cerr << "Checksum " << (int)(blockData[7])
697                       << " is invalid. calculated checksum is " << (int)(sum)
698                       << "\n";
699         }
700         return false;
701     }
702     return true;
703 }
704 
705 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp,
706                    std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData,
707                    off_t& baseOffset)
708 {
709     if (reader.read(baseOffset, 0x8, blockData.data()) < 0)
710     {
711         std::cerr << "failed to read " << errorHelp << " base offset "
712                   << baseOffset << "\n";
713         return false;
714     }
715 
716     // check the header checksum
717     if (validateHeader(blockData))
718     {
719         return true;
720     }
721 
722     // only continue the search if we just looked at 0x0.
723     if (baseOffset != 0)
724     {
725         return false;
726     }
727 
728     // now check for special cases where the IPMI data is at an offset
729 
730     // check if blockData starts with tyanHeader
731     const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'};
732     if (blockData.size() >= tyanHeader.size() &&
733         std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin()))
734     {
735         // look for the FRU header at offset 0x6000
736         baseOffset = 0x6000;
737         return findFRUHeader(reader, errorHelp, blockData, baseOffset);
738     }
739 
740     if (debug)
741     {
742         std::cerr << "Illegal header " << errorHelp << " base offset "
743                   << baseOffset << "\n";
744     }
745 
746     return false;
747 }
748 
749 std::pair<std::vector<uint8_t>, bool>
750     readFRUContents(FRUReader& reader, const std::string& errorHelp)
751 {
752     std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{};
753     off_t baseOffset = 0x0;
754 
755     if (!findFRUHeader(reader, errorHelp, blockData, baseOffset))
756     {
757         return {{}, false};
758     }
759 
760     std::vector<uint8_t> device;
761     device.insert(device.end(), blockData.begin(), blockData.begin() + 8);
762 
763     bool hasMultiRecords = false;
764     size_t fruLength = fruBlockSize; // At least FRU header is present
765     unsigned int prevOffset = 0;
766     for (fruAreas area = fruAreas::fruAreaInternal;
767          area <= fruAreas::fruAreaMultirecord; ++area)
768     {
769         // Offset value can be 255.
770         unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)];
771         if (areaOffset == 0)
772         {
773             continue;
774         }
775 
776         /* Check for offset order, as per Section 17 of FRU specification, FRU
777          * information areas are required to be in order in FRU data layout
778          * which means all offset value should be in increasing order or can be
779          * 0 if that area is not present
780          */
781         if (areaOffset <= prevOffset)
782         {
783             std::cerr << "Fru area offsets are not in required order as per "
784                          "Section 17 of Fru specification\n";
785             return {{}, true};
786         }
787         prevOffset = areaOffset;
788 
789         // MultiRecords are different. area is not tracking section, it's
790         // walking the common header.
791         if (area == fruAreas::fruAreaMultirecord)
792         {
793             hasMultiRecords = true;
794             break;
795         }
796 
797         areaOffset *= fruBlockSize;
798 
799         if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0)
800         {
801             std::cerr << "failed to read " << errorHelp << " base offset "
802                       << baseOffset << "\n";
803             return {{}, true};
804         }
805 
806         // Ignore data type (blockData is already unsigned).
807         size_t length = blockData[1] * fruBlockSize;
808         areaOffset += length;
809         fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
810     }
811 
812     if (hasMultiRecords)
813     {
814         // device[area count] is the index to the last area because the 0th
815         // entry is not an offset in the common header.
816         unsigned int areaOffset =
817             device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)];
818         areaOffset *= fruBlockSize;
819 
820         // the multi-area record header is 5 bytes long.
821         constexpr size_t multiRecordHeaderSize = 5;
822         constexpr uint8_t multiRecordEndOfListMask = 0x80;
823 
824         // Sanity hard-limit to 64KB.
825         while (areaOffset < std::numeric_limits<uint16_t>::max())
826         {
827             // In multi-area, the area offset points to the 0th record, each
828             // record has 3 bytes of the header we care about.
829             if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0)
830             {
831                 std::cerr << "failed to read " << errorHelp << " base offset "
832                           << baseOffset << "\n";
833                 return {{}, true};
834             }
835 
836             // Ok, let's check the record length, which is in bytes (unsigned,
837             // up to 255, so blockData should hold uint8_t not char)
838             size_t recordLength = blockData[2];
839             areaOffset += (recordLength + multiRecordHeaderSize);
840             fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
841 
842             // If this is the end of the list bail.
843             if ((blockData[1] & multiRecordEndOfListMask) != 0)
844             {
845                 break;
846             }
847         }
848     }
849 
850     // You already copied these first 8 bytes (the ipmi fru header size)
851     fruLength -= std::min(fruBlockSize, fruLength);
852 
853     int readOffset = fruBlockSize;
854 
855     while (fruLength > 0)
856     {
857         size_t requestLength =
858             std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength);
859 
860         if (reader.read(baseOffset + readOffset, requestLength,
861                         blockData.data()) < 0)
862         {
863             std::cerr << "failed to read " << errorHelp << " base offset "
864                       << baseOffset << "\n";
865             return {{}, true};
866         }
867 
868         device.insert(device.end(), blockData.begin(),
869                       blockData.begin() + requestLength);
870 
871         readOffset += requestLength;
872         fruLength -= std::min(requestLength, fruLength);
873     }
874 
875     return {device, true};
876 }
877 
878 unsigned int getHeaderAreaFieldOffset(fruAreas area)
879 {
880     return static_cast<unsigned int>(area) + 1;
881 }
882 
883 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address)
884 {
885     auto deviceMap = busMap.find(bus);
886     if (deviceMap == busMap.end())
887     {
888         throw std::invalid_argument("Invalid Bus.");
889     }
890     auto device = deviceMap->second->find(address);
891     if (device == deviceMap->second->end())
892     {
893         throw std::invalid_argument("Invalid Address.");
894     }
895     std::vector<uint8_t>& ret = device->second;
896 
897     return ret;
898 }
899 
900 // Iterate FruArea Names and find start and size of the fru area that contains
901 // the propertyName and the field start location for the property. fruAreaParams
902 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets
903 // updated/returned if successful.
904 
905 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData,
906                                  const std::string& propertyName,
907                                  struct FruArea& fruAreaParams)
908 {
909     const std::vector<std::string>* fruAreaFieldNames = nullptr;
910 
911     uint8_t fruAreaOffsetFieldValue = 0;
912     size_t offset = 0;
913     std::string areaName = propertyName.substr(0, propertyName.find('_'));
914     std::string propertyNamePrefix = areaName + "_";
915     auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName);
916     if (it == fruAreaNames.end())
917     {
918         std::cerr << "Can't parse area name for property " << propertyName
919                   << " \n";
920         return false;
921     }
922     fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin());
923     fruAreaOffsetFieldValue =
924         fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)];
925     switch (fruAreaToUpdate)
926     {
927         case fruAreas::fruAreaChassis:
928             offset = 3; // chassis part number offset. Skip fixed first 3 bytes
929             fruAreaFieldNames = &chassisFruAreas;
930             break;
931         case fruAreas::fruAreaBoard:
932             offset = 6; // board manufacturer offset. Skip fixed first 6 bytes
933             fruAreaFieldNames = &boardFruAreas;
934             break;
935         case fruAreas::fruAreaProduct:
936             // Manufacturer name offset. Skip fixed first 3 product fru bytes
937             // i.e. version, area length and language code
938             offset = 3;
939             fruAreaFieldNames = &productFruAreas;
940             break;
941         default:
942             std::cerr << "Invalid PropertyName " << propertyName << " \n";
943             return false;
944     }
945     if (fruAreaOffsetFieldValue == 0)
946     {
947         std::cerr << "FRU Area for " << propertyName << " not present \n";
948         return false;
949     }
950 
951     fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize;
952     fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize;
953     fruAreaParams.end = fruAreaParams.start + fruAreaParams.size;
954     size_t fruDataIter = fruAreaParams.start + offset;
955     size_t skipToFRUUpdateField = 0;
956     ssize_t fieldLength = 0;
957 
958     bool found = false;
959     for (const auto& field : *fruAreaFieldNames)
960     {
961         skipToFRUUpdateField++;
962         if (propertyName == propertyNamePrefix + field)
963         {
964             found = true;
965             break;
966         }
967     }
968     if (!found)
969     {
970         std::size_t pos = propertyName.find(fruCustomFieldName);
971         if (pos == std::string::npos)
972         {
973             std::cerr << "PropertyName doesn't exist in FRU Area Vectors: "
974                       << propertyName << "\n";
975             return false;
976         }
977         std::string fieldNumStr =
978             propertyName.substr(pos + fruCustomFieldName.length());
979         size_t fieldNum = std::stoi(fieldNumStr);
980         if (fieldNum == 0)
981         {
982             std::cerr << "PropertyName not recognized: " << propertyName
983                       << "\n";
984             return false;
985         }
986         skipToFRUUpdateField += fieldNum;
987     }
988 
989     for (size_t i = 1; i < skipToFRUUpdateField; i++)
990     {
991         if (fruDataIter < fruData.size())
992         {
993             fieldLength = getFieldLength(fruData[fruDataIter]);
994 
995             if (fieldLength < 0)
996             {
997                 break;
998             }
999             fruDataIter += 1 + fieldLength;
1000         }
1001     }
1002     fruAreaParams.updateFieldLoc = fruDataIter;
1003 
1004     return true;
1005 }
1006 
1007 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector.
1008 // Return true for success and false for failure.
1009 
1010 bool copyRestFRUArea(std::vector<uint8_t>& fruData,
1011                      const std::string& propertyName,
1012                      struct FruArea& fruAreaParams,
1013                      std::vector<uint8_t>& restFRUAreaFieldsData)
1014 {
1015     size_t fieldLoc = fruAreaParams.updateFieldLoc;
1016     size_t start = fruAreaParams.start;
1017     size_t fruAreaSize = fruAreaParams.size;
1018 
1019     // Push post update fru field bytes to a vector
1020     ssize_t fieldLength = getFieldLength(fruData[fieldLoc]);
1021     if (fieldLength < 0)
1022     {
1023         std::cerr << "Property " << propertyName << " not present \n";
1024         return false;
1025     }
1026 
1027     size_t fruDataIter = 0;
1028     fruDataIter = fieldLoc;
1029     fruDataIter += 1 + fieldLength;
1030     size_t restFRUFieldsLoc = fruDataIter;
1031     size_t endOfFieldsLoc = 0;
1032 
1033     if (fruDataIter < fruData.size())
1034     {
1035         while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0)
1036         {
1037             if (fruDataIter >= (start + fruAreaSize))
1038             {
1039                 fruDataIter = start + fruAreaSize;
1040                 break;
1041             }
1042             fruDataIter += 1 + fieldLength;
1043         }
1044         endOfFieldsLoc = fruDataIter;
1045     }
1046 
1047     std::copy_n(fruData.begin() + restFRUFieldsLoc,
1048                 endOfFieldsLoc - restFRUFieldsLoc + 1,
1049                 std::back_inserter(restFRUAreaFieldsData));
1050 
1051     fruAreaParams.restFieldsLoc = restFRUFieldsLoc;
1052     fruAreaParams.restFieldsEnd = endOfFieldsLoc;
1053 
1054     return true;
1055 }
1056 
1057 // Get all device dbus path and match path with product name using
1058 // regular expression and find the device index for all devices.
1059 
1060 std::optional<int> findIndexForFRU(
1061     boost::container::flat_map<
1062         std::pair<size_t, size_t>,
1063         std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
1064     std::string& productName)
1065 {
1066     int highest = -1;
1067     bool found = false;
1068 
1069     for (const auto& busIface : dbusInterfaceMap)
1070     {
1071         std::string path = busIface.second->get_object_path();
1072         if (std::regex_match(path, std::regex(productName + "(_\\d+|)$")))
1073         {
1074             // Check if the match named has extra information.
1075             found = true;
1076             std::smatch baseMatch;
1077 
1078             bool match = std::regex_match(path, baseMatch,
1079                                           std::regex(productName + "_(\\d+)$"));
1080             if (match)
1081             {
1082                 if (baseMatch.size() == 2)
1083                 {
1084                     std::ssub_match baseSubMatch = baseMatch[1];
1085                     std::string base = baseSubMatch.str();
1086 
1087                     int value = std::stoi(base);
1088                     highest = (value > highest) ? value : highest;
1089                 }
1090             }
1091         }
1092     } // end searching objects
1093 
1094     if (!found)
1095     {
1096         return std::nullopt;
1097     }
1098     return highest;
1099 }
1100 
1101 // This function does format fru data as per IPMI format and find the
1102 // productName in the formatted fru data, get that productName and return
1103 // productName if found or return NULL.
1104 
1105 std::optional<std::string> getProductName(
1106     std::vector<uint8_t>& device,
1107     boost::container::flat_map<std::string, std::string>& formattedFRU,
1108     uint32_t bus, uint32_t address, size_t& unknownBusObjectCount)
1109 {
1110     std::string productName;
1111 
1112     resCodes res = formatIPMIFRU(device, formattedFRU);
1113     if (res == resCodes::resErr)
1114     {
1115         std::cerr << "failed to parse FRU for device at bus " << bus
1116                   << " address " << address << "\n";
1117         return std::nullopt;
1118     }
1119     if (res == resCodes::resWarn)
1120     {
1121         std::cerr << "Warnings while parsing FRU for device at bus " << bus
1122                   << " address " << address << "\n";
1123     }
1124 
1125     auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME");
1126     // Not found under Board section or an empty string.
1127     if (productNameFind == formattedFRU.end() ||
1128         productNameFind->second.empty())
1129     {
1130         productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME");
1131     }
1132     // Found under Product section and not an empty string.
1133     if (productNameFind != formattedFRU.end() &&
1134         !productNameFind->second.empty())
1135     {
1136         productName = productNameFind->second;
1137         std::regex illegalObject("[^A-Za-z0-9_]");
1138         productName = std::regex_replace(productName, illegalObject, "_");
1139     }
1140     else
1141     {
1142         productName = "UNKNOWN" + std::to_string(unknownBusObjectCount);
1143         unknownBusObjectCount++;
1144     }
1145     return productName;
1146 }
1147 
1148 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address)
1149 {
1150     try
1151     {
1152         fruData = getFRUInfo(static_cast<uint16_t>(bus),
1153                              static_cast<uint8_t>(address));
1154     }
1155     catch (const std::invalid_argument& e)
1156     {
1157         std::cerr << "Failure getting FRU Info" << e.what() << "\n";
1158         return false;
1159     }
1160 
1161     return !fruData.empty();
1162 }
1163