1 // SPDX-License-Identifier: Apache-2.0 2 // SPDX-FileCopyrightText: Copyright 2018 Intel Corporation 3 4 #include "fru_utils.hpp" 5 6 #include <phosphor-logging/lg2.hpp> 7 8 #include <array> 9 #include <cstddef> 10 #include <cstdint> 11 #include <filesystem> 12 #include <iomanip> 13 #include <iostream> 14 #include <numeric> 15 #include <set> 16 #include <sstream> 17 #include <string> 18 #include <vector> 19 20 extern "C" 21 { 22 // Include for I2C_SMBUS_BLOCK_MAX 23 #include <linux/i2c.h> 24 } 25 26 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1 27 28 std::tm intelEpoch() 29 { 30 std::tm val = {}; 31 val.tm_year = 1996 - 1900; 32 val.tm_mday = 1; 33 return val; 34 } 35 36 char sixBitToChar(uint8_t val) 37 { 38 return static_cast<char>((val & 0x3f) + ' '); 39 } 40 41 char bcdPlusToChar(uint8_t val) 42 { 43 val &= 0xf; 44 return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10]; 45 } 46 47 enum FRUDataEncoding 48 { 49 binary = 0x0, 50 bcdPlus = 0x1, 51 sixBitASCII = 0x2, 52 languageDependent = 0x3, 53 }; 54 55 enum MultiRecordType : uint8_t 56 { 57 powerSupplyInfo = 0x00, 58 dcOutput = 0x01, 59 dcLoad = 0x02, 60 managementAccessRecord = 0x03, 61 baseCompatibilityRecord = 0x04, 62 extendedCompatibilityRecord = 0x05, 63 resvASFSMBusDeviceRecord = 0x06, 64 resvASFLegacyDeviceAlerts = 0x07, 65 resvASFRemoteControl = 0x08, 66 extendedDCOutput = 0x09, 67 extendedDCLoad = 0x0A 68 }; 69 70 enum SubManagementAccessRecord : uint8_t 71 { 72 systemManagementURL = 0x01, 73 systemName = 0x02, 74 systemPingAddress = 0x03, 75 componentManagementURL = 0x04, 76 componentName = 0x05, 77 componentPingAddress = 0x06, 78 systemUniqueID = 0x07 79 }; 80 81 /* Decode FRU data into a std::string, given an input iterator and end. If the 82 * state returned is fruDataOk, then the resulting string is the decoded FRU 83 * data. The input iterator is advanced past the data consumed. 84 * 85 * On fruDataErr, we have lost synchronisation with the length bytes, so the 86 * iterator is no longer usable. 87 */ 88 std::pair<DecodeState, std::string> decodeFRUData( 89 std::span<const uint8_t>::const_iterator& iter, 90 std::span<const uint8_t>::const_iterator& end, bool isLangEng) 91 { 92 std::string value; 93 unsigned int i = 0; 94 95 /* we need at least one byte to decode the type/len header */ 96 if (iter == end) 97 { 98 std::cerr << "Truncated FRU data\n"; 99 return make_pair(DecodeState::err, value); 100 } 101 102 uint8_t c = *(iter++); 103 104 /* 0xc1 is the end marker */ 105 if (c == 0xc1) 106 { 107 return make_pair(DecodeState::end, value); 108 } 109 110 /* decode type/len byte */ 111 uint8_t type = static_cast<uint8_t>(c >> 6); 112 uint8_t len = static_cast<uint8_t>(c & 0x3f); 113 114 /* we should have at least len bytes of data available overall */ 115 if (iter + len > end) 116 { 117 std::cerr << "FRU data field extends past end of FRU area data\n"; 118 return make_pair(DecodeState::err, value); 119 } 120 121 switch (type) 122 { 123 case FRUDataEncoding::binary: 124 { 125 std::stringstream ss; 126 ss << std::hex << std::setfill('0'); 127 for (i = 0; i < len; i++, iter++) 128 { 129 uint8_t val = static_cast<uint8_t>(*iter); 130 ss << std::setw(2) << static_cast<int>(val); 131 } 132 value = ss.str(); 133 break; 134 } 135 case FRUDataEncoding::languageDependent: 136 /* For language-code dependent encodings, assume 8-bit ASCII */ 137 value = std::string(iter, iter + len); 138 iter += len; 139 140 /* English text is encoded in 8-bit ASCII + Latin 1. All other 141 * languages are required to use 2-byte unicode. FruDevice does not 142 * handle unicode. 143 */ 144 if (!isLangEng) 145 { 146 std::cerr << "Error: Non english string is not supported \n"; 147 return make_pair(DecodeState::err, value); 148 } 149 150 break; 151 152 case FRUDataEncoding::bcdPlus: 153 value = std::string(); 154 for (i = 0; i < len; i++, iter++) 155 { 156 uint8_t val = *iter; 157 value.push_back(bcdPlusToChar(val >> 4)); 158 value.push_back(bcdPlusToChar(val & 0xf)); 159 } 160 break; 161 162 case FRUDataEncoding::sixBitASCII: 163 { 164 unsigned int accum = 0; 165 unsigned int accumBitLen = 0; 166 value = std::string(); 167 for (i = 0; i < len; i++, iter++) 168 { 169 accum |= *iter << accumBitLen; 170 accumBitLen += 8; 171 while (accumBitLen >= 6) 172 { 173 value.push_back(sixBitToChar(accum & 0x3f)); 174 accum >>= 6; 175 accumBitLen -= 6; 176 } 177 } 178 } 179 break; 180 181 default: 182 { 183 return make_pair(DecodeState::err, value); 184 } 185 } 186 187 return make_pair(DecodeState::ok, value); 188 } 189 190 bool checkLangEng(uint8_t lang) 191 { 192 // If Lang is not English then the encoding is defined as 2-byte UNICODE, 193 // but we don't support that. 194 if ((lang != 0U) && lang != 25) 195 { 196 std::cerr << "Warning: languages other than English is not " 197 "supported\n"; 198 // Return language flag as non english 199 return false; 200 } 201 return true; 202 } 203 204 /* This function verifies for other offsets to check if they are not 205 * falling under other field area 206 * 207 * fruBytes: Start of Fru data 208 * currentArea: Index of current area offset to be compared against all area 209 * offset and it is a multiple of 8 bytes as per specification 210 * len: Length of current area space and it is a multiple of 8 bytes 211 * as per specification 212 */ 213 bool verifyOffset(std::span<const uint8_t> fruBytes, fruAreas currentArea, 214 uint8_t len) 215 { 216 unsigned int fruBytesSize = fruBytes.size(); 217 218 // check if Fru data has at least 8 byte header 219 if (fruBytesSize <= fruBlockSize) 220 { 221 std::cerr << "Error: trying to parse empty FRU\n"; 222 return false; 223 } 224 225 // Check range of passed currentArea value 226 if (currentArea > fruAreas::fruAreaMultirecord) 227 { 228 std::cerr << "Error: Fru area is out of range\n"; 229 return false; 230 } 231 232 unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea); 233 if (currentAreaIndex > fruBytesSize) 234 { 235 std::cerr << "Error: Fru area index is out of range\n"; 236 return false; 237 } 238 239 unsigned int start = fruBytes[currentAreaIndex]; 240 unsigned int end = start + len; 241 242 /* Verify each offset within the range of start and end */ 243 for (fruAreas area = fruAreas::fruAreaInternal; 244 area <= fruAreas::fruAreaMultirecord; ++area) 245 { 246 // skip the current offset 247 if (area == currentArea) 248 { 249 continue; 250 } 251 252 unsigned int areaIndex = getHeaderAreaFieldOffset(area); 253 if (areaIndex > fruBytesSize) 254 { 255 std::cerr << "Error: Fru area index is out of range\n"; 256 return false; 257 } 258 259 unsigned int areaOffset = fruBytes[areaIndex]; 260 // if areaOffset is 0 means this area is not available so skip 261 if (areaOffset == 0) 262 { 263 continue; 264 } 265 266 // check for overlapping of current offset with given areaoffset 267 if (areaOffset == start || (areaOffset > start && areaOffset < end)) 268 { 269 std::cerr << getFruAreaName(currentArea) 270 << " offset is overlapping with " << getFruAreaName(area) 271 << " offset\n"; 272 return false; 273 } 274 } 275 return true; 276 } 277 278 static void parseMultirecordUUID( 279 std::span<const uint8_t> device, 280 boost::container::flat_map<std::string, std::string>& result) 281 { 282 constexpr size_t uuidDataLen = 16; 283 constexpr size_t multiRecordHeaderLen = 5; 284 /* UUID record data, plus one to skip past the sub-record type byte */ 285 constexpr size_t uuidRecordData = multiRecordHeaderLen + 1; 286 constexpr size_t multiRecordEndOfListMask = 0x80; 287 /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented 288 * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD 289 * 0xEE 0xFF 290 */ 291 const std::array<uint8_t, uuidDataLen> uuidCharOrder = { 292 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15}; 293 size_t offset = getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord); 294 if (offset >= device.size()) 295 { 296 throw std::runtime_error("Multirecord UUID offset is out of range"); 297 } 298 uint32_t areaOffset = device[offset]; 299 300 if (areaOffset == 0) 301 { 302 return; 303 } 304 305 areaOffset *= fruBlockSize; 306 std::span<const uint8_t>::const_iterator fruBytesIter = 307 device.begin() + areaOffset; 308 309 /* Verify area offset */ 310 if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter)) 311 { 312 return; 313 } 314 while (areaOffset + uuidRecordData + uuidDataLen <= device.size()) 315 { 316 if ((areaOffset < device.size()) && 317 (device[areaOffset] == 318 (uint8_t)MultiRecordType::managementAccessRecord)) 319 { 320 if ((areaOffset + multiRecordHeaderLen < device.size()) && 321 (device[areaOffset + multiRecordHeaderLen] == 322 (uint8_t)SubManagementAccessRecord::systemUniqueID)) 323 { 324 /* Layout of UUID: 325 * source: https://www.ietf.org/rfc/rfc4122.txt 326 * 327 * UUID binary format (16 bytes): 328 * 4B-2B-2B-2B-6B (big endian) 329 * 330 * UUID string is 36 length of characters (36 bytes): 331 * 0 9 14 19 24 332 * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 333 * be be be be be 334 * be means it should be converted to big endian. 335 */ 336 /* Get UUID bytes to UUID string */ 337 std::stringstream tmp; 338 tmp << std::hex << std::setfill('0'); 339 for (size_t i = 0; i < uuidDataLen; i++) 340 { 341 tmp << std::setw(2) 342 << static_cast<uint16_t>( 343 device[areaOffset + uuidRecordData + 344 uuidCharOrder[i]]); 345 } 346 std::string uuidStr = tmp.str(); 347 result["MULTIRECORD_UUID"] = 348 uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' + 349 uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' + 350 uuidStr.substr(20, 12); 351 break; 352 } 353 } 354 if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0) 355 { 356 break; 357 } 358 areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen; 359 } 360 } 361 362 resCodes decodeField( 363 std::span<const uint8_t>::const_iterator& fruBytesIter, 364 std::span<const uint8_t>::const_iterator& fruBytesIterEndArea, 365 const std::vector<std::string>& fruAreaFieldNames, size_t& fieldIndex, 366 DecodeState& state, bool isLangEng, const fruAreas& area, 367 boost::container::flat_map<std::string, std::string>& result) 368 { 369 auto res = decodeFRUData(fruBytesIter, fruBytesIterEndArea, isLangEng); 370 state = res.first; 371 std::string value = res.second; 372 std::string name; 373 bool isCustomField = false; 374 if (fieldIndex < fruAreaFieldNames.size()) 375 { 376 name = std::string(getFruAreaName(area)) + "_" + 377 fruAreaFieldNames.at(fieldIndex); 378 } 379 else 380 { 381 isCustomField = true; 382 name = std::string(getFruAreaName(area)) + "_" + fruCustomFieldName + 383 std::to_string(fieldIndex - fruAreaFieldNames.size() + 1); 384 } 385 386 if (state == DecodeState::ok) 387 { 388 // Strip non null characters and trailing spaces from the end 389 value.erase( 390 std::find_if(value.rbegin(), value.rend(), 391 [](char ch) { return ((ch != 0) && (ch != ' ')); }) 392 .base(), 393 value.end()); 394 if (isCustomField) 395 { 396 // Some MAC addresses are stored in a custom field, with 397 // "MAC:" prefixed on the value. If we see that, create a 398 // new field with the decoded data 399 if (value.starts_with("MAC: ")) 400 { 401 result["MAC_" + name] = value.substr(5); 402 } 403 } 404 result[name] = std::move(value); 405 ++fieldIndex; 406 } 407 else if (state == DecodeState::err) 408 { 409 std::cerr << "Error while parsing " << name << "\n"; 410 411 // Cancel decoding if failed to parse any of mandatory 412 // fields 413 if (fieldIndex < fruAreaFieldNames.size()) 414 { 415 std::cerr << "Failed to parse mandatory field \n"; 416 return resCodes::resErr; 417 } 418 return resCodes::resWarn; 419 } 420 else 421 { 422 if (fieldIndex < fruAreaFieldNames.size()) 423 { 424 std::cerr << "Mandatory fields absent in FRU area " 425 << getFruAreaName(area) << " after " << name << "\n"; 426 return resCodes::resWarn; 427 } 428 } 429 return resCodes::resOK; 430 } 431 432 resCodes formatIPMIFRU( 433 std::span<const uint8_t> fruBytes, 434 boost::container::flat_map<std::string, std::string>& result) 435 { 436 resCodes ret = resCodes::resOK; 437 if (fruBytes.size() <= fruBlockSize) 438 { 439 std::cerr << "Error: trying to parse empty FRU \n"; 440 return resCodes::resErr; 441 } 442 result["Common_Format_Version"] = 443 std::to_string(static_cast<int>(*fruBytes.begin())); 444 445 const std::vector<std::string>* fruAreaFieldNames = nullptr; 446 447 // Don't parse Internal and Multirecord areas 448 for (fruAreas area = fruAreas::fruAreaChassis; 449 area <= fruAreas::fruAreaProduct; ++area) 450 { 451 size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area)); 452 if (offset == 0) 453 { 454 continue; 455 } 456 offset *= fruBlockSize; 457 std::span<const uint8_t>::const_iterator fruBytesIter = 458 fruBytes.begin() + offset; 459 if (fruBytesIter + fruBlockSize >= fruBytes.end()) 460 { 461 std::cerr << "Not enough data to parse \n"; 462 return resCodes::resErr; 463 } 464 // check for format version 1 465 if (*fruBytesIter != 0x01) 466 { 467 std::cerr << "Unexpected version " << *fruBytesIter << "\n"; 468 return resCodes::resErr; 469 } 470 ++fruBytesIter; 471 472 /* Verify other area offset for overlap with current area by passing 473 * length of current area offset pointed by *fruBytesIter 474 */ 475 if (!verifyOffset(fruBytes, area, *fruBytesIter)) 476 { 477 return resCodes::resErr; 478 } 479 480 size_t fruAreaSize = *fruBytesIter * fruBlockSize; 481 std::span<const uint8_t>::const_iterator fruBytesIterEndArea = 482 fruBytes.begin() + offset + fruAreaSize - 1; 483 ++fruBytesIter; 484 485 uint8_t fruComputedChecksum = 486 calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea); 487 if (fruComputedChecksum != *fruBytesIterEndArea) 488 { 489 std::stringstream ss; 490 ss << std::hex << std::setfill('0'); 491 ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n"; 492 ss << "\tComputed checksum: 0x" << std::setw(2) 493 << static_cast<int>(fruComputedChecksum) << "\n"; 494 ss << "\tThe read checksum: 0x" << std::setw(2) 495 << static_cast<int>(*fruBytesIterEndArea) << "\n"; 496 std::cerr << ss.str(); 497 ret = resCodes::resWarn; 498 } 499 500 /* Set default language flag to true as Chassis Fru area are always 501 * encoded in English defined in Section 10 of Fru specification 502 */ 503 504 bool isLangEng = true; 505 switch (area) 506 { 507 case fruAreas::fruAreaChassis: 508 { 509 result["CHASSIS_TYPE"] = 510 std::to_string(static_cast<int>(*fruBytesIter)); 511 fruBytesIter += 1; 512 fruAreaFieldNames = &chassisFruAreas; 513 break; 514 } 515 case fruAreas::fruAreaBoard: 516 { 517 uint8_t lang = *fruBytesIter; 518 result["BOARD_LANGUAGE_CODE"] = 519 std::to_string(static_cast<int>(lang)); 520 isLangEng = checkLangEng(lang); 521 fruBytesIter += 1; 522 523 unsigned int minutes = 524 *fruBytesIter | *(fruBytesIter + 1) << 8 | 525 *(fruBytesIter + 2) << 16; 526 std::tm fruTime = intelEpoch(); 527 std::time_t timeValue = timegm(&fruTime); 528 timeValue += static_cast<long>(minutes) * 60; 529 fruTime = *std::gmtime(&timeValue); 530 531 // Tue Nov 20 23:08:00 2018 532 std::array<char, 32> timeString = {}; 533 auto bytes = std::strftime(timeString.data(), timeString.size(), 534 "%Y%m%dT%H%M%SZ", &fruTime); 535 if (bytes == 0) 536 { 537 std::cerr << "invalid time string encountered\n"; 538 return resCodes::resErr; 539 } 540 541 result["BOARD_MANUFACTURE_DATE"] = 542 std::string_view(timeString.data(), bytes); 543 fruBytesIter += 3; 544 fruAreaFieldNames = &boardFruAreas; 545 break; 546 } 547 case fruAreas::fruAreaProduct: 548 { 549 uint8_t lang = *fruBytesIter; 550 result["PRODUCT_LANGUAGE_CODE"] = 551 std::to_string(static_cast<int>(lang)); 552 isLangEng = checkLangEng(lang); 553 fruBytesIter += 1; 554 fruAreaFieldNames = &productFruAreas; 555 break; 556 } 557 default: 558 { 559 std::cerr << "Internal error: unexpected FRU area index: " 560 << static_cast<int>(area) << " \n"; 561 return resCodes::resErr; 562 } 563 } 564 size_t fieldIndex = 0; 565 DecodeState state = DecodeState::ok; 566 do 567 { 568 resCodes decodeRet = decodeField(fruBytesIter, fruBytesIterEndArea, 569 *fruAreaFieldNames, fieldIndex, 570 state, isLangEng, area, result); 571 if (decodeRet == resCodes::resErr) 572 { 573 return resCodes::resErr; 574 } 575 if (decodeRet == resCodes::resWarn) 576 { 577 ret = decodeRet; 578 } 579 } while (state == DecodeState::ok); 580 for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++) 581 { 582 uint8_t c = *fruBytesIter; 583 if (c != 0U) 584 { 585 std::cerr << "Non-zero byte after EndOfFields in FRU area " 586 << getFruAreaName(area) << "\n"; 587 ret = resCodes::resWarn; 588 break; 589 } 590 } 591 } 592 593 /* Parsing the Multirecord UUID */ 594 parseMultirecordUUID(fruBytes, result); 595 596 return ret; 597 } 598 599 // Calculate new checksum for fru info area 600 uint8_t calculateChecksum(std::span<const uint8_t>::const_iterator iter, 601 std::span<const uint8_t>::const_iterator end) 602 { 603 constexpr int checksumMod = 256; 604 uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0)); 605 return (checksumMod - sum) % checksumMod; 606 } 607 608 uint8_t calculateChecksum(std::span<const uint8_t> fruAreaData) 609 { 610 return calculateChecksum(fruAreaData.begin(), fruAreaData.end()); 611 } 612 613 // Update new fru area length & 614 // Update checksum at new checksum location 615 // Return the offset of the area checksum byte 616 unsigned int updateFRUAreaLenAndChecksum( 617 std::vector<uint8_t>& fruData, size_t fruAreaStart, 618 size_t fruAreaEndOfFieldsOffset, size_t fruAreaEndOffset) 619 { 620 size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart; 621 622 // fill zeros for any remaining unused space 623 std::fill(fruData.begin() + fruAreaEndOfFieldsOffset, 624 fruData.begin() + fruAreaEndOffset, 0); 625 626 size_t mod = traverseFRUAreaIndex % fruBlockSize; 627 size_t checksumLoc = 0; 628 if (mod == 0U) 629 { 630 traverseFRUAreaIndex += (fruBlockSize); 631 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1); 632 } 633 else 634 { 635 traverseFRUAreaIndex += (fruBlockSize - mod); 636 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1); 637 } 638 639 size_t newFRUAreaLen = 640 (traverseFRUAreaIndex / fruBlockSize) + 641 static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0); 642 size_t fruAreaLengthLoc = fruAreaStart + 1; 643 fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen); 644 645 // Calculate new checksum 646 std::vector<uint8_t> finalFRUData; 647 std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart, 648 std::back_inserter(finalFRUData)); 649 650 fruData[checksumLoc] = calculateChecksum(finalFRUData); 651 return checksumLoc; 652 } 653 654 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue) 655 { 656 constexpr uint8_t typeLenMask = 0x3F; 657 constexpr uint8_t endOfFields = 0xC1; 658 if (fruFieldTypeLenValue == endOfFields) 659 { 660 return -1; 661 } 662 return fruFieldTypeLenValue & typeLenMask; 663 } 664 665 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData) 666 { 667 // ipmi spec format version number is currently at 1, verify it 668 if (blockData[0] != fruVersion) 669 { 670 lg2::debug( 671 "FRU spec version {VERSION} not supported. Supported version is {SUPPORTED_VERSION}", 672 "VERSION", lg2::hex, blockData[0], "SUPPORTED_VERSION", lg2::hex, 673 fruVersion); 674 return false; 675 } 676 677 // verify pad is set to 0 678 if (blockData[6] != 0x0) 679 { 680 lg2::debug("Pad value in header is non zero, value is {VALUE}", "VALUE", 681 lg2::hex, blockData[6]); 682 return false; 683 } 684 685 // verify offsets are 0, or don't point to another offset 686 std::set<uint8_t> foundOffsets; 687 for (int ii = 1; ii < 6; ii++) 688 { 689 if (blockData[ii] == 0) 690 { 691 continue; 692 } 693 auto inserted = foundOffsets.insert(blockData[ii]); 694 if (!inserted.second) 695 { 696 return false; 697 } 698 } 699 700 // validate checksum 701 size_t sum = 0; 702 for (int jj = 0; jj < 7; jj++) 703 { 704 sum += blockData[jj]; 705 } 706 sum = (256 - sum) & 0xFF; 707 708 if (sum != blockData[7]) 709 { 710 lg2::debug( 711 "Checksum {CHECKSUM} is invalid. calculated checksum is {CALCULATED_CHECKSUM}", 712 "CHECKSUM", lg2::hex, blockData[7], "CALCULATED_CHECKSUM", lg2::hex, 713 sum); 714 return false; 715 } 716 return true; 717 } 718 719 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp, 720 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData, 721 off_t& baseOffset) 722 { 723 if (reader.read(baseOffset, 0x8, blockData.data()) < 0) 724 { 725 std::cerr << "failed to read " << errorHelp << " base offset " 726 << baseOffset << "\n"; 727 return false; 728 } 729 730 // check the header checksum 731 if (validateHeader(blockData)) 732 { 733 return true; 734 } 735 736 // only continue the search if we just looked at 0x0. 737 if (baseOffset != 0) 738 { 739 return false; 740 } 741 742 // now check for special cases where the IPMI data is at an offset 743 744 // check if blockData starts with tyanHeader 745 const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'}; 746 if (blockData.size() >= tyanHeader.size() && 747 std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin())) 748 { 749 // look for the FRU header at offset 0x6000 750 baseOffset = 0x6000; 751 return findFRUHeader(reader, errorHelp, blockData, baseOffset); 752 } 753 754 // check if blockData starts with gigabyteHeader 755 const std::vector<uint8_t> gigabyteHeader = {'G', 'I', 'G', 'A', 756 'B', 'Y', 'T', 'E'}; 757 if (blockData.size() >= gigabyteHeader.size() && 758 std::equal(gigabyteHeader.begin(), gigabyteHeader.end(), 759 blockData.begin())) 760 { 761 // look for the FRU header at offset 0x4000 762 baseOffset = 0x4000; 763 return findFRUHeader(reader, errorHelp, blockData, baseOffset); 764 } 765 766 lg2::debug("Illegal header {HEADER} base offset {OFFSET}", "HEADER", 767 errorHelp, "OFFSET", baseOffset); 768 769 return false; 770 } 771 772 std::pair<std::vector<uint8_t>, bool> readFRUContents( 773 FRUReader& reader, const std::string& errorHelp) 774 { 775 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{}; 776 off_t baseOffset = 0x0; 777 778 if (!findFRUHeader(reader, errorHelp, blockData, baseOffset)) 779 { 780 return {{}, false}; 781 } 782 783 std::vector<uint8_t> device; 784 device.insert(device.end(), blockData.begin(), blockData.begin() + 8); 785 786 bool hasMultiRecords = false; 787 size_t fruLength = fruBlockSize; // At least FRU header is present 788 unsigned int prevOffset = 0; 789 for (fruAreas area = fruAreas::fruAreaInternal; 790 area <= fruAreas::fruAreaMultirecord; ++area) 791 { 792 // Offset value can be 255. 793 unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)]; 794 if (areaOffset == 0) 795 { 796 continue; 797 } 798 799 /* Check for offset order, as per Section 17 of FRU specification, FRU 800 * information areas are required to be in order in FRU data layout 801 * which means all offset value should be in increasing order or can be 802 * 0 if that area is not present 803 */ 804 if (areaOffset <= prevOffset) 805 { 806 std::cerr << "Fru area offsets are not in required order as per " 807 "Section 17 of Fru specification\n"; 808 return {{}, true}; 809 } 810 prevOffset = areaOffset; 811 812 // MultiRecords are different. area is not tracking section, it's 813 // walking the common header. 814 if (area == fruAreas::fruAreaMultirecord) 815 { 816 hasMultiRecords = true; 817 break; 818 } 819 820 areaOffset *= fruBlockSize; 821 822 if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0) 823 { 824 std::cerr << "failed to read " << errorHelp << " base offset " 825 << baseOffset << "\n"; 826 return {{}, true}; 827 } 828 829 // Ignore data type (blockData is already unsigned). 830 size_t length = blockData[1] * fruBlockSize; 831 areaOffset += length; 832 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength; 833 } 834 835 if (hasMultiRecords) 836 { 837 // device[area count] is the index to the last area because the 0th 838 // entry is not an offset in the common header. 839 unsigned int areaOffset = 840 device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)]; 841 areaOffset *= fruBlockSize; 842 843 // the multi-area record header is 5 bytes long. 844 constexpr size_t multiRecordHeaderSize = 5; 845 constexpr uint8_t multiRecordEndOfListMask = 0x80; 846 847 // Sanity hard-limit to 64KB. 848 while (areaOffset < std::numeric_limits<uint16_t>::max()) 849 { 850 // In multi-area, the area offset points to the 0th record, each 851 // record has 3 bytes of the header we care about. 852 if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0) 853 { 854 std::cerr << "failed to read " << errorHelp << " base offset " 855 << baseOffset << "\n"; 856 return {{}, true}; 857 } 858 859 // Ok, let's check the record length, which is in bytes (unsigned, 860 // up to 255, so blockData should hold uint8_t not char) 861 size_t recordLength = blockData[2]; 862 areaOffset += (recordLength + multiRecordHeaderSize); 863 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength; 864 865 // If this is the end of the list bail. 866 if ((blockData[1] & multiRecordEndOfListMask) != 0) 867 { 868 break; 869 } 870 } 871 } 872 873 // You already copied these first 8 bytes (the ipmi fru header size) 874 fruLength -= std::min(fruBlockSize, fruLength); 875 876 int readOffset = fruBlockSize; 877 878 while (fruLength > 0) 879 { 880 size_t requestLength = 881 std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength); 882 883 if (reader.read(baseOffset + readOffset, requestLength, 884 blockData.data()) < 0) 885 { 886 std::cerr << "failed to read " << errorHelp << " base offset " 887 << baseOffset << "\n"; 888 return {{}, true}; 889 } 890 891 device.insert(device.end(), blockData.begin(), 892 blockData.begin() + requestLength); 893 894 readOffset += requestLength; 895 fruLength -= std::min(requestLength, fruLength); 896 } 897 898 return {device, true}; 899 } 900 901 unsigned int getHeaderAreaFieldOffset(fruAreas area) 902 { 903 return static_cast<unsigned int>(area) + 1; 904 } 905 906 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address) 907 { 908 auto deviceMap = busMap.find(bus); 909 if (deviceMap == busMap.end()) 910 { 911 throw std::invalid_argument("Invalid Bus."); 912 } 913 auto device = deviceMap->second->find(address); 914 if (device == deviceMap->second->end()) 915 { 916 throw std::invalid_argument("Invalid Address."); 917 } 918 std::vector<uint8_t>& ret = device->second; 919 920 return ret; 921 } 922 923 // Iterate FruArea Names and find start and size of the fru area that contains 924 // the propertyName and the field start location for the property. fruAreaParams 925 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets 926 // updated/returned if successful. 927 928 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData, 929 const std::string& propertyName, 930 struct FruArea& fruAreaParams) 931 { 932 const std::vector<std::string>* fruAreaFieldNames = nullptr; 933 934 uint8_t fruAreaOffsetFieldValue = 0; 935 size_t offset = 0; 936 std::string areaName = propertyName.substr(0, propertyName.find('_')); 937 std::string propertyNamePrefix = areaName + "_"; 938 auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName); 939 if (it == fruAreaNames.end()) 940 { 941 std::cerr << "Can't parse area name for property " << propertyName 942 << " \n"; 943 return false; 944 } 945 fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin()); 946 fruAreaOffsetFieldValue = 947 fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)]; 948 switch (fruAreaToUpdate) 949 { 950 case fruAreas::fruAreaChassis: 951 offset = 3; // chassis part number offset. Skip fixed first 3 bytes 952 fruAreaFieldNames = &chassisFruAreas; 953 break; 954 case fruAreas::fruAreaBoard: 955 offset = 6; // board manufacturer offset. Skip fixed first 6 bytes 956 fruAreaFieldNames = &boardFruAreas; 957 break; 958 case fruAreas::fruAreaProduct: 959 // Manufacturer name offset. Skip fixed first 3 product fru bytes 960 // i.e. version, area length and language code 961 offset = 3; 962 fruAreaFieldNames = &productFruAreas; 963 break; 964 default: 965 std::cerr << "Invalid PropertyName " << propertyName << " \n"; 966 return false; 967 } 968 if (fruAreaOffsetFieldValue == 0) 969 { 970 std::cerr << "FRU Area for " << propertyName << " not present \n"; 971 return false; 972 } 973 974 fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize; 975 fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize; 976 fruAreaParams.end = fruAreaParams.start + fruAreaParams.size; 977 size_t fruDataIter = fruAreaParams.start + offset; 978 size_t skipToFRUUpdateField = 0; 979 ssize_t fieldLength = 0; 980 981 bool found = false; 982 for (const auto& field : *fruAreaFieldNames) 983 { 984 skipToFRUUpdateField++; 985 if (propertyName == propertyNamePrefix + field) 986 { 987 found = true; 988 break; 989 } 990 } 991 if (!found) 992 { 993 std::size_t pos = propertyName.find(fruCustomFieldName); 994 if (pos == std::string::npos) 995 { 996 std::cerr << "PropertyName doesn't exist in FRU Area Vectors: " 997 << propertyName << "\n"; 998 return false; 999 } 1000 std::string fieldNumStr = 1001 propertyName.substr(pos + fruCustomFieldName.length()); 1002 size_t fieldNum = std::stoi(fieldNumStr); 1003 if (fieldNum == 0) 1004 { 1005 std::cerr << "PropertyName not recognized: " << propertyName 1006 << "\n"; 1007 return false; 1008 } 1009 skipToFRUUpdateField += fieldNum; 1010 } 1011 1012 for (size_t i = 1; i < skipToFRUUpdateField; i++) 1013 { 1014 if (fruDataIter < fruData.size()) 1015 { 1016 fieldLength = getFieldLength(fruData[fruDataIter]); 1017 1018 if (fieldLength < 0) 1019 { 1020 break; 1021 } 1022 fruDataIter += 1 + fieldLength; 1023 } 1024 } 1025 fruAreaParams.updateFieldLoc = fruDataIter; 1026 1027 return true; 1028 } 1029 1030 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector. 1031 // Return true for success and false for failure. 1032 1033 bool copyRestFRUArea(std::vector<uint8_t>& fruData, 1034 const std::string& propertyName, 1035 struct FruArea& fruAreaParams, 1036 std::vector<uint8_t>& restFRUAreaFieldsData) 1037 { 1038 size_t fieldLoc = fruAreaParams.updateFieldLoc; 1039 size_t start = fruAreaParams.start; 1040 size_t fruAreaSize = fruAreaParams.size; 1041 1042 // Push post update fru field bytes to a vector 1043 ssize_t fieldLength = getFieldLength(fruData[fieldLoc]); 1044 if (fieldLength < 0) 1045 { 1046 std::cerr << "Property " << propertyName << " not present \n"; 1047 return false; 1048 } 1049 1050 size_t fruDataIter = 0; 1051 fruDataIter = fieldLoc; 1052 fruDataIter += 1 + fieldLength; 1053 size_t restFRUFieldsLoc = fruDataIter; 1054 size_t endOfFieldsLoc = 0; 1055 1056 if (fruDataIter < fruData.size()) 1057 { 1058 while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0) 1059 { 1060 if (fruDataIter >= (start + fruAreaSize)) 1061 { 1062 fruDataIter = start + fruAreaSize; 1063 break; 1064 } 1065 fruDataIter += 1 + fieldLength; 1066 } 1067 endOfFieldsLoc = fruDataIter; 1068 } 1069 1070 std::copy_n(fruData.begin() + restFRUFieldsLoc, 1071 endOfFieldsLoc - restFRUFieldsLoc + 1, 1072 std::back_inserter(restFRUAreaFieldsData)); 1073 1074 fruAreaParams.restFieldsLoc = restFRUFieldsLoc; 1075 fruAreaParams.restFieldsEnd = endOfFieldsLoc; 1076 1077 return true; 1078 } 1079 1080 // Get all device dbus path and match path with product name using 1081 // regular expression and find the device index for all devices. 1082 1083 std::optional<int> findIndexForFRU( 1084 boost::container::flat_map< 1085 std::pair<size_t, size_t>, 1086 std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap, 1087 std::string& productName) 1088 { 1089 int highest = -1; 1090 bool found = false; 1091 1092 for (const auto& busIface : dbusInterfaceMap) 1093 { 1094 std::string path = busIface.second->get_object_path(); 1095 if (std::regex_match(path, std::regex(productName + "(_\\d+|)$"))) 1096 { 1097 // Check if the match named has extra information. 1098 found = true; 1099 std::smatch baseMatch; 1100 1101 bool match = std::regex_match(path, baseMatch, 1102 std::regex(productName + "_(\\d+)$")); 1103 if (match) 1104 { 1105 if (baseMatch.size() == 2) 1106 { 1107 std::ssub_match baseSubMatch = baseMatch[1]; 1108 std::string base = baseSubMatch.str(); 1109 1110 int value = std::stoi(base); 1111 highest = (value > highest) ? value : highest; 1112 } 1113 } 1114 } 1115 } // end searching objects 1116 1117 if (!found) 1118 { 1119 return std::nullopt; 1120 } 1121 return highest; 1122 } 1123 1124 // This function does format fru data as per IPMI format and find the 1125 // productName in the formatted fru data, get that productName and return 1126 // productName if found or return NULL. 1127 1128 std::optional<std::string> getProductName( 1129 std::vector<uint8_t>& device, 1130 boost::container::flat_map<std::string, std::string>& formattedFRU, 1131 uint32_t bus, uint32_t address, size_t& unknownBusObjectCount) 1132 { 1133 std::string productName; 1134 1135 resCodes res = formatIPMIFRU(device, formattedFRU); 1136 if (res == resCodes::resErr) 1137 { 1138 std::cerr << "failed to parse FRU for device at bus " << bus 1139 << " address " << address << "\n"; 1140 return std::nullopt; 1141 } 1142 if (res == resCodes::resWarn) 1143 { 1144 std::cerr << "Warnings while parsing FRU for device at bus " << bus 1145 << " address " << address << "\n"; 1146 } 1147 1148 auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME"); 1149 // Not found under Board section or an empty string. 1150 if (productNameFind == formattedFRU.end() || 1151 productNameFind->second.empty()) 1152 { 1153 productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME"); 1154 } 1155 // Found under Product section and not an empty string. 1156 if (productNameFind != formattedFRU.end() && 1157 !productNameFind->second.empty()) 1158 { 1159 productName = productNameFind->second; 1160 std::regex illegalObject("[^A-Za-z0-9_]"); 1161 productName = std::regex_replace(productName, illegalObject, "_"); 1162 } 1163 else 1164 { 1165 productName = "UNKNOWN" + std::to_string(unknownBusObjectCount); 1166 unknownBusObjectCount++; 1167 } 1168 return productName; 1169 } 1170 1171 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address) 1172 { 1173 try 1174 { 1175 fruData = getFRUInfo(static_cast<uint16_t>(bus), 1176 static_cast<uint8_t>(address)); 1177 } 1178 catch (const std::invalid_argument& e) 1179 { 1180 std::cerr << "Failure getting FRU Info" << e.what() << "\n"; 1181 return false; 1182 } 1183 1184 return !fruData.empty(); 1185 } 1186 1187 bool isFieldEditable(std::string_view fieldName) 1188 { 1189 if (fieldName == "PRODUCT_ASSET_TAG") 1190 { 1191 return true; // PRODUCT_ASSET_TAG is always editable. 1192 } 1193 1194 if (!ENABLE_FRU_UPDATE_PROPERTY) 1195 { 1196 return false; // If FRU update is disabled, no fields are editable. 1197 } 1198 1199 // Editable fields 1200 constexpr std::array<std::string_view, 8> editableFields = { 1201 "MANUFACTURER", "PRODUCT_NAME", "PART_NUMBER", "VERSION", 1202 "SERIAL_NUMBER", "ASSET_TAG", "FRU_VERSION_ID", "INFO_AM"}; 1203 1204 // Find position of first underscore 1205 std::size_t pos = fieldName.find('_'); 1206 if (pos == std::string_view::npos || pos + 1 >= fieldName.size()) 1207 { 1208 return false; 1209 } 1210 1211 // Extract substring after the underscore 1212 std::string_view subField = fieldName.substr(pos + 1); 1213 1214 // Trim trailing digits 1215 while (!subField.empty() && (std::isdigit(subField.back()) != 0)) 1216 { 1217 subField.remove_suffix(1); 1218 } 1219 1220 // Match against editable fields 1221 return std::ranges::contains(editableFields, subField); 1222 } 1223