1 // SPDX-License-Identifier: Apache-2.0 2 // SPDX-FileCopyrightText: Copyright 2018 Intel Corporation 3 4 #include "fru_utils.hpp" 5 6 #include <phosphor-logging/lg2.hpp> 7 8 #include <array> 9 #include <cstddef> 10 #include <cstdint> 11 #include <filesystem> 12 #include <iomanip> 13 #include <numeric> 14 #include <set> 15 #include <sstream> 16 #include <string> 17 #include <vector> 18 19 extern "C" 20 { 21 // Include for I2C_SMBUS_BLOCK_MAX 22 #include <linux/i2c.h> 23 } 24 25 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1 26 27 std::tm intelEpoch() 28 { 29 std::tm val = {}; 30 val.tm_year = 1996 - 1900; 31 val.tm_mday = 1; 32 return val; 33 } 34 35 char sixBitToChar(uint8_t val) 36 { 37 return static_cast<char>((val & 0x3f) + ' '); 38 } 39 40 char bcdPlusToChar(uint8_t val) 41 { 42 val &= 0xf; 43 return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10]; 44 } 45 46 enum FRUDataEncoding 47 { 48 binary = 0x0, 49 bcdPlus = 0x1, 50 sixBitASCII = 0x2, 51 languageDependent = 0x3, 52 }; 53 54 enum MultiRecordType : uint8_t 55 { 56 powerSupplyInfo = 0x00, 57 dcOutput = 0x01, 58 dcLoad = 0x02, 59 managementAccessRecord = 0x03, 60 baseCompatibilityRecord = 0x04, 61 extendedCompatibilityRecord = 0x05, 62 resvASFSMBusDeviceRecord = 0x06, 63 resvASFLegacyDeviceAlerts = 0x07, 64 resvASFRemoteControl = 0x08, 65 extendedDCOutput = 0x09, 66 extendedDCLoad = 0x0A 67 }; 68 69 enum SubManagementAccessRecord : uint8_t 70 { 71 systemManagementURL = 0x01, 72 systemName = 0x02, 73 systemPingAddress = 0x03, 74 componentManagementURL = 0x04, 75 componentName = 0x05, 76 componentPingAddress = 0x06, 77 systemUniqueID = 0x07 78 }; 79 80 /* Decode FRU data into a std::string, given an input iterator and end. If the 81 * state returned is fruDataOk, then the resulting string is the decoded FRU 82 * data. The input iterator is advanced past the data consumed. 83 * 84 * On fruDataErr, we have lost synchronisation with the length bytes, so the 85 * iterator is no longer usable. 86 */ 87 std::pair<DecodeState, std::string> decodeFRUData( 88 std::span<const uint8_t>::const_iterator& iter, 89 std::span<const uint8_t>::const_iterator& end, bool isLangEng) 90 { 91 std::string value; 92 unsigned int i = 0; 93 94 /* we need at least one byte to decode the type/len header */ 95 if (iter == end) 96 { 97 lg2::error("Truncated FRU data"); 98 return make_pair(DecodeState::err, value); 99 } 100 101 uint8_t c = *(iter++); 102 103 /* 0xc1 is the end marker */ 104 if (c == 0xc1) 105 { 106 return make_pair(DecodeState::end, value); 107 } 108 109 /* decode type/len byte */ 110 uint8_t type = static_cast<uint8_t>(c >> 6); 111 uint8_t len = static_cast<uint8_t>(c & 0x3f); 112 113 /* we should have at least len bytes of data available overall */ 114 if (iter + len > end) 115 { 116 lg2::error("FRU data field extends past end of FRU area data"); 117 return make_pair(DecodeState::err, value); 118 } 119 120 switch (type) 121 { 122 case FRUDataEncoding::binary: 123 { 124 std::stringstream ss; 125 ss << std::hex << std::setfill('0'); 126 for (i = 0; i < len; i++, iter++) 127 { 128 uint8_t val = static_cast<uint8_t>(*iter); 129 ss << std::setw(2) << static_cast<int>(val); 130 } 131 value = ss.str(); 132 break; 133 } 134 case FRUDataEncoding::languageDependent: 135 /* For language-code dependent encodings, assume 8-bit ASCII */ 136 value = std::string(iter, iter + len); 137 iter += len; 138 139 /* English text is encoded in 8-bit ASCII + Latin 1. All other 140 * languages are required to use 2-byte unicode. FruDevice does not 141 * handle unicode. 142 */ 143 if (!isLangEng) 144 { 145 lg2::error("Error: Non english string is not supported "); 146 return make_pair(DecodeState::err, value); 147 } 148 149 break; 150 151 case FRUDataEncoding::bcdPlus: 152 value = std::string(); 153 for (i = 0; i < len; i++, iter++) 154 { 155 uint8_t val = *iter; 156 value.push_back(bcdPlusToChar(val >> 4)); 157 value.push_back(bcdPlusToChar(val & 0xf)); 158 } 159 break; 160 161 case FRUDataEncoding::sixBitASCII: 162 { 163 unsigned int accum = 0; 164 unsigned int accumBitLen = 0; 165 value = std::string(); 166 for (i = 0; i < len; i++, iter++) 167 { 168 accum |= *iter << accumBitLen; 169 accumBitLen += 8; 170 while (accumBitLen >= 6) 171 { 172 value.push_back(sixBitToChar(accum & 0x3f)); 173 accum >>= 6; 174 accumBitLen -= 6; 175 } 176 } 177 } 178 break; 179 180 default: 181 { 182 return make_pair(DecodeState::err, value); 183 } 184 } 185 186 return make_pair(DecodeState::ok, value); 187 } 188 189 bool checkLangEng(uint8_t lang) 190 { 191 // If Lang is not English then the encoding is defined as 2-byte UNICODE, 192 // but we don't support that. 193 if ((lang != 0U) && lang != 25) 194 { 195 lg2::error("Warning: languages other than English is not supported"); 196 // Return language flag as non english 197 return false; 198 } 199 return true; 200 } 201 202 /* This function verifies for other offsets to check if they are not 203 * falling under other field area 204 * 205 * fruBytes: Start of Fru data 206 * currentArea: Index of current area offset to be compared against all area 207 * offset and it is a multiple of 8 bytes as per specification 208 * len: Length of current area space and it is a multiple of 8 bytes 209 * as per specification 210 */ 211 bool verifyOffset(std::span<const uint8_t> fruBytes, fruAreas currentArea, 212 uint8_t len) 213 { 214 unsigned int fruBytesSize = fruBytes.size(); 215 216 // check if Fru data has at least 8 byte header 217 if (fruBytesSize <= fruBlockSize) 218 { 219 lg2::error("Error: trying to parse empty FRU"); 220 return false; 221 } 222 223 // Check range of passed currentArea value 224 if (currentArea > fruAreas::fruAreaMultirecord) 225 { 226 lg2::error("Error: Fru area is out of range"); 227 return false; 228 } 229 230 unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea); 231 if (currentAreaIndex > fruBytesSize) 232 { 233 lg2::error("Error: Fru area index is out of range"); 234 return false; 235 } 236 237 unsigned int start = fruBytes[currentAreaIndex]; 238 unsigned int end = start + len; 239 240 /* Verify each offset within the range of start and end */ 241 for (fruAreas area = fruAreas::fruAreaInternal; 242 area <= fruAreas::fruAreaMultirecord; ++area) 243 { 244 // skip the current offset 245 if (area == currentArea) 246 { 247 continue; 248 } 249 250 unsigned int areaIndex = getHeaderAreaFieldOffset(area); 251 if (areaIndex > fruBytesSize) 252 { 253 lg2::error("Error: Fru area index is out of range"); 254 return false; 255 } 256 257 unsigned int areaOffset = fruBytes[areaIndex]; 258 // if areaOffset is 0 means this area is not available so skip 259 if (areaOffset == 0) 260 { 261 continue; 262 } 263 264 // check for overlapping of current offset with given areaoffset 265 if (areaOffset == start || (areaOffset > start && areaOffset < end)) 266 { 267 lg2::error("{AREA1} offset is overlapping with {AREA2} offset", 268 "AREA1", getFruAreaName(currentArea), "AREA2", 269 getFruAreaName(area)); 270 return false; 271 } 272 } 273 return true; 274 } 275 276 static void parseMultirecordUUID( 277 std::span<const uint8_t> device, 278 boost::container::flat_map<std::string, std::string>& result) 279 { 280 constexpr size_t uuidDataLen = 16; 281 constexpr size_t multiRecordHeaderLen = 5; 282 /* UUID record data, plus one to skip past the sub-record type byte */ 283 constexpr size_t uuidRecordData = multiRecordHeaderLen + 1; 284 constexpr size_t multiRecordEndOfListMask = 0x80; 285 /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented 286 * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD 287 * 0xEE 0xFF 288 */ 289 const std::array<uint8_t, uuidDataLen> uuidCharOrder = { 290 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15}; 291 size_t offset = getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord); 292 if (offset >= device.size()) 293 { 294 throw std::runtime_error("Multirecord UUID offset is out of range"); 295 } 296 uint32_t areaOffset = device[offset]; 297 298 if (areaOffset == 0) 299 { 300 return; 301 } 302 303 areaOffset *= fruBlockSize; 304 std::span<const uint8_t>::const_iterator fruBytesIter = 305 device.begin() + areaOffset; 306 307 /* Verify area offset */ 308 if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter)) 309 { 310 return; 311 } 312 while (areaOffset + uuidRecordData + uuidDataLen <= device.size()) 313 { 314 if ((areaOffset < device.size()) && 315 (device[areaOffset] == 316 (uint8_t)MultiRecordType::managementAccessRecord)) 317 { 318 if ((areaOffset + multiRecordHeaderLen < device.size()) && 319 (device[areaOffset + multiRecordHeaderLen] == 320 (uint8_t)SubManagementAccessRecord::systemUniqueID)) 321 { 322 /* Layout of UUID: 323 * source: https://www.ietf.org/rfc/rfc4122.txt 324 * 325 * UUID binary format (16 bytes): 326 * 4B-2B-2B-2B-6B (big endian) 327 * 328 * UUID string is 36 length of characters (36 bytes): 329 * 0 9 14 19 24 330 * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 331 * be be be be be 332 * be means it should be converted to big endian. 333 */ 334 /* Get UUID bytes to UUID string */ 335 std::stringstream tmp; 336 tmp << std::hex << std::setfill('0'); 337 for (size_t i = 0; i < uuidDataLen; i++) 338 { 339 tmp << std::setw(2) 340 << static_cast<uint16_t>( 341 device[areaOffset + uuidRecordData + 342 uuidCharOrder[i]]); 343 } 344 std::string uuidStr = tmp.str(); 345 result["MULTIRECORD_UUID"] = 346 uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' + 347 uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' + 348 uuidStr.substr(20, 12); 349 break; 350 } 351 } 352 if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0) 353 { 354 break; 355 } 356 areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen; 357 } 358 } 359 360 resCodes decodeField( 361 std::span<const uint8_t>::const_iterator& fruBytesIter, 362 std::span<const uint8_t>::const_iterator& fruBytesIterEndArea, 363 const std::vector<std::string>& fruAreaFieldNames, size_t& fieldIndex, 364 DecodeState& state, bool isLangEng, const fruAreas& area, 365 boost::container::flat_map<std::string, std::string>& result) 366 { 367 auto res = decodeFRUData(fruBytesIter, fruBytesIterEndArea, isLangEng); 368 state = res.first; 369 std::string value = res.second; 370 std::string name; 371 bool isCustomField = false; 372 if (fieldIndex < fruAreaFieldNames.size()) 373 { 374 name = std::string(getFruAreaName(area)) + "_" + 375 fruAreaFieldNames.at(fieldIndex); 376 } 377 else 378 { 379 isCustomField = true; 380 name = std::string(getFruAreaName(area)) + "_" + fruCustomFieldName + 381 std::to_string(fieldIndex - fruAreaFieldNames.size() + 1); 382 } 383 384 if (state == DecodeState::ok) 385 { 386 // Strip non null characters and trailing spaces from the end 387 value.erase( 388 std::find_if(value.rbegin(), value.rend(), 389 [](char ch) { return ((ch != 0) && (ch != ' ')); }) 390 .base(), 391 value.end()); 392 if (isCustomField) 393 { 394 // Some MAC addresses are stored in a custom field, with 395 // "MAC:" prefixed on the value. If we see that, create a 396 // new field with the decoded data 397 if (value.starts_with("MAC: ")) 398 { 399 result["MAC_" + name] = value.substr(5); 400 } 401 } 402 result[name] = std::move(value); 403 ++fieldIndex; 404 } 405 else if (state == DecodeState::err) 406 { 407 lg2::error("Error while parsing {NAME}", "NAME", name); 408 409 // Cancel decoding if failed to parse any of mandatory 410 // fields 411 if (fieldIndex < fruAreaFieldNames.size()) 412 { 413 lg2::error("Failed to parse mandatory field "); 414 return resCodes::resErr; 415 } 416 return resCodes::resWarn; 417 } 418 else 419 { 420 if (fieldIndex < fruAreaFieldNames.size()) 421 { 422 lg2::error( 423 "Mandatory fields absent in FRU area {AREA} after {NAME}", 424 "AREA", getFruAreaName(area), "NAME", name); 425 return resCodes::resWarn; 426 } 427 } 428 return resCodes::resOK; 429 } 430 431 resCodes formatIPMIFRU( 432 std::span<const uint8_t> fruBytes, 433 boost::container::flat_map<std::string, std::string>& result) 434 { 435 resCodes ret = resCodes::resOK; 436 if (fruBytes.size() <= fruBlockSize) 437 { 438 lg2::error("Error: trying to parse empty FRU "); 439 return resCodes::resErr; 440 } 441 result["Common_Format_Version"] = 442 std::to_string(static_cast<int>(*fruBytes.begin())); 443 444 const std::vector<std::string>* fruAreaFieldNames = nullptr; 445 446 // Don't parse Internal and Multirecord areas 447 for (fruAreas area = fruAreas::fruAreaChassis; 448 area <= fruAreas::fruAreaProduct; ++area) 449 { 450 size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area)); 451 if (offset == 0) 452 { 453 continue; 454 } 455 offset *= fruBlockSize; 456 std::span<const uint8_t>::const_iterator fruBytesIter = 457 fruBytes.begin() + offset; 458 if (fruBytesIter + fruBlockSize >= fruBytes.end()) 459 { 460 lg2::error("Not enough data to parse "); 461 return resCodes::resErr; 462 } 463 // check for format version 1 464 if (*fruBytesIter != 0x01) 465 { 466 lg2::error("Unexpected version {VERSION}", "VERSION", 467 *fruBytesIter); 468 return resCodes::resErr; 469 } 470 ++fruBytesIter; 471 472 /* Verify other area offset for overlap with current area by passing 473 * length of current area offset pointed by *fruBytesIter 474 */ 475 if (!verifyOffset(fruBytes, area, *fruBytesIter)) 476 { 477 return resCodes::resErr; 478 } 479 480 size_t fruAreaSize = *fruBytesIter * fruBlockSize; 481 std::span<const uint8_t>::const_iterator fruBytesIterEndArea = 482 fruBytes.begin() + offset + fruAreaSize - 1; 483 ++fruBytesIter; 484 485 uint8_t fruComputedChecksum = 486 calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea); 487 if (fruComputedChecksum != *fruBytesIterEndArea) 488 { 489 std::stringstream ss; 490 ss << std::hex << std::setfill('0'); 491 ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n"; 492 ss << "\tComputed checksum: 0x" << std::setw(2) 493 << static_cast<int>(fruComputedChecksum) << "\n"; 494 ss << "\tThe read checksum: 0x" << std::setw(2) 495 << static_cast<int>(*fruBytesIterEndArea) << "\n"; 496 lg2::error("{ERR}", "ERR", ss.str()); 497 ret = resCodes::resWarn; 498 } 499 500 /* Set default language flag to true as Chassis Fru area are always 501 * encoded in English defined in Section 10 of Fru specification 502 */ 503 504 bool isLangEng = true; 505 switch (area) 506 { 507 case fruAreas::fruAreaChassis: 508 { 509 result["CHASSIS_TYPE"] = 510 std::to_string(static_cast<int>(*fruBytesIter)); 511 fruBytesIter += 1; 512 fruAreaFieldNames = &chassisFruAreas; 513 break; 514 } 515 case fruAreas::fruAreaBoard: 516 { 517 uint8_t lang = *fruBytesIter; 518 result["BOARD_LANGUAGE_CODE"] = 519 std::to_string(static_cast<int>(lang)); 520 isLangEng = checkLangEng(lang); 521 fruBytesIter += 1; 522 523 unsigned int minutes = 524 *fruBytesIter | *(fruBytesIter + 1) << 8 | 525 *(fruBytesIter + 2) << 16; 526 std::tm fruTime = intelEpoch(); 527 std::time_t timeValue = timegm(&fruTime); 528 timeValue += static_cast<long>(minutes) * 60; 529 fruTime = *std::gmtime(&timeValue); 530 531 // Tue Nov 20 23:08:00 2018 532 std::array<char, 32> timeString = {}; 533 auto bytes = std::strftime(timeString.data(), timeString.size(), 534 "%Y%m%dT%H%M%SZ", &fruTime); 535 if (bytes == 0) 536 { 537 lg2::error("invalid time string encountered"); 538 return resCodes::resErr; 539 } 540 541 result["BOARD_MANUFACTURE_DATE"] = 542 std::string_view(timeString.data(), bytes); 543 fruBytesIter += 3; 544 fruAreaFieldNames = &boardFruAreas; 545 break; 546 } 547 case fruAreas::fruAreaProduct: 548 { 549 uint8_t lang = *fruBytesIter; 550 result["PRODUCT_LANGUAGE_CODE"] = 551 std::to_string(static_cast<int>(lang)); 552 isLangEng = checkLangEng(lang); 553 fruBytesIter += 1; 554 fruAreaFieldNames = &productFruAreas; 555 break; 556 } 557 default: 558 { 559 lg2::error( 560 "Internal error: unexpected FRU area index: {INDEX} ", 561 "INDEX", static_cast<int>(area)); 562 return resCodes::resErr; 563 } 564 } 565 size_t fieldIndex = 0; 566 DecodeState state = DecodeState::ok; 567 do 568 { 569 resCodes decodeRet = decodeField(fruBytesIter, fruBytesIterEndArea, 570 *fruAreaFieldNames, fieldIndex, 571 state, isLangEng, area, result); 572 if (decodeRet == resCodes::resErr) 573 { 574 return resCodes::resErr; 575 } 576 if (decodeRet == resCodes::resWarn) 577 { 578 ret = decodeRet; 579 } 580 } while (state == DecodeState::ok); 581 for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++) 582 { 583 uint8_t c = *fruBytesIter; 584 if (c != 0U) 585 { 586 lg2::error("Non-zero byte after EndOfFields in FRU area {AREA}", 587 "AREA", getFruAreaName(area)); 588 ret = resCodes::resWarn; 589 break; 590 } 591 } 592 } 593 594 /* Parsing the Multirecord UUID */ 595 parseMultirecordUUID(fruBytes, result); 596 597 return ret; 598 } 599 600 // Calculate new checksum for fru info area 601 uint8_t calculateChecksum(std::span<const uint8_t>::const_iterator iter, 602 std::span<const uint8_t>::const_iterator end) 603 { 604 constexpr int checksumMod = 256; 605 uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0)); 606 return (checksumMod - sum) % checksumMod; 607 } 608 609 uint8_t calculateChecksum(std::span<const uint8_t> fruAreaData) 610 { 611 return calculateChecksum(fruAreaData.begin(), fruAreaData.end()); 612 } 613 614 // Update new fru area length & 615 // Update checksum at new checksum location 616 // Return the offset of the area checksum byte 617 unsigned int updateFRUAreaLenAndChecksum( 618 std::vector<uint8_t>& fruData, size_t fruAreaStart, 619 size_t fruAreaEndOfFieldsOffset, size_t fruAreaEndOffset) 620 { 621 size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart; 622 623 // fill zeros for any remaining unused space 624 std::fill(fruData.begin() + fruAreaEndOfFieldsOffset, 625 fruData.begin() + fruAreaEndOffset, 0); 626 627 size_t mod = traverseFRUAreaIndex % fruBlockSize; 628 size_t checksumLoc = 0; 629 if (mod == 0U) 630 { 631 traverseFRUAreaIndex += (fruBlockSize); 632 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1); 633 } 634 else 635 { 636 traverseFRUAreaIndex += (fruBlockSize - mod); 637 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1); 638 } 639 640 size_t newFRUAreaLen = 641 (traverseFRUAreaIndex / fruBlockSize) + 642 static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0); 643 size_t fruAreaLengthLoc = fruAreaStart + 1; 644 fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen); 645 646 // Calculate new checksum 647 std::vector<uint8_t> finalFRUData; 648 std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart, 649 std::back_inserter(finalFRUData)); 650 651 fruData[checksumLoc] = calculateChecksum(finalFRUData); 652 return checksumLoc; 653 } 654 655 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue) 656 { 657 constexpr uint8_t typeLenMask = 0x3F; 658 constexpr uint8_t endOfFields = 0xC1; 659 if (fruFieldTypeLenValue == endOfFields) 660 { 661 return -1; 662 } 663 return fruFieldTypeLenValue & typeLenMask; 664 } 665 666 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData) 667 { 668 // ipmi spec format version number is currently at 1, verify it 669 if (blockData[0] != fruVersion) 670 { 671 lg2::debug( 672 "FRU spec version {VERSION} not supported. Supported version is {SUPPORTED_VERSION}", 673 "VERSION", lg2::hex, blockData[0], "SUPPORTED_VERSION", lg2::hex, 674 fruVersion); 675 return false; 676 } 677 678 // verify pad is set to 0 679 if (blockData[6] != 0x0) 680 { 681 lg2::debug("Pad value in header is non zero, value is {VALUE}", "VALUE", 682 lg2::hex, blockData[6]); 683 return false; 684 } 685 686 // verify offsets are 0, or don't point to another offset 687 std::set<uint8_t> foundOffsets; 688 for (int ii = 1; ii < 6; ii++) 689 { 690 if (blockData[ii] == 0) 691 { 692 continue; 693 } 694 auto inserted = foundOffsets.insert(blockData[ii]); 695 if (!inserted.second) 696 { 697 return false; 698 } 699 } 700 701 // validate checksum 702 size_t sum = 0; 703 for (int jj = 0; jj < 7; jj++) 704 { 705 sum += blockData[jj]; 706 } 707 sum = (256 - sum) & 0xFF; 708 709 if (sum != blockData[7]) 710 { 711 lg2::debug( 712 "Checksum {CHECKSUM} is invalid. calculated checksum is {CALCULATED_CHECKSUM}", 713 "CHECKSUM", lg2::hex, blockData[7], "CALCULATED_CHECKSUM", lg2::hex, 714 sum); 715 return false; 716 } 717 return true; 718 } 719 720 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp, 721 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData, 722 off_t& baseOffset) 723 { 724 if (reader.read(baseOffset, 0x8, blockData.data()) < 0) 725 { 726 lg2::error("failed to read {ERR} base offset {OFFSET}", "ERR", 727 errorHelp, "OFFSET", baseOffset); 728 return false; 729 } 730 731 // check the header checksum 732 if (validateHeader(blockData)) 733 { 734 return true; 735 } 736 737 // only continue the search if we just looked at 0x0. 738 if (baseOffset != 0) 739 { 740 return false; 741 } 742 743 // now check for special cases where the IPMI data is at an offset 744 745 // check if blockData starts with tyanHeader 746 const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'}; 747 if (blockData.size() >= tyanHeader.size() && 748 std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin())) 749 { 750 // look for the FRU header at offset 0x6000 751 baseOffset = 0x6000; 752 return findFRUHeader(reader, errorHelp, blockData, baseOffset); 753 } 754 755 // check if blockData starts with gigabyteHeader 756 const std::vector<uint8_t> gigabyteHeader = {'G', 'I', 'G', 'A', 757 'B', 'Y', 'T', 'E'}; 758 if (blockData.size() >= gigabyteHeader.size() && 759 std::equal(gigabyteHeader.begin(), gigabyteHeader.end(), 760 blockData.begin())) 761 { 762 // look for the FRU header at offset 0x4000 763 baseOffset = 0x4000; 764 return findFRUHeader(reader, errorHelp, blockData, baseOffset); 765 } 766 767 lg2::debug("Illegal header {HEADER} base offset {OFFSET}", "HEADER", 768 errorHelp, "OFFSET", baseOffset); 769 770 return false; 771 } 772 773 std::pair<std::vector<uint8_t>, bool> readFRUContents( 774 FRUReader& reader, const std::string& errorHelp) 775 { 776 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{}; 777 off_t baseOffset = 0x0; 778 779 if (!findFRUHeader(reader, errorHelp, blockData, baseOffset)) 780 { 781 return {{}, false}; 782 } 783 784 std::vector<uint8_t> device; 785 device.insert(device.end(), blockData.begin(), 786 std::next(blockData.begin(), 8)); 787 788 bool hasMultiRecords = false; 789 size_t fruLength = fruBlockSize; // At least FRU header is present 790 unsigned int prevOffset = 0; 791 for (fruAreas area = fruAreas::fruAreaInternal; 792 area <= fruAreas::fruAreaMultirecord; ++area) 793 { 794 // Offset value can be 255. 795 unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)]; 796 if (areaOffset == 0) 797 { 798 continue; 799 } 800 801 /* Check for offset order, as per Section 17 of FRU specification, FRU 802 * information areas are required to be in order in FRU data layout 803 * which means all offset value should be in increasing order or can be 804 * 0 if that area is not present 805 */ 806 if (areaOffset <= prevOffset) 807 { 808 lg2::error( 809 "Fru area offsets are not in required order as per Section 17 of Fru specification"); 810 return {{}, true}; 811 } 812 prevOffset = areaOffset; 813 814 // MultiRecords are different. area is not tracking section, it's 815 // walking the common header. 816 if (area == fruAreas::fruAreaMultirecord) 817 { 818 hasMultiRecords = true; 819 break; 820 } 821 822 areaOffset *= fruBlockSize; 823 824 if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0) 825 { 826 lg2::error("failed to read {ERR} base offset {OFFSET}", "ERR", 827 errorHelp, "OFFSET", baseOffset); 828 return {{}, true}; 829 } 830 831 // Ignore data type (blockData is already unsigned). 832 size_t length = blockData[1] * fruBlockSize; 833 areaOffset += length; 834 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength; 835 } 836 837 if (hasMultiRecords) 838 { 839 // device[area count] is the index to the last area because the 0th 840 // entry is not an offset in the common header. 841 unsigned int areaOffset = 842 device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)]; 843 areaOffset *= fruBlockSize; 844 845 // the multi-area record header is 5 bytes long. 846 constexpr size_t multiRecordHeaderSize = 5; 847 constexpr uint8_t multiRecordEndOfListMask = 0x80; 848 849 // Sanity hard-limit to 64KB. 850 while (areaOffset < std::numeric_limits<uint16_t>::max()) 851 { 852 // In multi-area, the area offset points to the 0th record, each 853 // record has 3 bytes of the header we care about. 854 if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0) 855 { 856 lg2::error("failed to read {STR} base offset {OFFSET}", "STR", 857 errorHelp, "OFFSET", baseOffset); 858 return {{}, true}; 859 } 860 861 // Ok, let's check the record length, which is in bytes (unsigned, 862 // up to 255, so blockData should hold uint8_t not char) 863 size_t recordLength = blockData[2]; 864 areaOffset += (recordLength + multiRecordHeaderSize); 865 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength; 866 867 // If this is the end of the list bail. 868 if ((blockData[1] & multiRecordEndOfListMask) != 0) 869 { 870 break; 871 } 872 } 873 } 874 875 // You already copied these first 8 bytes (the ipmi fru header size) 876 fruLength -= std::min(fruBlockSize, fruLength); 877 878 int readOffset = fruBlockSize; 879 880 while (fruLength > 0) 881 { 882 size_t requestLength = 883 std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength); 884 885 if (reader.read(baseOffset + readOffset, requestLength, 886 blockData.data()) < 0) 887 { 888 lg2::error("failed to read {ERR} base offset {OFFSET}", "ERR", 889 errorHelp, "OFFSET", baseOffset); 890 return {{}, true}; 891 } 892 893 device.insert(device.end(), blockData.begin(), 894 std::next(blockData.begin(), requestLength)); 895 896 readOffset += requestLength; 897 fruLength -= std::min(requestLength, fruLength); 898 } 899 900 return {device, true}; 901 } 902 903 unsigned int getHeaderAreaFieldOffset(fruAreas area) 904 { 905 return static_cast<unsigned int>(area) + 1; 906 } 907 908 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address) 909 { 910 auto deviceMap = busMap.find(bus); 911 if (deviceMap == busMap.end()) 912 { 913 throw std::invalid_argument("Invalid Bus."); 914 } 915 auto device = deviceMap->second->find(address); 916 if (device == deviceMap->second->end()) 917 { 918 throw std::invalid_argument("Invalid Address."); 919 } 920 std::vector<uint8_t>& ret = device->second; 921 922 return ret; 923 } 924 925 static bool updateHeaderChecksum(std::vector<uint8_t>& fruData) 926 { 927 if (fruData.size() < fruBlockSize) 928 { 929 lg2::debug("FRU data is too small to contain a valid header."); 930 return false; 931 } 932 933 uint8_t& checksumInBytes = fruData[7]; 934 uint8_t checksum = 935 calculateChecksum({fruData.begin(), fruData.begin() + 7}); 936 std::swap(checksumInBytes, checksum); 937 938 if (checksumInBytes != checksum) 939 { 940 lg2::debug( 941 "FRU header checksum updated from {OLD_CHECKSUM} to {NEW_CHECKSUM}", 942 "OLD_CHECKSUM", static_cast<int>(checksum), "NEW_CHECKSUM", 943 static_cast<int>(checksumInBytes)); 944 } 945 return true; 946 } 947 948 bool updateAreaChecksum(std::vector<uint8_t>& fruArea) 949 { 950 if (fruArea.size() < fruBlockSize) 951 { 952 lg2::debug("FRU area is too small to contain a valid header."); 953 return false; 954 } 955 if (fruArea.size() % fruBlockSize != 0) 956 { 957 lg2::debug("FRU area size is not a multiple of {SIZE} bytes.", "SIZE", 958 fruBlockSize); 959 return false; 960 } 961 962 uint8_t oldcksum = fruArea[fruArea.size() - 1]; 963 964 fruArea[fruArea.size() - 1] = 965 0; // Reset checksum byte to 0 before recalculating 966 fruArea[fruArea.size() - 1] = calculateChecksum(fruArea); 967 968 if (oldcksum != fruArea[fruArea.size() - 1]) 969 { 970 lg2::debug( 971 "FRU area checksum updated from {OLD_CHECKSUM} to {NEW_CHECKSUM}", 972 "OLD_CHECKSUM", static_cast<int>(oldcksum), "NEW_CHECKSUM", 973 static_cast<int>(fruArea[fruArea.size() - 1])); 974 } 975 return true; 976 } 977 978 static std::optional<size_t> calculateAreaSize( 979 fruAreas area, std::span<const uint8_t> fruData, size_t areaOffset) 980 { 981 switch (area) 982 { 983 case fruAreas::fruAreaChassis: 984 case fruAreas::fruAreaBoard: 985 case fruAreas::fruAreaProduct: 986 if (areaOffset + 1 >= fruData.size()) 987 { 988 return std::nullopt; 989 } 990 return fruData[areaOffset + 1] * fruBlockSize; // Area size in bytes 991 case fruAreas::fruAreaInternal: 992 { 993 // Internal area size: It is difference between the next area 994 // offset and current area offset 995 for (fruAreas areaIt = fruAreas::fruAreaChassis; 996 areaIt <= fruAreas::fruAreaMultirecord; ++areaIt) 997 { 998 size_t headerOffset = getHeaderAreaFieldOffset(areaIt); 999 if (headerOffset >= fruData.size()) 1000 { 1001 return std::nullopt; 1002 } 1003 size_t nextAreaOffset = fruData[headerOffset]; 1004 if (nextAreaOffset != 0) 1005 { 1006 return nextAreaOffset * fruBlockSize - areaOffset; 1007 } 1008 } 1009 return std::nullopt; 1010 } 1011 break; 1012 case fruAreas::fruAreaMultirecord: 1013 // Multirecord area size. 1014 return fruData.size() - areaOffset; // Area size in bytes 1015 default: 1016 lg2::error("Invalid FRU area: {AREA}", "AREA", 1017 static_cast<int>(area)); 1018 } 1019 return std::nullopt; 1020 } 1021 1022 static size_t getBlockCount(size_t byteCount) 1023 { 1024 size_t blocks = (byteCount + fruBlockSize - 1) / fruBlockSize; 1025 // if we're perfectly aligned, we need another block for the checksum 1026 if ((byteCount % fruBlockSize) == 0) 1027 { 1028 blocks++; 1029 } 1030 return blocks; 1031 } 1032 1033 bool disassembleFruData(std::vector<uint8_t>& fruData, 1034 std::vector<std::vector<uint8_t>>& areasData) 1035 { 1036 if (fruData.size() < 8) 1037 { 1038 lg2::debug("FRU data is too small to contain a valid header."); 1039 return false; 1040 } 1041 1042 // Clear areasData before disassembling 1043 areasData.clear(); 1044 1045 // Iterate through all areas & store each area data in a vector. 1046 for (fruAreas area = fruAreas::fruAreaInternal; 1047 area <= fruAreas::fruAreaMultirecord; ++area) 1048 { 1049 size_t areaOffset = fruData[getHeaderAreaFieldOffset(area)]; 1050 1051 if (areaOffset == 0) 1052 { 1053 // Store empty area data for areas that are not present 1054 areasData.emplace_back(); 1055 continue; // Skip areas that are not present 1056 } 1057 areaOffset *= fruBlockSize; // Convert to byte offset 1058 1059 std::optional<size_t> areaSize = 1060 calculateAreaSize(area, fruData, areaOffset); 1061 if (!areaSize) 1062 { 1063 return false; 1064 } 1065 1066 if ((areaOffset + *areaSize) > fruData.size()) 1067 { 1068 lg2::error("Area offset + size exceeds FRU data size."); 1069 return false; 1070 } 1071 1072 areasData.emplace_back(fruData.begin() + areaOffset, 1073 fruData.begin() + areaOffset + *areaSize); 1074 } 1075 1076 return true; 1077 } 1078 1079 struct FieldInfo 1080 { 1081 size_t length; 1082 size_t index; 1083 }; 1084 1085 static std::optional<FieldInfo> findOrCreateField( 1086 std::vector<uint8_t>& areaData, const std::string& propertyName, 1087 const fruAreas& fruAreaToUpdate) 1088 { 1089 int fieldIndex = 0; 1090 int fieldLength = 0; 1091 std::string areaName = propertyName.substr(0, propertyName.find('_')); 1092 std::string propertyNamePrefix = areaName + "_"; 1093 const std::vector<std::string>* fruAreaFieldNames = nullptr; 1094 1095 switch (fruAreaToUpdate) 1096 { 1097 case fruAreas::fruAreaChassis: 1098 fruAreaFieldNames = &chassisFruAreas; 1099 fieldIndex = 3; 1100 break; 1101 case fruAreas::fruAreaBoard: 1102 fruAreaFieldNames = &boardFruAreas; 1103 fieldIndex = 6; 1104 break; 1105 case fruAreas::fruAreaProduct: 1106 fruAreaFieldNames = &productFruAreas; 1107 fieldIndex = 3; 1108 break; 1109 default: 1110 lg2::info("Invalid FRU area: {AREA}", "AREA", 1111 static_cast<int>(fruAreaToUpdate)); 1112 return std::nullopt; 1113 } 1114 1115 for (const auto& field : *fruAreaFieldNames) 1116 { 1117 fieldLength = getFieldLength(areaData[fieldIndex]); 1118 if (fieldLength < 0) 1119 { 1120 areaData.insert(areaData.begin() + fieldIndex, 0xc0); 1121 fieldLength = 0; 1122 } 1123 1124 if (propertyNamePrefix + field == propertyName) 1125 { 1126 return FieldInfo{static_cast<size_t>(fieldLength), 1127 static_cast<size_t>(fieldIndex)}; 1128 } 1129 fieldIndex += 1 + fieldLength; 1130 } 1131 1132 size_t pos = propertyName.find(fruCustomFieldName); 1133 if (pos == std::string::npos) 1134 { 1135 return std::nullopt; 1136 } 1137 1138 // Get field after pos 1139 std::string customFieldIdx = 1140 propertyName.substr(pos + fruCustomFieldName.size()); 1141 1142 // Check if customFieldIdx is a number 1143 if (!std::all_of(customFieldIdx.begin(), customFieldIdx.end(), ::isdigit)) 1144 { 1145 return std::nullopt; 1146 } 1147 1148 size_t customFieldIndex = std::stoi(customFieldIdx); 1149 1150 // insert custom fields up to the index we want 1151 for (size_t i = 0; i < customFieldIndex; i++) 1152 { 1153 fieldLength = getFieldLength(areaData[fieldIndex]); 1154 if (fieldLength < 0) 1155 { 1156 areaData.insert(areaData.begin() + fieldIndex, 0xc0); 1157 fieldLength = 0; 1158 } 1159 fieldIndex += 1 + fieldLength; 1160 } 1161 1162 fieldIndex -= (fieldLength + 1); 1163 fieldLength = getFieldLength(areaData[fieldIndex]); 1164 return FieldInfo{static_cast<size_t>(fieldLength), 1165 static_cast<size_t>(fieldIndex)}; 1166 } 1167 1168 static std::optional<size_t> findEndOfFieldMarker(std::span<uint8_t> bytes) 1169 { 1170 // we're skipping the checksum 1171 // this function assumes a properly sized and formatted area 1172 static uint8_t constexpr endOfFieldsByte = 0xc1; 1173 for (int index = bytes.size() - 2; index >= 0; --index) 1174 { 1175 if (bytes[index] == endOfFieldsByte) 1176 { 1177 return index; 1178 } 1179 } 1180 return std::nullopt; 1181 } 1182 1183 static std::optional<size_t> getNonPaddedSizeOfArea(std::span<uint8_t> bytes) 1184 { 1185 if (auto endOfFields = findEndOfFieldMarker(bytes)) 1186 { 1187 return *endOfFields + 1; 1188 } 1189 return std::nullopt; 1190 } 1191 1192 bool setField(const fruAreas& fruAreaToUpdate, std::vector<uint8_t>& areaData, 1193 const std::string& propertyName, const std::string& value) 1194 { 1195 if (value.size() == 1 || value.size() > 63) 1196 { 1197 lg2::error("Invalid value {VALUE} for field {PROP}", "VALUE", value, 1198 "PROP", propertyName); 1199 return false; 1200 } 1201 1202 // This is inneficient, but the alternative requires 1203 // a bunch of complicated indexing and search to 1204 // figure out if we cross a block boundary 1205 // if we feel that this is too inneficient in the future, 1206 // we can implement that. 1207 std::vector<uint8_t> tmpBuffer = areaData; 1208 1209 auto fieldInfo = 1210 findOrCreateField(tmpBuffer, propertyName, fruAreaToUpdate); 1211 1212 if (!fieldInfo) 1213 { 1214 lg2::error("Field {FIELD} not found in area {AREA}", "FIELD", 1215 propertyName, "AREA", getFruAreaName(fruAreaToUpdate)); 1216 return false; 1217 } 1218 1219 auto fieldIt = tmpBuffer.begin() + fieldInfo->index; 1220 // Erase the existing field content. 1221 tmpBuffer.erase(fieldIt, fieldIt + fieldInfo->length + 1); 1222 // Insert the new field value 1223 tmpBuffer.insert(fieldIt, 0xc0 | value.size()); 1224 tmpBuffer.insert_range(fieldIt + 1, value); 1225 1226 auto newSize = getNonPaddedSizeOfArea(tmpBuffer); 1227 auto oldSize = getNonPaddedSizeOfArea(areaData); 1228 1229 if (!oldSize || !newSize) 1230 { 1231 lg2::error("Failed to find the size of the area"); 1232 return false; 1233 } 1234 1235 size_t newSizePadded = getBlockCount(*newSize); 1236 #ifndef ENABLE_FRU_AREA_RESIZE 1237 1238 size_t oldSizePadded = getBlockCount(*oldSize); 1239 1240 if (newSizePadded != oldSizePadded) 1241 { 1242 lg2::error( 1243 "FRU area {AREA} resize is disabled, cannot increase size from {OLD_SIZE} to {NEW_SIZE}", 1244 "AREA", getFruAreaName(fruAreaToUpdate), "OLD_SIZE", 1245 static_cast<int>(oldSizePadded), "NEW_SIZE", 1246 static_cast<int>(newSizePadded)); 1247 return false; 1248 } 1249 #endif 1250 // Resize the buffer as per numOfBlocks & pad with zeros 1251 tmpBuffer.resize(newSizePadded * fruBlockSize, 0); 1252 1253 // Update the length field 1254 tmpBuffer[1] = newSizePadded; 1255 updateAreaChecksum(tmpBuffer); 1256 1257 areaData = std::move(tmpBuffer); 1258 1259 return true; 1260 } 1261 1262 bool assembleFruData(std::vector<uint8_t>& fruData, 1263 const std::vector<std::vector<uint8_t>>& areasData) 1264 { 1265 for (const auto& area : areasData) 1266 { 1267 if ((area.size() % fruBlockSize) != 0U) 1268 { 1269 lg2::error("unaligned area sent to assembleFruData"); 1270 return false; 1271 } 1272 } 1273 1274 // Clear the existing FRU data 1275 fruData.clear(); 1276 fruData.resize(8); // Start with the header size 1277 1278 // Write the header 1279 fruData[0] = fruVersion; // Version 1280 fruData[1] = 0; // Internal area offset 1281 fruData[2] = 0; // Chassis area offset 1282 fruData[3] = 0; // Board area offset 1283 fruData[4] = 0; // Product area offset 1284 fruData[5] = 0; // Multirecord area offset 1285 fruData[6] = 0; // Pad 1286 fruData[7] = 0; // Checksum (to be updated later) 1287 1288 size_t writeOffset = 8; // Start writing after the header 1289 1290 for (fruAreas area = fruAreas::fruAreaInternal; 1291 area <= fruAreas::fruAreaMultirecord; ++area) 1292 { 1293 const auto& areaBytes = areasData[static_cast<size_t>(area)]; 1294 1295 if (areaBytes.empty()) 1296 { 1297 lg2::debug("Skipping empty area: {AREA}", "AREA", 1298 getFruAreaName(area)); 1299 continue; // Skip areas that are not present 1300 } 1301 1302 // Set the area offset in the header 1303 fruData[getHeaderAreaFieldOffset(area)] = writeOffset / fruBlockSize; 1304 fruData.append_range(areaBytes); 1305 writeOffset += areaBytes.size(); 1306 } 1307 1308 // Update the header checksum 1309 if (!updateHeaderChecksum(fruData)) 1310 { 1311 lg2::error("failed to update header checksum"); 1312 return false; 1313 } 1314 1315 return true; 1316 } 1317 1318 // Create a dummy area in areData variable based on specified fruArea 1319 bool createDummyArea(fruAreas fruArea, std::vector<uint8_t>& areaData) 1320 { 1321 uint8_t numOfFields = 0; 1322 uint8_t numOfBlocks = 0; 1323 // Clear the areaData vector 1324 areaData.clear(); 1325 1326 // Set the version, length, and other fields 1327 areaData.push_back(fruVersion); // Version 1 1328 areaData.push_back(0); // Length (to be updated later) 1329 1330 switch (fruArea) 1331 { 1332 case fruAreas::fruAreaChassis: 1333 areaData.push_back(0x00); // Chassis type 1334 numOfFields = chassisFruAreas.size(); 1335 break; 1336 case fruAreas::fruAreaBoard: 1337 areaData.push_back(0x00); // Board language code (default) 1338 areaData.insert(areaData.end(), 1339 {0x00, 0x00, 1340 0x00}); // Board manufacturer date (default) 1341 numOfFields = boardFruAreas.size(); 1342 break; 1343 case fruAreas::fruAreaProduct: 1344 areaData.push_back(0x00); // Product language code (default) 1345 numOfFields = productFruAreas.size(); 1346 break; 1347 default: 1348 lg2::debug("Invalid FRU area to create: {AREA}", "AREA", 1349 static_cast<int>(fruArea)); 1350 return false; 1351 } 1352 1353 for (size_t i = 0; i < numOfFields; ++i) 1354 { 1355 areaData.push_back(0xc0); // Empty field type 1356 } 1357 1358 // Add EndOfFields marker 1359 areaData.push_back(0xC1); 1360 numOfBlocks = (areaData.size() + fruBlockSize - 1) / 1361 fruBlockSize; // Calculate number of blocks needed 1362 areaData.resize(numOfBlocks * fruBlockSize, 0); // Fill with zeros 1363 areaData[1] = numOfBlocks; // Update length field 1364 updateAreaChecksum(areaData); 1365 1366 return true; 1367 } 1368 1369 // Iterate FruArea Names and find start and size of the fru area that contains 1370 // the propertyName and the field start location for the property. fruAreaParams 1371 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets 1372 // updated/returned if successful. 1373 1374 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData, 1375 const std::string& propertyName, 1376 struct FruArea& fruAreaParams) 1377 { 1378 const std::vector<std::string>* fruAreaFieldNames = nullptr; 1379 1380 uint8_t fruAreaOffsetFieldValue = 0; 1381 size_t offset = 0; 1382 std::string areaName = propertyName.substr(0, propertyName.find('_')); 1383 std::string propertyNamePrefix = areaName + "_"; 1384 auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName); 1385 if (it == fruAreaNames.end()) 1386 { 1387 lg2::error("Can't parse area name for property {PROP} ", "PROP", 1388 propertyName); 1389 return false; 1390 } 1391 fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin()); 1392 fruAreaOffsetFieldValue = 1393 fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)]; 1394 switch (fruAreaToUpdate) 1395 { 1396 case fruAreas::fruAreaChassis: 1397 offset = 3; // chassis part number offset. Skip fixed first 3 bytes 1398 fruAreaFieldNames = &chassisFruAreas; 1399 break; 1400 case fruAreas::fruAreaBoard: 1401 offset = 6; // board manufacturer offset. Skip fixed first 6 bytes 1402 fruAreaFieldNames = &boardFruAreas; 1403 break; 1404 case fruAreas::fruAreaProduct: 1405 // Manufacturer name offset. Skip fixed first 3 product fru bytes 1406 // i.e. version, area length and language code 1407 offset = 3; 1408 fruAreaFieldNames = &productFruAreas; 1409 break; 1410 default: 1411 lg2::error("Invalid PropertyName {PROP}", "PROP", propertyName); 1412 return false; 1413 } 1414 if (fruAreaOffsetFieldValue == 0) 1415 { 1416 lg2::error("FRU Area for {PROP} not present ", "PROP", propertyName); 1417 return false; 1418 } 1419 1420 fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize; 1421 fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize; 1422 fruAreaParams.end = fruAreaParams.start + fruAreaParams.size; 1423 size_t fruDataIter = fruAreaParams.start + offset; 1424 size_t skipToFRUUpdateField = 0; 1425 ssize_t fieldLength = 0; 1426 1427 bool found = false; 1428 for (const auto& field : *fruAreaFieldNames) 1429 { 1430 skipToFRUUpdateField++; 1431 if (propertyName == propertyNamePrefix + field) 1432 { 1433 found = true; 1434 break; 1435 } 1436 } 1437 if (!found) 1438 { 1439 std::size_t pos = propertyName.find(fruCustomFieldName); 1440 if (pos == std::string::npos) 1441 { 1442 lg2::error("PropertyName doesn't exist in FRU Area Vectors: {PROP}", 1443 "PROP", propertyName); 1444 return false; 1445 } 1446 std::string fieldNumStr = 1447 propertyName.substr(pos + fruCustomFieldName.length()); 1448 size_t fieldNum = std::stoi(fieldNumStr); 1449 if (fieldNum == 0) 1450 { 1451 lg2::error("PropertyName not recognized: {PROP}", "PROP", 1452 propertyName); 1453 return false; 1454 } 1455 skipToFRUUpdateField += fieldNum; 1456 } 1457 1458 for (size_t i = 1; i < skipToFRUUpdateField; i++) 1459 { 1460 if (fruDataIter < fruData.size()) 1461 { 1462 fieldLength = getFieldLength(fruData[fruDataIter]); 1463 1464 if (fieldLength < 0) 1465 { 1466 break; 1467 } 1468 fruDataIter += 1 + fieldLength; 1469 } 1470 } 1471 fruAreaParams.updateFieldLoc = fruDataIter; 1472 1473 return true; 1474 } 1475 1476 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector. 1477 // Return true for success and false for failure. 1478 1479 bool copyRestFRUArea(std::vector<uint8_t>& fruData, 1480 const std::string& propertyName, 1481 struct FruArea& fruAreaParams, 1482 std::vector<uint8_t>& restFRUAreaFieldsData) 1483 { 1484 size_t fieldLoc = fruAreaParams.updateFieldLoc; 1485 size_t start = fruAreaParams.start; 1486 size_t fruAreaSize = fruAreaParams.size; 1487 1488 // Push post update fru field bytes to a vector 1489 ssize_t fieldLength = getFieldLength(fruData[fieldLoc]); 1490 if (fieldLength < 0) 1491 { 1492 lg2::error("Property {PROP} not present ", "PROP", propertyName); 1493 return false; 1494 } 1495 1496 size_t fruDataIter = 0; 1497 fruDataIter = fieldLoc; 1498 fruDataIter += 1 + fieldLength; 1499 size_t restFRUFieldsLoc = fruDataIter; 1500 size_t endOfFieldsLoc = 0; 1501 1502 if (fruDataIter < fruData.size()) 1503 { 1504 while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0) 1505 { 1506 if (fruDataIter >= (start + fruAreaSize)) 1507 { 1508 fruDataIter = start + fruAreaSize; 1509 break; 1510 } 1511 fruDataIter += 1 + fieldLength; 1512 } 1513 endOfFieldsLoc = fruDataIter; 1514 } 1515 1516 std::copy_n(fruData.begin() + restFRUFieldsLoc, 1517 endOfFieldsLoc - restFRUFieldsLoc + 1, 1518 std::back_inserter(restFRUAreaFieldsData)); 1519 1520 fruAreaParams.restFieldsLoc = restFRUFieldsLoc; 1521 fruAreaParams.restFieldsEnd = endOfFieldsLoc; 1522 1523 return true; 1524 } 1525 1526 // Get all device dbus path and match path with product name using 1527 // regular expression and find the device index for all devices. 1528 1529 std::optional<int> findIndexForFRU( 1530 boost::container::flat_map< 1531 std::pair<size_t, size_t>, 1532 std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap, 1533 std::string& productName) 1534 { 1535 int highest = -1; 1536 bool found = false; 1537 1538 for (const auto& busIface : dbusInterfaceMap) 1539 { 1540 std::string path = busIface.second->get_object_path(); 1541 if (std::regex_match(path, std::regex(productName + "(_\\d+|)$"))) 1542 { 1543 // Check if the match named has extra information. 1544 found = true; 1545 std::smatch baseMatch; 1546 1547 bool match = std::regex_match(path, baseMatch, 1548 std::regex(productName + "_(\\d+)$")); 1549 if (match) 1550 { 1551 if (baseMatch.size() == 2) 1552 { 1553 std::ssub_match baseSubMatch = baseMatch[1]; 1554 std::string base = baseSubMatch.str(); 1555 1556 int value = std::stoi(base); 1557 highest = (value > highest) ? value : highest; 1558 } 1559 } 1560 } 1561 } // end searching objects 1562 1563 if (!found) 1564 { 1565 return std::nullopt; 1566 } 1567 return highest; 1568 } 1569 1570 // This function does format fru data as per IPMI format and find the 1571 // productName in the formatted fru data, get that productName and return 1572 // productName if found or return NULL. 1573 1574 std::optional<std::string> getProductName( 1575 std::vector<uint8_t>& device, 1576 boost::container::flat_map<std::string, std::string>& formattedFRU, 1577 uint32_t bus, uint32_t address, size_t& unknownBusObjectCount) 1578 { 1579 std::string productName; 1580 1581 resCodes res = formatIPMIFRU(device, formattedFRU); 1582 if (res == resCodes::resErr) 1583 { 1584 lg2::error("failed to parse FRU for device at bus {BUS} address {ADDR}", 1585 "BUS", bus, "ADDR", address); 1586 return std::nullopt; 1587 } 1588 if (res == resCodes::resWarn) 1589 { 1590 lg2::error( 1591 "Warnings while parsing FRU for device at bus {BUS} address {ADDR}", 1592 "BUS", bus, "ADDR", address); 1593 } 1594 1595 auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME"); 1596 // Not found under Board section or an empty string. 1597 if (productNameFind == formattedFRU.end() || 1598 productNameFind->second.empty()) 1599 { 1600 productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME"); 1601 } 1602 // Found under Product section and not an empty string. 1603 if (productNameFind != formattedFRU.end() && 1604 !productNameFind->second.empty()) 1605 { 1606 productName = productNameFind->second; 1607 std::regex illegalObject("[^A-Za-z0-9_]"); 1608 productName = std::regex_replace(productName, illegalObject, "_"); 1609 } 1610 else 1611 { 1612 productName = "UNKNOWN" + std::to_string(unknownBusObjectCount); 1613 unknownBusObjectCount++; 1614 } 1615 return productName; 1616 } 1617 1618 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address) 1619 { 1620 try 1621 { 1622 fruData = getFRUInfo(static_cast<uint16_t>(bus), 1623 static_cast<uint8_t>(address)); 1624 } 1625 catch (const std::invalid_argument& e) 1626 { 1627 lg2::error("Failure getting FRU Info: {ERR}", "ERR", e); 1628 return false; 1629 } 1630 1631 return !fruData.empty(); 1632 } 1633 1634 bool isFieldEditable(std::string_view fieldName) 1635 { 1636 if (fieldName == "PRODUCT_ASSET_TAG") 1637 { 1638 return true; // PRODUCT_ASSET_TAG is always editable. 1639 } 1640 1641 if (!ENABLE_FRU_UPDATE_PROPERTY) 1642 { 1643 return false; // If FRU update is disabled, no fields are editable. 1644 } 1645 1646 // Editable fields 1647 constexpr std::array<std::string_view, 8> editableFields = { 1648 "MANUFACTURER", "PRODUCT_NAME", "PART_NUMBER", "VERSION", 1649 "SERIAL_NUMBER", "ASSET_TAG", "FRU_VERSION_ID", "INFO_AM"}; 1650 1651 // Find position of first underscore 1652 std::size_t pos = fieldName.find('_'); 1653 if (pos == std::string_view::npos || pos + 1 >= fieldName.size()) 1654 { 1655 return false; 1656 } 1657 1658 // Extract substring after the underscore 1659 std::string_view subField = fieldName.substr(pos + 1); 1660 1661 // Trim trailing digits 1662 while (!subField.empty() && (std::isdigit(subField.back()) != 0)) 1663 { 1664 subField.remove_suffix(1); 1665 } 1666 1667 // Match against editable fields 1668 return std::ranges::contains(editableFields, subField); 1669 } 1670