1 /* 2 * Copied from Linux Monitor (LiMon) - Networking. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * Copyright 2000 Roland Borde 7 * Copyright 2000 Paolo Scaffardi 8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 9 */ 10 11 /* 12 * General Desription: 13 * 14 * The user interface supports commands for BOOTP, RARP, and TFTP. 15 * Also, we support ARP internally. Depending on available data, 16 * these interact as follows: 17 * 18 * BOOTP: 19 * 20 * Prerequisites: - own ethernet address 21 * We want: - own IP address 22 * - TFTP server IP address 23 * - name of bootfile 24 * Next step: ARP 25 * 26 * LINK_LOCAL: 27 * 28 * Prerequisites: - own ethernet address 29 * We want: - own IP address 30 * Next step: ARP 31 * 32 * RARP: 33 * 34 * Prerequisites: - own ethernet address 35 * We want: - own IP address 36 * - TFTP server IP address 37 * Next step: ARP 38 * 39 * ARP: 40 * 41 * Prerequisites: - own ethernet address 42 * - own IP address 43 * - TFTP server IP address 44 * We want: - TFTP server ethernet address 45 * Next step: TFTP 46 * 47 * DHCP: 48 * 49 * Prerequisites: - own ethernet address 50 * We want: - IP, Netmask, ServerIP, Gateway IP 51 * - bootfilename, lease time 52 * Next step: - TFTP 53 * 54 * TFTP: 55 * 56 * Prerequisites: - own ethernet address 57 * - own IP address 58 * - TFTP server IP address 59 * - TFTP server ethernet address 60 * - name of bootfile (if unknown, we use a default name 61 * derived from our own IP address) 62 * We want: - load the boot file 63 * Next step: none 64 * 65 * NFS: 66 * 67 * Prerequisites: - own ethernet address 68 * - own IP address 69 * - name of bootfile (if unknown, we use a default name 70 * derived from our own IP address) 71 * We want: - load the boot file 72 * Next step: none 73 * 74 * SNTP: 75 * 76 * Prerequisites: - own ethernet address 77 * - own IP address 78 * We want: - network time 79 * Next step: none 80 */ 81 82 83 #include <common.h> 84 #include <command.h> 85 #include <environment.h> 86 #include <net.h> 87 #if defined(CONFIG_STATUS_LED) 88 #include <miiphy.h> 89 #include <status_led.h> 90 #endif 91 #include <watchdog.h> 92 #include <linux/compiler.h> 93 #include "arp.h" 94 #include "bootp.h" 95 #include "cdp.h" 96 #if defined(CONFIG_CMD_DNS) 97 #include "dns.h" 98 #endif 99 #include "link_local.h" 100 #include "nfs.h" 101 #include "ping.h" 102 #include "rarp.h" 103 #if defined(CONFIG_CMD_SNTP) 104 #include "sntp.h" 105 #endif 106 #include "tftp.h" 107 108 DECLARE_GLOBAL_DATA_PTR; 109 110 /** BOOTP EXTENTIONS **/ 111 112 /* Our subnet mask (0=unknown) */ 113 IPaddr_t NetOurSubnetMask; 114 /* Our gateways IP address */ 115 IPaddr_t NetOurGatewayIP; 116 /* Our DNS IP address */ 117 IPaddr_t NetOurDNSIP; 118 #if defined(CONFIG_BOOTP_DNS2) 119 /* Our 2nd DNS IP address */ 120 IPaddr_t NetOurDNS2IP; 121 #endif 122 /* Our NIS domain */ 123 char NetOurNISDomain[32] = {0,}; 124 /* Our hostname */ 125 char NetOurHostName[32] = {0,}; 126 /* Our bootpath */ 127 char NetOurRootPath[64] = {0,}; 128 /* Our bootfile size in blocks */ 129 ushort NetBootFileSize; 130 131 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 132 IPaddr_t Mcast_addr; 133 #endif 134 135 /** END OF BOOTP EXTENTIONS **/ 136 137 /* The actual transferred size of the bootfile (in bytes) */ 138 ulong NetBootFileXferSize; 139 /* Our ethernet address */ 140 uchar NetOurEther[6]; 141 /* Boot server enet address */ 142 uchar NetServerEther[6]; 143 /* Our IP addr (0 = unknown) */ 144 IPaddr_t NetOurIP; 145 /* Server IP addr (0 = unknown) */ 146 IPaddr_t NetServerIP; 147 /* Current receive packet */ 148 uchar *NetRxPacket; 149 /* Current rx packet length */ 150 int NetRxPacketLen; 151 /* IP packet ID */ 152 unsigned NetIPID; 153 /* Ethernet bcast address */ 154 uchar NetBcastAddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 155 uchar NetEtherNullAddr[6]; 156 #ifdef CONFIG_API 157 void (*push_packet)(void *, int len) = 0; 158 #endif 159 /* Network loop state */ 160 enum net_loop_state net_state; 161 /* Tried all network devices */ 162 int NetRestartWrap; 163 /* Network loop restarted */ 164 static int NetRestarted; 165 /* At least one device configured */ 166 static int NetDevExists; 167 168 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 169 /* default is without VLAN */ 170 ushort NetOurVLAN = 0xFFFF; 171 /* ditto */ 172 ushort NetOurNativeVLAN = 0xFFFF; 173 174 /* Boot File name */ 175 char BootFile[128]; 176 177 #if defined(CONFIG_CMD_SNTP) 178 /* NTP server IP address */ 179 IPaddr_t NetNtpServerIP; 180 /* offset time from UTC */ 181 int NetTimeOffset; 182 #endif 183 184 static uchar PktBuf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 185 186 /* Receive packet */ 187 uchar *NetRxPackets[PKTBUFSRX]; 188 189 /* Current UDP RX packet handler */ 190 static rxhand_f *udp_packet_handler; 191 /* Current ARP RX packet handler */ 192 static rxhand_f *arp_packet_handler; 193 #ifdef CONFIG_CMD_TFTPPUT 194 /* Current ICMP rx handler */ 195 static rxhand_icmp_f *packet_icmp_handler; 196 #endif 197 /* Current timeout handler */ 198 static thand_f *timeHandler; 199 /* Time base value */ 200 static ulong timeStart; 201 /* Current timeout value */ 202 static ulong timeDelta; 203 /* THE transmit packet */ 204 uchar *NetTxPacket; 205 206 static int net_check_prereq(enum proto_t protocol); 207 208 static int NetTryCount; 209 210 int __maybe_unused net_busy_flag; 211 212 /**********************************************************************/ 213 214 static int on_bootfile(const char *name, const char *value, enum env_op op, 215 int flags) 216 { 217 switch (op) { 218 case env_op_create: 219 case env_op_overwrite: 220 copy_filename(BootFile, value, sizeof(BootFile)); 221 break; 222 default: 223 break; 224 } 225 226 return 0; 227 } 228 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 229 230 /* 231 * Check if autoload is enabled. If so, use either NFS or TFTP to download 232 * the boot file. 233 */ 234 void net_auto_load(void) 235 { 236 #if defined(CONFIG_CMD_NFS) 237 const char *s = getenv("autoload"); 238 239 if (s != NULL && strcmp(s, "NFS") == 0) { 240 /* 241 * Use NFS to load the bootfile. 242 */ 243 NfsStart(); 244 return; 245 } 246 #endif 247 if (getenv_yesno("autoload") == 0) { 248 /* 249 * Just use BOOTP/RARP to configure system; 250 * Do not use TFTP to load the bootfile. 251 */ 252 net_set_state(NETLOOP_SUCCESS); 253 return; 254 } 255 TftpStart(TFTPGET); 256 } 257 258 static void NetInitLoop(void) 259 { 260 static int env_changed_id; 261 int env_id = get_env_id(); 262 263 /* update only when the environment has changed */ 264 if (env_changed_id != env_id) { 265 NetOurIP = getenv_IPaddr("ipaddr"); 266 NetOurGatewayIP = getenv_IPaddr("gatewayip"); 267 NetOurSubnetMask = getenv_IPaddr("netmask"); 268 NetServerIP = getenv_IPaddr("serverip"); 269 NetOurNativeVLAN = getenv_VLAN("nvlan"); 270 NetOurVLAN = getenv_VLAN("vlan"); 271 #if defined(CONFIG_CMD_DNS) 272 NetOurDNSIP = getenv_IPaddr("dnsip"); 273 #endif 274 env_changed_id = env_id; 275 } 276 if (eth_get_dev()) 277 memcpy(NetOurEther, eth_get_dev()->enetaddr, 6); 278 279 return; 280 } 281 282 static void net_clear_handlers(void) 283 { 284 net_set_udp_handler(NULL); 285 net_set_arp_handler(NULL); 286 NetSetTimeout(0, NULL); 287 } 288 289 static void net_cleanup_loop(void) 290 { 291 net_clear_handlers(); 292 } 293 294 void net_init(void) 295 { 296 static int first_call = 1; 297 298 if (first_call) { 299 /* 300 * Setup packet buffers, aligned correctly. 301 */ 302 int i; 303 304 NetTxPacket = &PktBuf[0] + (PKTALIGN - 1); 305 NetTxPacket -= (ulong)NetTxPacket % PKTALIGN; 306 for (i = 0; i < PKTBUFSRX; i++) 307 NetRxPackets[i] = NetTxPacket + (i + 1) * PKTSIZE_ALIGN; 308 309 ArpInit(); 310 net_clear_handlers(); 311 312 /* Only need to setup buffer pointers once. */ 313 first_call = 0; 314 } 315 316 NetInitLoop(); 317 } 318 319 /**********************************************************************/ 320 /* 321 * Main network processing loop. 322 */ 323 324 int NetLoop(enum proto_t protocol) 325 { 326 bd_t *bd = gd->bd; 327 int ret = -1; 328 329 NetRestarted = 0; 330 NetDevExists = 0; 331 NetTryCount = 1; 332 debug_cond(DEBUG_INT_STATE, "--- NetLoop Entry\n"); 333 334 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 335 net_init(); 336 if (eth_is_on_demand_init() || protocol != NETCONS) { 337 eth_halt(); 338 eth_set_current(); 339 if (eth_init(bd) < 0) { 340 eth_halt(); 341 return -1; 342 } 343 } else 344 eth_init_state_only(bd); 345 346 restart: 347 #ifdef CONFIG_USB_KEYBOARD 348 net_busy_flag = 0; 349 #endif 350 net_set_state(NETLOOP_CONTINUE); 351 352 /* 353 * Start the ball rolling with the given start function. From 354 * here on, this code is a state machine driven by received 355 * packets and timer events. 356 */ 357 debug_cond(DEBUG_INT_STATE, "--- NetLoop Init\n"); 358 NetInitLoop(); 359 360 switch (net_check_prereq(protocol)) { 361 case 1: 362 /* network not configured */ 363 eth_halt(); 364 return -1; 365 366 case 2: 367 /* network device not configured */ 368 break; 369 370 case 0: 371 NetDevExists = 1; 372 NetBootFileXferSize = 0; 373 switch (protocol) { 374 case TFTPGET: 375 #ifdef CONFIG_CMD_TFTPPUT 376 case TFTPPUT: 377 #endif 378 /* always use ARP to get server ethernet address */ 379 TftpStart(protocol); 380 break; 381 #ifdef CONFIG_CMD_TFTPSRV 382 case TFTPSRV: 383 TftpStartServer(); 384 break; 385 #endif 386 #if defined(CONFIG_CMD_DHCP) 387 case DHCP: 388 BootpReset(); 389 NetOurIP = 0; 390 DhcpRequest(); /* Basically same as BOOTP */ 391 break; 392 #endif 393 394 case BOOTP: 395 BootpReset(); 396 NetOurIP = 0; 397 BootpRequest(); 398 break; 399 400 #if defined(CONFIG_CMD_RARP) 401 case RARP: 402 RarpTry = 0; 403 NetOurIP = 0; 404 RarpRequest(); 405 break; 406 #endif 407 #if defined(CONFIG_CMD_PING) 408 case PING: 409 ping_start(); 410 break; 411 #endif 412 #if defined(CONFIG_CMD_NFS) 413 case NFS: 414 NfsStart(); 415 break; 416 #endif 417 #if defined(CONFIG_CMD_CDP) 418 case CDP: 419 CDPStart(); 420 break; 421 #endif 422 #if defined (CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 423 case NETCONS: 424 NcStart(); 425 break; 426 #endif 427 #if defined(CONFIG_CMD_SNTP) 428 case SNTP: 429 SntpStart(); 430 break; 431 #endif 432 #if defined(CONFIG_CMD_DNS) 433 case DNS: 434 DnsStart(); 435 break; 436 #endif 437 #if defined(CONFIG_CMD_LINK_LOCAL) 438 case LINKLOCAL: 439 link_local_start(); 440 break; 441 #endif 442 default: 443 break; 444 } 445 446 break; 447 } 448 449 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 450 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 451 defined(CONFIG_STATUS_LED) && \ 452 defined(STATUS_LED_RED) 453 /* 454 * Echo the inverted link state to the fault LED. 455 */ 456 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 457 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 458 else 459 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 460 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 461 #endif /* CONFIG_MII, ... */ 462 #ifdef CONFIG_USB_KEYBOARD 463 net_busy_flag = 1; 464 #endif 465 466 /* 467 * Main packet reception loop. Loop receiving packets until 468 * someone sets `net_state' to a state that terminates. 469 */ 470 for (;;) { 471 WATCHDOG_RESET(); 472 #ifdef CONFIG_SHOW_ACTIVITY 473 show_activity(1); 474 #endif 475 /* 476 * Check the ethernet for a new packet. The ethernet 477 * receive routine will process it. 478 */ 479 eth_rx(); 480 481 /* 482 * Abort if ctrl-c was pressed. 483 */ 484 if (ctrlc()) { 485 /* cancel any ARP that may not have completed */ 486 NetArpWaitPacketIP = 0; 487 488 net_cleanup_loop(); 489 eth_halt(); 490 /* Invalidate the last protocol */ 491 eth_set_last_protocol(BOOTP); 492 493 puts("\nAbort\n"); 494 /* include a debug print as well incase the debug 495 messages are directed to stderr */ 496 debug_cond(DEBUG_INT_STATE, "--- NetLoop Abort!\n"); 497 goto done; 498 } 499 500 ArpTimeoutCheck(); 501 502 /* 503 * Check for a timeout, and run the timeout handler 504 * if we have one. 505 */ 506 if (timeHandler && ((get_timer(0) - timeStart) > timeDelta)) { 507 thand_f *x; 508 509 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 510 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 511 defined(CONFIG_STATUS_LED) && \ 512 defined(STATUS_LED_RED) 513 /* 514 * Echo the inverted link state to the fault LED. 515 */ 516 if (miiphy_link(eth_get_dev()->name, 517 CONFIG_SYS_FAULT_MII_ADDR)) { 518 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 519 } else { 520 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 521 } 522 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 523 #endif /* CONFIG_MII, ... */ 524 debug_cond(DEBUG_INT_STATE, "--- NetLoop timeout\n"); 525 x = timeHandler; 526 timeHandler = (thand_f *)0; 527 (*x)(); 528 } 529 530 531 switch (net_state) { 532 533 case NETLOOP_RESTART: 534 NetRestarted = 1; 535 goto restart; 536 537 case NETLOOP_SUCCESS: 538 net_cleanup_loop(); 539 if (NetBootFileXferSize > 0) { 540 printf("Bytes transferred = %ld (%lx hex)\n", 541 NetBootFileXferSize, 542 NetBootFileXferSize); 543 setenv_hex("filesize", NetBootFileXferSize); 544 setenv_hex("fileaddr", load_addr); 545 } 546 if (protocol != NETCONS) 547 eth_halt(); 548 else 549 eth_halt_state_only(); 550 551 eth_set_last_protocol(protocol); 552 553 ret = NetBootFileXferSize; 554 debug_cond(DEBUG_INT_STATE, "--- NetLoop Success!\n"); 555 goto done; 556 557 case NETLOOP_FAIL: 558 net_cleanup_loop(); 559 /* Invalidate the last protocol */ 560 eth_set_last_protocol(BOOTP); 561 debug_cond(DEBUG_INT_STATE, "--- NetLoop Fail!\n"); 562 goto done; 563 564 case NETLOOP_CONTINUE: 565 continue; 566 } 567 } 568 569 done: 570 #ifdef CONFIG_USB_KEYBOARD 571 net_busy_flag = 0; 572 #endif 573 #ifdef CONFIG_CMD_TFTPPUT 574 /* Clear out the handlers */ 575 net_set_udp_handler(NULL); 576 net_set_icmp_handler(NULL); 577 #endif 578 return ret; 579 } 580 581 /**********************************************************************/ 582 583 static void 584 startAgainTimeout(void) 585 { 586 net_set_state(NETLOOP_RESTART); 587 } 588 589 void NetStartAgain(void) 590 { 591 char *nretry; 592 int retry_forever = 0; 593 unsigned long retrycnt = 0; 594 595 nretry = getenv("netretry"); 596 if (nretry) { 597 if (!strcmp(nretry, "yes")) 598 retry_forever = 1; 599 else if (!strcmp(nretry, "no")) 600 retrycnt = 0; 601 else if (!strcmp(nretry, "once")) 602 retrycnt = 1; 603 else 604 retrycnt = simple_strtoul(nretry, NULL, 0); 605 } else 606 retry_forever = 1; 607 608 if ((!retry_forever) && (NetTryCount >= retrycnt)) { 609 eth_halt(); 610 net_set_state(NETLOOP_FAIL); 611 return; 612 } 613 614 NetTryCount++; 615 616 eth_halt(); 617 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 618 eth_try_another(!NetRestarted); 619 #endif 620 eth_init(gd->bd); 621 if (NetRestartWrap) { 622 NetRestartWrap = 0; 623 if (NetDevExists) { 624 NetSetTimeout(10000UL, startAgainTimeout); 625 net_set_udp_handler(NULL); 626 } else { 627 net_set_state(NETLOOP_FAIL); 628 } 629 } else { 630 net_set_state(NETLOOP_RESTART); 631 } 632 } 633 634 /**********************************************************************/ 635 /* 636 * Miscelaneous bits. 637 */ 638 639 static void dummy_handler(uchar *pkt, unsigned dport, 640 IPaddr_t sip, unsigned sport, 641 unsigned len) 642 { 643 } 644 645 rxhand_f *net_get_udp_handler(void) 646 { 647 return udp_packet_handler; 648 } 649 650 void net_set_udp_handler(rxhand_f *f) 651 { 652 debug_cond(DEBUG_INT_STATE, "--- NetLoop UDP handler set (%p)\n", f); 653 if (f == NULL) 654 udp_packet_handler = dummy_handler; 655 else 656 udp_packet_handler = f; 657 } 658 659 rxhand_f *net_get_arp_handler(void) 660 { 661 return arp_packet_handler; 662 } 663 664 void net_set_arp_handler(rxhand_f *f) 665 { 666 debug_cond(DEBUG_INT_STATE, "--- NetLoop ARP handler set (%p)\n", f); 667 if (f == NULL) 668 arp_packet_handler = dummy_handler; 669 else 670 arp_packet_handler = f; 671 } 672 673 #ifdef CONFIG_CMD_TFTPPUT 674 void net_set_icmp_handler(rxhand_icmp_f *f) 675 { 676 packet_icmp_handler = f; 677 } 678 #endif 679 680 void 681 NetSetTimeout(ulong iv, thand_f *f) 682 { 683 if (iv == 0) { 684 debug_cond(DEBUG_INT_STATE, 685 "--- NetLoop timeout handler cancelled\n"); 686 timeHandler = (thand_f *)0; 687 } else { 688 debug_cond(DEBUG_INT_STATE, 689 "--- NetLoop timeout handler set (%p)\n", f); 690 timeHandler = f; 691 timeStart = get_timer(0); 692 timeDelta = iv * CONFIG_SYS_HZ / 1000; 693 } 694 } 695 696 int NetSendUDPPacket(uchar *ether, IPaddr_t dest, int dport, int sport, 697 int payload_len) 698 { 699 uchar *pkt; 700 int eth_hdr_size; 701 int pkt_hdr_size; 702 703 /* make sure the NetTxPacket is initialized (NetInit() was called) */ 704 assert(NetTxPacket != NULL); 705 if (NetTxPacket == NULL) 706 return -1; 707 708 /* convert to new style broadcast */ 709 if (dest == 0) 710 dest = 0xFFFFFFFF; 711 712 /* if broadcast, make the ether address a broadcast and don't do ARP */ 713 if (dest == 0xFFFFFFFF) 714 ether = NetBcastAddr; 715 716 pkt = (uchar *)NetTxPacket; 717 718 eth_hdr_size = NetSetEther(pkt, ether, PROT_IP); 719 pkt += eth_hdr_size; 720 net_set_udp_header(pkt, dest, dport, sport, payload_len); 721 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 722 723 /* if MAC address was not discovered yet, do an ARP request */ 724 if (memcmp(ether, NetEtherNullAddr, 6) == 0) { 725 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 726 727 /* save the ip and eth addr for the packet to send after arp */ 728 NetArpWaitPacketIP = dest; 729 NetArpWaitPacketMAC = ether; 730 731 /* size of the waiting packet */ 732 NetArpWaitTxPacketSize = pkt_hdr_size + payload_len; 733 734 /* and do the ARP request */ 735 NetArpWaitTry = 1; 736 NetArpWaitTimerStart = get_timer(0); 737 ArpRequest(); 738 return 1; /* waiting */ 739 } else { 740 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 741 &dest, ether); 742 NetSendPacket(NetTxPacket, pkt_hdr_size + payload_len); 743 return 0; /* transmitted */ 744 } 745 } 746 747 #ifdef CONFIG_IP_DEFRAG 748 /* 749 * This function collects fragments in a single packet, according 750 * to the algorithm in RFC815. It returns NULL or the pointer to 751 * a complete packet, in static storage 752 */ 753 #ifndef CONFIG_NET_MAXDEFRAG 754 #define CONFIG_NET_MAXDEFRAG 16384 755 #endif 756 /* 757 * MAXDEFRAG, above, is chosen in the config file and is real data 758 * so we need to add the NFS overhead, which is more than TFTP. 759 * To use sizeof in the internal unnamed structures, we need a real 760 * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately). 761 * The compiler doesn't complain nor allocates the actual structure 762 */ 763 static struct rpc_t rpc_specimen; 764 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply)) 765 766 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 767 768 /* 769 * this is the packet being assembled, either data or frag control. 770 * Fragments go by 8 bytes, so this union must be 8 bytes long 771 */ 772 struct hole { 773 /* first_byte is address of this structure */ 774 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 775 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 776 u16 prev_hole; /* index of prev, 0 == none */ 777 u16 unused; 778 }; 779 780 static struct ip_udp_hdr *__NetDefragment(struct ip_udp_hdr *ip, int *lenp) 781 { 782 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 783 static u16 first_hole, total_len; 784 struct hole *payload, *thisfrag, *h, *newh; 785 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 786 uchar *indata = (uchar *)ip; 787 int offset8, start, len, done = 0; 788 u16 ip_off = ntohs(ip->ip_off); 789 790 /* payload starts after IP header, this fragment is in there */ 791 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 792 offset8 = (ip_off & IP_OFFS); 793 thisfrag = payload + offset8; 794 start = offset8 * 8; 795 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 796 797 if (start + len > IP_MAXUDP) /* fragment extends too far */ 798 return NULL; 799 800 if (!total_len || localip->ip_id != ip->ip_id) { 801 /* new (or different) packet, reset structs */ 802 total_len = 0xffff; 803 payload[0].last_byte = ~0; 804 payload[0].next_hole = 0; 805 payload[0].prev_hole = 0; 806 first_hole = 0; 807 /* any IP header will work, copy the first we received */ 808 memcpy(localip, ip, IP_HDR_SIZE); 809 } 810 811 /* 812 * What follows is the reassembly algorithm. We use the payload 813 * array as a linked list of hole descriptors, as each hole starts 814 * at a multiple of 8 bytes. However, last byte can be whatever value, 815 * so it is represented as byte count, not as 8-byte blocks. 816 */ 817 818 h = payload + first_hole; 819 while (h->last_byte < start) { 820 if (!h->next_hole) { 821 /* no hole that far away */ 822 return NULL; 823 } 824 h = payload + h->next_hole; 825 } 826 827 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 828 if (offset8 + ((len + 7) / 8) <= h - payload) { 829 /* no overlap with holes (dup fragment?) */ 830 return NULL; 831 } 832 833 if (!(ip_off & IP_FLAGS_MFRAG)) { 834 /* no more fragmentss: truncate this (last) hole */ 835 total_len = start + len; 836 h->last_byte = start + len; 837 } 838 839 /* 840 * There is some overlap: fix the hole list. This code doesn't 841 * deal with a fragment that overlaps with two different holes 842 * (thus being a superset of a previously-received fragment). 843 */ 844 845 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 846 /* complete overlap with hole: remove hole */ 847 if (!h->prev_hole && !h->next_hole) { 848 /* last remaining hole */ 849 done = 1; 850 } else if (!h->prev_hole) { 851 /* first hole */ 852 first_hole = h->next_hole; 853 payload[h->next_hole].prev_hole = 0; 854 } else if (!h->next_hole) { 855 /* last hole */ 856 payload[h->prev_hole].next_hole = 0; 857 } else { 858 /* in the middle of the list */ 859 payload[h->next_hole].prev_hole = h->prev_hole; 860 payload[h->prev_hole].next_hole = h->next_hole; 861 } 862 863 } else if (h->last_byte <= start + len) { 864 /* overlaps with final part of the hole: shorten this hole */ 865 h->last_byte = start; 866 867 } else if (h >= thisfrag) { 868 /* overlaps with initial part of the hole: move this hole */ 869 newh = thisfrag + (len / 8); 870 *newh = *h; 871 h = newh; 872 if (h->next_hole) 873 payload[h->next_hole].prev_hole = (h - payload); 874 if (h->prev_hole) 875 payload[h->prev_hole].next_hole = (h - payload); 876 else 877 first_hole = (h - payload); 878 879 } else { 880 /* fragment sits in the middle: split the hole */ 881 newh = thisfrag + (len / 8); 882 *newh = *h; 883 h->last_byte = start; 884 h->next_hole = (newh - payload); 885 newh->prev_hole = (h - payload); 886 if (newh->next_hole) 887 payload[newh->next_hole].prev_hole = (newh - payload); 888 } 889 890 /* finally copy this fragment and possibly return whole packet */ 891 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 892 if (!done) 893 return NULL; 894 895 localip->ip_len = htons(total_len); 896 *lenp = total_len + IP_HDR_SIZE; 897 return localip; 898 } 899 900 static inline struct ip_udp_hdr *NetDefragment(struct ip_udp_hdr *ip, int *lenp) 901 { 902 u16 ip_off = ntohs(ip->ip_off); 903 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 904 return ip; /* not a fragment */ 905 return __NetDefragment(ip, lenp); 906 } 907 908 #else /* !CONFIG_IP_DEFRAG */ 909 910 static inline struct ip_udp_hdr *NetDefragment(struct ip_udp_hdr *ip, int *lenp) 911 { 912 u16 ip_off = ntohs(ip->ip_off); 913 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 914 return ip; /* not a fragment */ 915 return NULL; 916 } 917 #endif 918 919 /** 920 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 921 * drop others. 922 * 923 * @parma ip IP packet containing the ICMP 924 */ 925 static void receive_icmp(struct ip_udp_hdr *ip, int len, 926 IPaddr_t src_ip, struct ethernet_hdr *et) 927 { 928 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 929 930 switch (icmph->type) { 931 case ICMP_REDIRECT: 932 if (icmph->code != ICMP_REDIR_HOST) 933 return; 934 printf(" ICMP Host Redirect to %pI4 ", 935 &icmph->un.gateway); 936 break; 937 default: 938 #if defined(CONFIG_CMD_PING) 939 ping_receive(et, ip, len); 940 #endif 941 #ifdef CONFIG_CMD_TFTPPUT 942 if (packet_icmp_handler) 943 packet_icmp_handler(icmph->type, icmph->code, 944 ntohs(ip->udp_dst), src_ip, ntohs(ip->udp_src), 945 icmph->un.data, ntohs(ip->udp_len)); 946 #endif 947 break; 948 } 949 } 950 951 void 952 NetReceive(uchar *inpkt, int len) 953 { 954 struct ethernet_hdr *et; 955 struct ip_udp_hdr *ip; 956 IPaddr_t dst_ip; 957 IPaddr_t src_ip; 958 int eth_proto; 959 #if defined(CONFIG_CMD_CDP) 960 int iscdp; 961 #endif 962 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 963 964 debug_cond(DEBUG_NET_PKT, "packet received\n"); 965 966 NetRxPacket = inpkt; 967 NetRxPacketLen = len; 968 et = (struct ethernet_hdr *)inpkt; 969 970 /* too small packet? */ 971 if (len < ETHER_HDR_SIZE) 972 return; 973 974 #ifdef CONFIG_API 975 if (push_packet) { 976 (*push_packet)(inpkt, len); 977 return; 978 } 979 #endif 980 981 #if defined(CONFIG_CMD_CDP) 982 /* keep track if packet is CDP */ 983 iscdp = is_cdp_packet(et->et_dest); 984 #endif 985 986 myvlanid = ntohs(NetOurVLAN); 987 if (myvlanid == (ushort)-1) 988 myvlanid = VLAN_NONE; 989 mynvlanid = ntohs(NetOurNativeVLAN); 990 if (mynvlanid == (ushort)-1) 991 mynvlanid = VLAN_NONE; 992 993 eth_proto = ntohs(et->et_protlen); 994 995 if (eth_proto < 1514) { 996 struct e802_hdr *et802 = (struct e802_hdr *)et; 997 /* 998 * Got a 802.2 packet. Check the other protocol field. 999 * XXX VLAN over 802.2+SNAP not implemented! 1000 */ 1001 eth_proto = ntohs(et802->et_prot); 1002 1003 ip = (struct ip_udp_hdr *)(inpkt + E802_HDR_SIZE); 1004 len -= E802_HDR_SIZE; 1005 1006 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1007 ip = (struct ip_udp_hdr *)(inpkt + ETHER_HDR_SIZE); 1008 len -= ETHER_HDR_SIZE; 1009 1010 } else { /* VLAN packet */ 1011 struct vlan_ethernet_hdr *vet = 1012 (struct vlan_ethernet_hdr *)et; 1013 1014 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1015 1016 /* too small packet? */ 1017 if (len < VLAN_ETHER_HDR_SIZE) 1018 return; 1019 1020 /* if no VLAN active */ 1021 if ((ntohs(NetOurVLAN) & VLAN_IDMASK) == VLAN_NONE 1022 #if defined(CONFIG_CMD_CDP) 1023 && iscdp == 0 1024 #endif 1025 ) 1026 return; 1027 1028 cti = ntohs(vet->vet_tag); 1029 vlanid = cti & VLAN_IDMASK; 1030 eth_proto = ntohs(vet->vet_type); 1031 1032 ip = (struct ip_udp_hdr *)(inpkt + VLAN_ETHER_HDR_SIZE); 1033 len -= VLAN_ETHER_HDR_SIZE; 1034 } 1035 1036 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1037 1038 #if defined(CONFIG_CMD_CDP) 1039 if (iscdp) { 1040 cdp_receive((uchar *)ip, len); 1041 return; 1042 } 1043 #endif 1044 1045 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1046 if (vlanid == VLAN_NONE) 1047 vlanid = (mynvlanid & VLAN_IDMASK); 1048 /* not matched? */ 1049 if (vlanid != (myvlanid & VLAN_IDMASK)) 1050 return; 1051 } 1052 1053 switch (eth_proto) { 1054 1055 case PROT_ARP: 1056 ArpReceive(et, ip, len); 1057 break; 1058 1059 #ifdef CONFIG_CMD_RARP 1060 case PROT_RARP: 1061 rarp_receive(ip, len); 1062 break; 1063 #endif 1064 case PROT_IP: 1065 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1066 /* Before we start poking the header, make sure it is there */ 1067 if (len < IP_UDP_HDR_SIZE) { 1068 debug("len bad %d < %lu\n", len, 1069 (ulong)IP_UDP_HDR_SIZE); 1070 return; 1071 } 1072 /* Check the packet length */ 1073 if (len < ntohs(ip->ip_len)) { 1074 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1075 return; 1076 } 1077 len = ntohs(ip->ip_len); 1078 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1079 len, ip->ip_hl_v & 0xff); 1080 1081 /* Can't deal with anything except IPv4 */ 1082 if ((ip->ip_hl_v & 0xf0) != 0x40) 1083 return; 1084 /* Can't deal with IP options (headers != 20 bytes) */ 1085 if ((ip->ip_hl_v & 0x0f) > 0x05) 1086 return; 1087 /* Check the Checksum of the header */ 1088 if (!NetCksumOk((uchar *)ip, IP_HDR_SIZE / 2)) { 1089 debug("checksum bad\n"); 1090 return; 1091 } 1092 /* If it is not for us, ignore it */ 1093 dst_ip = NetReadIP(&ip->ip_dst); 1094 if (NetOurIP && dst_ip != NetOurIP && dst_ip != 0xFFFFFFFF) { 1095 #ifdef CONFIG_MCAST_TFTP 1096 if (Mcast_addr != dst_ip) 1097 #endif 1098 return; 1099 } 1100 /* Read source IP address for later use */ 1101 src_ip = NetReadIP(&ip->ip_src); 1102 /* 1103 * The function returns the unchanged packet if it's not 1104 * a fragment, and either the complete packet or NULL if 1105 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1106 */ 1107 ip = NetDefragment(ip, &len); 1108 if (!ip) 1109 return; 1110 /* 1111 * watch for ICMP host redirects 1112 * 1113 * There is no real handler code (yet). We just watch 1114 * for ICMP host redirect messages. In case anybody 1115 * sees these messages: please contact me 1116 * (wd@denx.de), or - even better - send me the 1117 * necessary fixes :-) 1118 * 1119 * Note: in all cases where I have seen this so far 1120 * it was a problem with the router configuration, 1121 * for instance when a router was configured in the 1122 * BOOTP reply, but the TFTP server was on the same 1123 * subnet. So this is probably a warning that your 1124 * configuration might be wrong. But I'm not really 1125 * sure if there aren't any other situations. 1126 * 1127 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1128 * we send a tftp packet to a dead connection, or when 1129 * there is no server at the other end. 1130 */ 1131 if (ip->ip_p == IPPROTO_ICMP) { 1132 receive_icmp(ip, len, src_ip, et); 1133 return; 1134 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1135 return; 1136 } 1137 1138 debug_cond(DEBUG_DEV_PKT, 1139 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1140 &dst_ip, &src_ip, len); 1141 1142 #ifdef CONFIG_UDP_CHECKSUM 1143 if (ip->udp_xsum != 0) { 1144 ulong xsum; 1145 ushort *sumptr; 1146 ushort sumlen; 1147 1148 xsum = ip->ip_p; 1149 xsum += (ntohs(ip->udp_len)); 1150 xsum += (ntohl(ip->ip_src) >> 16) & 0x0000ffff; 1151 xsum += (ntohl(ip->ip_src) >> 0) & 0x0000ffff; 1152 xsum += (ntohl(ip->ip_dst) >> 16) & 0x0000ffff; 1153 xsum += (ntohl(ip->ip_dst) >> 0) & 0x0000ffff; 1154 1155 sumlen = ntohs(ip->udp_len); 1156 sumptr = (ushort *) &(ip->udp_src); 1157 1158 while (sumlen > 1) { 1159 ushort sumdata; 1160 1161 sumdata = *sumptr++; 1162 xsum += ntohs(sumdata); 1163 sumlen -= 2; 1164 } 1165 if (sumlen > 0) { 1166 ushort sumdata; 1167 1168 sumdata = *(unsigned char *) sumptr; 1169 sumdata = (sumdata << 8) & 0xff00; 1170 xsum += sumdata; 1171 } 1172 while ((xsum >> 16) != 0) { 1173 xsum = (xsum & 0x0000ffff) + 1174 ((xsum >> 16) & 0x0000ffff); 1175 } 1176 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1177 printf(" UDP wrong checksum %08lx %08x\n", 1178 xsum, ntohs(ip->udp_xsum)); 1179 return; 1180 } 1181 } 1182 #endif 1183 1184 1185 #if defined (CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 1186 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1187 src_ip, 1188 ntohs(ip->udp_dst), 1189 ntohs(ip->udp_src), 1190 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1191 #endif 1192 /* 1193 * IP header OK. Pass the packet to the current handler. 1194 */ 1195 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1196 ntohs(ip->udp_dst), 1197 src_ip, 1198 ntohs(ip->udp_src), 1199 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1200 break; 1201 } 1202 } 1203 1204 1205 /**********************************************************************/ 1206 1207 static int net_check_prereq(enum proto_t protocol) 1208 { 1209 switch (protocol) { 1210 /* Fall through */ 1211 #if defined(CONFIG_CMD_PING) 1212 case PING: 1213 if (NetPingIP == 0) { 1214 puts("*** ERROR: ping address not given\n"); 1215 return 1; 1216 } 1217 goto common; 1218 #endif 1219 #if defined(CONFIG_CMD_SNTP) 1220 case SNTP: 1221 if (NetNtpServerIP == 0) { 1222 puts("*** ERROR: NTP server address not given\n"); 1223 return 1; 1224 } 1225 goto common; 1226 #endif 1227 #if defined(CONFIG_CMD_DNS) 1228 case DNS: 1229 if (NetOurDNSIP == 0) { 1230 puts("*** ERROR: DNS server address not given\n"); 1231 return 1; 1232 } 1233 goto common; 1234 #endif 1235 #if defined(CONFIG_CMD_NFS) 1236 case NFS: 1237 #endif 1238 case TFTPGET: 1239 case TFTPPUT: 1240 if (NetServerIP == 0) { 1241 puts("*** ERROR: `serverip' not set\n"); 1242 return 1; 1243 } 1244 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1245 defined(CONFIG_CMD_DNS) 1246 common: 1247 #endif 1248 /* Fall through */ 1249 1250 case NETCONS: 1251 case TFTPSRV: 1252 if (NetOurIP == 0) { 1253 puts("*** ERROR: `ipaddr' not set\n"); 1254 return 1; 1255 } 1256 /* Fall through */ 1257 1258 #ifdef CONFIG_CMD_RARP 1259 case RARP: 1260 #endif 1261 case BOOTP: 1262 case CDP: 1263 case DHCP: 1264 case LINKLOCAL: 1265 if (memcmp(NetOurEther, "\0\0\0\0\0\0", 6) == 0) { 1266 int num = eth_get_dev_index(); 1267 1268 switch (num) { 1269 case -1: 1270 puts("*** ERROR: No ethernet found.\n"); 1271 return 1; 1272 case 0: 1273 puts("*** ERROR: `ethaddr' not set\n"); 1274 break; 1275 default: 1276 printf("*** ERROR: `eth%daddr' not set\n", 1277 num); 1278 break; 1279 } 1280 1281 NetStartAgain(); 1282 return 2; 1283 } 1284 /* Fall through */ 1285 default: 1286 return 0; 1287 } 1288 return 0; /* OK */ 1289 } 1290 /**********************************************************************/ 1291 1292 int 1293 NetCksumOk(uchar *ptr, int len) 1294 { 1295 return !((NetCksum(ptr, len) + 1) & 0xfffe); 1296 } 1297 1298 1299 unsigned 1300 NetCksum(uchar *ptr, int len) 1301 { 1302 ulong xsum; 1303 ushort *p = (ushort *)ptr; 1304 1305 xsum = 0; 1306 while (len-- > 0) 1307 xsum += *p++; 1308 xsum = (xsum & 0xffff) + (xsum >> 16); 1309 xsum = (xsum & 0xffff) + (xsum >> 16); 1310 return xsum & 0xffff; 1311 } 1312 1313 int 1314 NetEthHdrSize(void) 1315 { 1316 ushort myvlanid; 1317 1318 myvlanid = ntohs(NetOurVLAN); 1319 if (myvlanid == (ushort)-1) 1320 myvlanid = VLAN_NONE; 1321 1322 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1323 VLAN_ETHER_HDR_SIZE; 1324 } 1325 1326 int 1327 NetSetEther(uchar *xet, uchar * addr, uint prot) 1328 { 1329 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1330 ushort myvlanid; 1331 1332 myvlanid = ntohs(NetOurVLAN); 1333 if (myvlanid == (ushort)-1) 1334 myvlanid = VLAN_NONE; 1335 1336 memcpy(et->et_dest, addr, 6); 1337 memcpy(et->et_src, NetOurEther, 6); 1338 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1339 et->et_protlen = htons(prot); 1340 return ETHER_HDR_SIZE; 1341 } else { 1342 struct vlan_ethernet_hdr *vet = 1343 (struct vlan_ethernet_hdr *)xet; 1344 1345 vet->vet_vlan_type = htons(PROT_VLAN); 1346 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1347 vet->vet_type = htons(prot); 1348 return VLAN_ETHER_HDR_SIZE; 1349 } 1350 } 1351 1352 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1353 { 1354 ushort protlen; 1355 1356 memcpy(et->et_dest, addr, 6); 1357 memcpy(et->et_src, NetOurEther, 6); 1358 protlen = ntohs(et->et_protlen); 1359 if (protlen == PROT_VLAN) { 1360 struct vlan_ethernet_hdr *vet = 1361 (struct vlan_ethernet_hdr *)et; 1362 vet->vet_type = htons(prot); 1363 return VLAN_ETHER_HDR_SIZE; 1364 } else if (protlen > 1514) { 1365 et->et_protlen = htons(prot); 1366 return ETHER_HDR_SIZE; 1367 } else { 1368 /* 802.2 + SNAP */ 1369 struct e802_hdr *et802 = (struct e802_hdr *)et; 1370 et802->et_prot = htons(prot); 1371 return E802_HDR_SIZE; 1372 } 1373 } 1374 1375 void net_set_ip_header(uchar *pkt, IPaddr_t dest, IPaddr_t source) 1376 { 1377 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1378 1379 /* 1380 * Construct an IP header. 1381 */ 1382 /* IP_HDR_SIZE / 4 (not including UDP) */ 1383 ip->ip_hl_v = 0x45; 1384 ip->ip_tos = 0; 1385 ip->ip_len = htons(IP_HDR_SIZE); 1386 ip->ip_id = htons(NetIPID++); 1387 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1388 ip->ip_ttl = 255; 1389 ip->ip_sum = 0; 1390 /* already in network byte order */ 1391 NetCopyIP((void *)&ip->ip_src, &source); 1392 /* already in network byte order */ 1393 NetCopyIP((void *)&ip->ip_dst, &dest); 1394 } 1395 1396 void net_set_udp_header(uchar *pkt, IPaddr_t dest, int dport, int sport, 1397 int len) 1398 { 1399 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1400 1401 /* 1402 * If the data is an odd number of bytes, zero the 1403 * byte after the last byte so that the checksum 1404 * will work. 1405 */ 1406 if (len & 1) 1407 pkt[IP_UDP_HDR_SIZE + len] = 0; 1408 1409 net_set_ip_header(pkt, dest, NetOurIP); 1410 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1411 ip->ip_p = IPPROTO_UDP; 1412 ip->ip_sum = ~NetCksum((uchar *)ip, IP_HDR_SIZE >> 1); 1413 1414 ip->udp_src = htons(sport); 1415 ip->udp_dst = htons(dport); 1416 ip->udp_len = htons(UDP_HDR_SIZE + len); 1417 ip->udp_xsum = 0; 1418 } 1419 1420 void copy_filename(char *dst, const char *src, int size) 1421 { 1422 if (*src && (*src == '"')) { 1423 ++src; 1424 --size; 1425 } 1426 1427 while ((--size > 0) && *src && (*src != '"')) 1428 *dst++ = *src++; 1429 *dst = '\0'; 1430 } 1431 1432 #if defined(CONFIG_CMD_NFS) || \ 1433 defined(CONFIG_CMD_SNTP) || \ 1434 defined(CONFIG_CMD_DNS) 1435 /* 1436 * make port a little random (1024-17407) 1437 * This keeps the math somewhat trivial to compute, and seems to work with 1438 * all supported protocols/clients/servers 1439 */ 1440 unsigned int random_port(void) 1441 { 1442 return 1024 + (get_timer(0) % 0x4000); 1443 } 1444 #endif 1445 1446 void ip_to_string(IPaddr_t x, char *s) 1447 { 1448 x = ntohl(x); 1449 sprintf(s, "%d.%d.%d.%d", 1450 (int) ((x >> 24) & 0xff), 1451 (int) ((x >> 16) & 0xff), 1452 (int) ((x >> 8) & 0xff), (int) ((x >> 0) & 0xff) 1453 ); 1454 } 1455 1456 void VLAN_to_string(ushort x, char *s) 1457 { 1458 x = ntohs(x); 1459 1460 if (x == (ushort)-1) 1461 x = VLAN_NONE; 1462 1463 if (x == VLAN_NONE) 1464 strcpy(s, "none"); 1465 else 1466 sprintf(s, "%d", x & VLAN_IDMASK); 1467 } 1468 1469 ushort string_to_VLAN(const char *s) 1470 { 1471 ushort id; 1472 1473 if (s == NULL) 1474 return htons(VLAN_NONE); 1475 1476 if (*s < '0' || *s > '9') 1477 id = VLAN_NONE; 1478 else 1479 id = (ushort)simple_strtoul(s, NULL, 10); 1480 1481 return htons(id); 1482 } 1483 1484 ushort getenv_VLAN(char *var) 1485 { 1486 return string_to_VLAN(getenv(var)); 1487 } 1488