xref: /openbmc/u-boot/lib/rbtree.c (revision fafbc6c000db1196b72ec5acf24f0763a6b4493a)
1 /*
2   Red Black Trees
3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
5   (C) 2012  Michel Lespinasse <walken@google.com>
6 
7  * SPDX-License-Identifier:	GPL-2.0+
8 
9   linux/lib/rbtree.c
10 */
11 
12 #define __UBOOT__
13 #include <linux/rbtree_augmented.h>
14 #ifndef __UBOOT__
15 #include <linux/export.h>
16 #else
17 #include <ubi_uboot.h>
18 #endif
19 /*
20  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
21  *
22  *  1) A node is either red or black
23  *  2) The root is black
24  *  3) All leaves (NULL) are black
25  *  4) Both children of every red node are black
26  *  5) Every simple path from root to leaves contains the same number
27  *     of black nodes.
28  *
29  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
30  *  consecutive red nodes in a path and every red node is therefore followed by
31  *  a black. So if B is the number of black nodes on every simple path (as per
32  *  5), then the longest possible path due to 4 is 2B.
33  *
34  *  We shall indicate color with case, where black nodes are uppercase and red
35  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
36  *  parentheses and have some accompanying text comment.
37  */
38 
39 static inline void rb_set_black(struct rb_node *rb)
40 {
41 	rb->__rb_parent_color |= RB_BLACK;
42 }
43 
44 static inline struct rb_node *rb_red_parent(struct rb_node *red)
45 {
46 	return (struct rb_node *)red->__rb_parent_color;
47 }
48 
49 /*
50  * Helper function for rotations:
51  * - old's parent and color get assigned to new
52  * - old gets assigned new as a parent and 'color' as a color.
53  */
54 static inline void
55 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
56 			struct rb_root *root, int color)
57 {
58 	struct rb_node *parent = rb_parent(old);
59 	new->__rb_parent_color = old->__rb_parent_color;
60 	rb_set_parent_color(old, new, color);
61 	__rb_change_child(old, new, parent, root);
62 }
63 
64 static __always_inline void
65 __rb_insert(struct rb_node *node, struct rb_root *root,
66 	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
67 {
68 	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
69 
70 	while (true) {
71 		/*
72 		 * Loop invariant: node is red
73 		 *
74 		 * If there is a black parent, we are done.
75 		 * Otherwise, take some corrective action as we don't
76 		 * want a red root or two consecutive red nodes.
77 		 */
78 		if (!parent) {
79 			rb_set_parent_color(node, NULL, RB_BLACK);
80 			break;
81 		} else if (rb_is_black(parent))
82 			break;
83 
84 		gparent = rb_red_parent(parent);
85 
86 		tmp = gparent->rb_right;
87 		if (parent != tmp) {	/* parent == gparent->rb_left */
88 			if (tmp && rb_is_red(tmp)) {
89 				/*
90 				 * Case 1 - color flips
91 				 *
92 				 *       G            g
93 				 *      / \          / \
94 				 *     p   u  -->   P   U
95 				 *    /            /
96 				 *   n            N
97 				 *
98 				 * However, since g's parent might be red, and
99 				 * 4) does not allow this, we need to recurse
100 				 * at g.
101 				 */
102 				rb_set_parent_color(tmp, gparent, RB_BLACK);
103 				rb_set_parent_color(parent, gparent, RB_BLACK);
104 				node = gparent;
105 				parent = rb_parent(node);
106 				rb_set_parent_color(node, parent, RB_RED);
107 				continue;
108 			}
109 
110 			tmp = parent->rb_right;
111 			if (node == tmp) {
112 				/*
113 				 * Case 2 - left rotate at parent
114 				 *
115 				 *      G             G
116 				 *     / \           / \
117 				 *    p   U  -->    n   U
118 				 *     \           /
119 				 *      n         p
120 				 *
121 				 * This still leaves us in violation of 4), the
122 				 * continuation into Case 3 will fix that.
123 				 */
124 				parent->rb_right = tmp = node->rb_left;
125 				node->rb_left = parent;
126 				if (tmp)
127 					rb_set_parent_color(tmp, parent,
128 							    RB_BLACK);
129 				rb_set_parent_color(parent, node, RB_RED);
130 				augment_rotate(parent, node);
131 				parent = node;
132 				tmp = node->rb_right;
133 			}
134 
135 			/*
136 			 * Case 3 - right rotate at gparent
137 			 *
138 			 *        G           P
139 			 *       / \         / \
140 			 *      p   U  -->  n   g
141 			 *     /                 \
142 			 *    n                   U
143 			 */
144 			gparent->rb_left = tmp;  /* == parent->rb_right */
145 			parent->rb_right = gparent;
146 			if (tmp)
147 				rb_set_parent_color(tmp, gparent, RB_BLACK);
148 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
149 			augment_rotate(gparent, parent);
150 			break;
151 		} else {
152 			tmp = gparent->rb_left;
153 			if (tmp && rb_is_red(tmp)) {
154 				/* Case 1 - color flips */
155 				rb_set_parent_color(tmp, gparent, RB_BLACK);
156 				rb_set_parent_color(parent, gparent, RB_BLACK);
157 				node = gparent;
158 				parent = rb_parent(node);
159 				rb_set_parent_color(node, parent, RB_RED);
160 				continue;
161 			}
162 
163 			tmp = parent->rb_left;
164 			if (node == tmp) {
165 				/* Case 2 - right rotate at parent */
166 				parent->rb_left = tmp = node->rb_right;
167 				node->rb_right = parent;
168 				if (tmp)
169 					rb_set_parent_color(tmp, parent,
170 							    RB_BLACK);
171 				rb_set_parent_color(parent, node, RB_RED);
172 				augment_rotate(parent, node);
173 				parent = node;
174 				tmp = node->rb_left;
175 			}
176 
177 			/* Case 3 - left rotate at gparent */
178 			gparent->rb_right = tmp;  /* == parent->rb_left */
179 			parent->rb_left = gparent;
180 			if (tmp)
181 				rb_set_parent_color(tmp, gparent, RB_BLACK);
182 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
183 			augment_rotate(gparent, parent);
184 			break;
185 		}
186 	}
187 }
188 
189 /*
190  * Inline version for rb_erase() use - we want to be able to inline
191  * and eliminate the dummy_rotate callback there
192  */
193 static __always_inline void
194 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
195 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
196 {
197 	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
198 
199 	while (true) {
200 		/*
201 		 * Loop invariants:
202 		 * - node is black (or NULL on first iteration)
203 		 * - node is not the root (parent is not NULL)
204 		 * - All leaf paths going through parent and node have a
205 		 *   black node count that is 1 lower than other leaf paths.
206 		 */
207 		sibling = parent->rb_right;
208 		if (node != sibling) {	/* node == parent->rb_left */
209 			if (rb_is_red(sibling)) {
210 				/*
211 				 * Case 1 - left rotate at parent
212 				 *
213 				 *     P               S
214 				 *    / \             / \
215 				 *   N   s    -->    p   Sr
216 				 *      / \         / \
217 				 *     Sl  Sr      N   Sl
218 				 */
219 				parent->rb_right = tmp1 = sibling->rb_left;
220 				sibling->rb_left = parent;
221 				rb_set_parent_color(tmp1, parent, RB_BLACK);
222 				__rb_rotate_set_parents(parent, sibling, root,
223 							RB_RED);
224 				augment_rotate(parent, sibling);
225 				sibling = tmp1;
226 			}
227 			tmp1 = sibling->rb_right;
228 			if (!tmp1 || rb_is_black(tmp1)) {
229 				tmp2 = sibling->rb_left;
230 				if (!tmp2 || rb_is_black(tmp2)) {
231 					/*
232 					 * Case 2 - sibling color flip
233 					 * (p could be either color here)
234 					 *
235 					 *    (p)           (p)
236 					 *    / \           / \
237 					 *   N   S    -->  N   s
238 					 *      / \           / \
239 					 *     Sl  Sr        Sl  Sr
240 					 *
241 					 * This leaves us violating 5) which
242 					 * can be fixed by flipping p to black
243 					 * if it was red, or by recursing at p.
244 					 * p is red when coming from Case 1.
245 					 */
246 					rb_set_parent_color(sibling, parent,
247 							    RB_RED);
248 					if (rb_is_red(parent))
249 						rb_set_black(parent);
250 					else {
251 						node = parent;
252 						parent = rb_parent(node);
253 						if (parent)
254 							continue;
255 					}
256 					break;
257 				}
258 				/*
259 				 * Case 3 - right rotate at sibling
260 				 * (p could be either color here)
261 				 *
262 				 *   (p)           (p)
263 				 *   / \           / \
264 				 *  N   S    -->  N   Sl
265 				 *     / \             \
266 				 *    sl  Sr            s
267 				 *                       \
268 				 *                        Sr
269 				 */
270 				sibling->rb_left = tmp1 = tmp2->rb_right;
271 				tmp2->rb_right = sibling;
272 				parent->rb_right = tmp2;
273 				if (tmp1)
274 					rb_set_parent_color(tmp1, sibling,
275 							    RB_BLACK);
276 				augment_rotate(sibling, tmp2);
277 				tmp1 = sibling;
278 				sibling = tmp2;
279 			}
280 			/*
281 			 * Case 4 - left rotate at parent + color flips
282 			 * (p and sl could be either color here.
283 			 *  After rotation, p becomes black, s acquires
284 			 *  p's color, and sl keeps its color)
285 			 *
286 			 *      (p)             (s)
287 			 *      / \             / \
288 			 *     N   S     -->   P   Sr
289 			 *        / \         / \
290 			 *      (sl) sr      N  (sl)
291 			 */
292 			parent->rb_right = tmp2 = sibling->rb_left;
293 			sibling->rb_left = parent;
294 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
295 			if (tmp2)
296 				rb_set_parent(tmp2, parent);
297 			__rb_rotate_set_parents(parent, sibling, root,
298 						RB_BLACK);
299 			augment_rotate(parent, sibling);
300 			break;
301 		} else {
302 			sibling = parent->rb_left;
303 			if (rb_is_red(sibling)) {
304 				/* Case 1 - right rotate at parent */
305 				parent->rb_left = tmp1 = sibling->rb_right;
306 				sibling->rb_right = parent;
307 				rb_set_parent_color(tmp1, parent, RB_BLACK);
308 				__rb_rotate_set_parents(parent, sibling, root,
309 							RB_RED);
310 				augment_rotate(parent, sibling);
311 				sibling = tmp1;
312 			}
313 			tmp1 = sibling->rb_left;
314 			if (!tmp1 || rb_is_black(tmp1)) {
315 				tmp2 = sibling->rb_right;
316 				if (!tmp2 || rb_is_black(tmp2)) {
317 					/* Case 2 - sibling color flip */
318 					rb_set_parent_color(sibling, parent,
319 							    RB_RED);
320 					if (rb_is_red(parent))
321 						rb_set_black(parent);
322 					else {
323 						node = parent;
324 						parent = rb_parent(node);
325 						if (parent)
326 							continue;
327 					}
328 					break;
329 				}
330 				/* Case 3 - right rotate at sibling */
331 				sibling->rb_right = tmp1 = tmp2->rb_left;
332 				tmp2->rb_left = sibling;
333 				parent->rb_left = tmp2;
334 				if (tmp1)
335 					rb_set_parent_color(tmp1, sibling,
336 							    RB_BLACK);
337 				augment_rotate(sibling, tmp2);
338 				tmp1 = sibling;
339 				sibling = tmp2;
340 			}
341 			/* Case 4 - left rotate at parent + color flips */
342 			parent->rb_left = tmp2 = sibling->rb_right;
343 			sibling->rb_right = parent;
344 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
345 			if (tmp2)
346 				rb_set_parent(tmp2, parent);
347 			__rb_rotate_set_parents(parent, sibling, root,
348 						RB_BLACK);
349 			augment_rotate(parent, sibling);
350 			break;
351 		}
352 	}
353 }
354 
355 /* Non-inline version for rb_erase_augmented() use */
356 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
357 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
358 {
359 	____rb_erase_color(parent, root, augment_rotate);
360 }
361 EXPORT_SYMBOL(__rb_erase_color);
362 
363 /*
364  * Non-augmented rbtree manipulation functions.
365  *
366  * We use dummy augmented callbacks here, and have the compiler optimize them
367  * out of the rb_insert_color() and rb_erase() function definitions.
368  */
369 
370 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
371 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
372 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
373 
374 static const struct rb_augment_callbacks dummy_callbacks = {
375 	dummy_propagate, dummy_copy, dummy_rotate
376 };
377 
378 void rb_insert_color(struct rb_node *node, struct rb_root *root)
379 {
380 	__rb_insert(node, root, dummy_rotate);
381 }
382 EXPORT_SYMBOL(rb_insert_color);
383 
384 void rb_erase(struct rb_node *node, struct rb_root *root)
385 {
386 	struct rb_node *rebalance;
387 	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
388 	if (rebalance)
389 		____rb_erase_color(rebalance, root, dummy_rotate);
390 }
391 EXPORT_SYMBOL(rb_erase);
392 
393 /*
394  * Augmented rbtree manipulation functions.
395  *
396  * This instantiates the same __always_inline functions as in the non-augmented
397  * case, but this time with user-defined callbacks.
398  */
399 
400 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
401 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
402 {
403 	__rb_insert(node, root, augment_rotate);
404 }
405 EXPORT_SYMBOL(__rb_insert_augmented);
406 
407 /*
408  * This function returns the first node (in sort order) of the tree.
409  */
410 struct rb_node *rb_first(const struct rb_root *root)
411 {
412 	struct rb_node	*n;
413 
414 	n = root->rb_node;
415 	if (!n)
416 		return NULL;
417 	while (n->rb_left)
418 		n = n->rb_left;
419 	return n;
420 }
421 EXPORT_SYMBOL(rb_first);
422 
423 struct rb_node *rb_last(const struct rb_root *root)
424 {
425 	struct rb_node	*n;
426 
427 	n = root->rb_node;
428 	if (!n)
429 		return NULL;
430 	while (n->rb_right)
431 		n = n->rb_right;
432 	return n;
433 }
434 EXPORT_SYMBOL(rb_last);
435 
436 struct rb_node *rb_next(const struct rb_node *node)
437 {
438 	struct rb_node *parent;
439 
440 	if (RB_EMPTY_NODE(node))
441 		return NULL;
442 
443 	/*
444 	 * If we have a right-hand child, go down and then left as far
445 	 * as we can.
446 	 */
447 	if (node->rb_right) {
448 		node = node->rb_right;
449 		while (node->rb_left)
450 			node=node->rb_left;
451 		return (struct rb_node *)node;
452 	}
453 
454 	/*
455 	 * No right-hand children. Everything down and left is smaller than us,
456 	 * so any 'next' node must be in the general direction of our parent.
457 	 * Go up the tree; any time the ancestor is a right-hand child of its
458 	 * parent, keep going up. First time it's a left-hand child of its
459 	 * parent, said parent is our 'next' node.
460 	 */
461 	while ((parent = rb_parent(node)) && node == parent->rb_right)
462 		node = parent;
463 
464 	return parent;
465 }
466 EXPORT_SYMBOL(rb_next);
467 
468 struct rb_node *rb_prev(const struct rb_node *node)
469 {
470 	struct rb_node *parent;
471 
472 	if (RB_EMPTY_NODE(node))
473 		return NULL;
474 
475 	/*
476 	 * If we have a left-hand child, go down and then right as far
477 	 * as we can.
478 	 */
479 	if (node->rb_left) {
480 		node = node->rb_left;
481 		while (node->rb_right)
482 			node=node->rb_right;
483 		return (struct rb_node *)node;
484 	}
485 
486 	/*
487 	 * No left-hand children. Go up till we find an ancestor which
488 	 * is a right-hand child of its parent.
489 	 */
490 	while ((parent = rb_parent(node)) && node == parent->rb_left)
491 		node = parent;
492 
493 	return parent;
494 }
495 EXPORT_SYMBOL(rb_prev);
496 
497 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
498 		     struct rb_root *root)
499 {
500 	struct rb_node *parent = rb_parent(victim);
501 
502 	/* Set the surrounding nodes to point to the replacement */
503 	__rb_change_child(victim, new, parent, root);
504 	if (victim->rb_left)
505 		rb_set_parent(victim->rb_left, new);
506 	if (victim->rb_right)
507 		rb_set_parent(victim->rb_right, new);
508 
509 	/* Copy the pointers/colour from the victim to the replacement */
510 	*new = *victim;
511 }
512 EXPORT_SYMBOL(rb_replace_node);
513 
514 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
515 {
516 	for (;;) {
517 		if (node->rb_left)
518 			node = node->rb_left;
519 		else if (node->rb_right)
520 			node = node->rb_right;
521 		else
522 			return (struct rb_node *)node;
523 	}
524 }
525 
526 struct rb_node *rb_next_postorder(const struct rb_node *node)
527 {
528 	const struct rb_node *parent;
529 	if (!node)
530 		return NULL;
531 	parent = rb_parent(node);
532 
533 	/* If we're sitting on node, we've already seen our children */
534 	if (parent && node == parent->rb_left && parent->rb_right) {
535 		/* If we are the parent's left node, go to the parent's right
536 		 * node then all the way down to the left */
537 		return rb_left_deepest_node(parent->rb_right);
538 	} else
539 		/* Otherwise we are the parent's right node, and the parent
540 		 * should be next */
541 		return (struct rb_node *)parent;
542 }
543 EXPORT_SYMBOL(rb_next_postorder);
544 
545 struct rb_node *rb_first_postorder(const struct rb_root *root)
546 {
547 	if (!root->rb_node)
548 		return NULL;
549 
550 	return rb_left_deepest_node(root->rb_node);
551 }
552 EXPORT_SYMBOL(rb_first_postorder);
553