xref: /openbmc/u-boot/lib/libavb/avb_rsa.c (revision 2a1eade825149647ffbe4da5dce0883d45d3a137)
1 // SPDX-License-Identifier: MIT OR BSD-3-Clause
2 /*
3  * Copyright (C) 2016 The Android Open Source Project
4  */
5 
6 /* Implementation of RSA signature verification which uses a pre-processed
7  * key for computation. The code extends libmincrypt RSA verification code to
8  * support multiple RSA key lengths and hash digest algorithms.
9  */
10 
11 #include "avb_rsa.h"
12 #include "avb_sha.h"
13 #include "avb_util.h"
14 #include "avb_vbmeta_image.h"
15 
16 typedef struct IAvbKey {
17   unsigned int len; /* Length of n[] in number of uint32_t */
18   uint32_t n0inv;   /* -1 / n[0] mod 2^32 */
19   uint32_t* n;      /* modulus as array (host-byte order) */
20   uint32_t* rr;     /* R^2 as array (host-byte order) */
21 } IAvbKey;
22 
23 static IAvbKey* iavb_parse_key_data(const uint8_t* data, size_t length) {
24   AvbRSAPublicKeyHeader h;
25   IAvbKey* key = NULL;
26   size_t expected_length;
27   unsigned int i;
28   const uint8_t* n;
29   const uint8_t* rr;
30 
31   if (!avb_rsa_public_key_header_validate_and_byteswap(
32           (const AvbRSAPublicKeyHeader*)data, &h)) {
33     avb_error("Invalid key.\n");
34     goto fail;
35   }
36 
37   if (!(h.key_num_bits == 2048 || h.key_num_bits == 4096 ||
38         h.key_num_bits == 8192)) {
39     avb_error("Unexpected key length.\n");
40     goto fail;
41   }
42 
43   expected_length = sizeof(AvbRSAPublicKeyHeader) + 2 * h.key_num_bits / 8;
44   if (length != expected_length) {
45     avb_error("Key does not match expected length.\n");
46     goto fail;
47   }
48 
49   n = data + sizeof(AvbRSAPublicKeyHeader);
50   rr = data + sizeof(AvbRSAPublicKeyHeader) + h.key_num_bits / 8;
51 
52   /* Store n and rr following the key header so we only have to do one
53    * allocation.
54    */
55   key = (IAvbKey*)(avb_malloc(sizeof(IAvbKey) + 2 * h.key_num_bits / 8));
56   if (key == NULL) {
57     goto fail;
58   }
59 
60   key->len = h.key_num_bits / 32;
61   key->n0inv = h.n0inv;
62   key->n = (uint32_t*)(key + 1); /* Skip ahead sizeof(IAvbKey) bytes. */
63   key->rr = key->n + key->len;
64 
65   /* Crypto-code below (modpowF4() and friends) expects the key in
66    * little-endian format (rather than the format we're storing the
67    * key in), so convert it.
68    */
69   for (i = 0; i < key->len; i++) {
70     key->n[i] = avb_be32toh(((uint32_t*)n)[key->len - i - 1]);
71     key->rr[i] = avb_be32toh(((uint32_t*)rr)[key->len - i - 1]);
72   }
73   return key;
74 
75 fail:
76   if (key != NULL) {
77     avb_free(key);
78   }
79   return NULL;
80 }
81 
82 static void iavb_free_parsed_key(IAvbKey* key) {
83   avb_free(key);
84 }
85 
86 /* a[] -= mod */
87 static void subM(const IAvbKey* key, uint32_t* a) {
88   int64_t A = 0;
89   uint32_t i;
90   for (i = 0; i < key->len; ++i) {
91     A += (uint64_t)a[i] - key->n[i];
92     a[i] = (uint32_t)A;
93     A >>= 32;
94   }
95 }
96 
97 /* return a[] >= mod */
98 static int geM(const IAvbKey* key, uint32_t* a) {
99   uint32_t i;
100   for (i = key->len; i;) {
101     --i;
102     if (a[i] < key->n[i]) {
103       return 0;
104     }
105     if (a[i] > key->n[i]) {
106       return 1;
107     }
108   }
109   return 1; /* equal */
110 }
111 
112 /* montgomery c[] += a * b[] / R % mod */
113 static void montMulAdd(const IAvbKey* key,
114                        uint32_t* c,
115                        const uint32_t a,
116                        const uint32_t* b) {
117   uint64_t A = (uint64_t)a * b[0] + c[0];
118   uint32_t d0 = (uint32_t)A * key->n0inv;
119   uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
120   uint32_t i;
121 
122   for (i = 1; i < key->len; ++i) {
123     A = (A >> 32) + (uint64_t)a * b[i] + c[i];
124     B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
125     c[i - 1] = (uint32_t)B;
126   }
127 
128   A = (A >> 32) + (B >> 32);
129 
130   c[i - 1] = (uint32_t)A;
131 
132   if (A >> 32) {
133     subM(key, c);
134   }
135 }
136 
137 /* montgomery c[] = a[] * b[] / R % mod */
138 static void montMul(const IAvbKey* key, uint32_t* c, uint32_t* a, uint32_t* b) {
139   uint32_t i;
140   for (i = 0; i < key->len; ++i) {
141     c[i] = 0;
142   }
143   for (i = 0; i < key->len; ++i) {
144     montMulAdd(key, c, a[i], b);
145   }
146 }
147 
148 /* In-place public exponentiation. (65537}
149  * Input and output big-endian byte array in inout.
150  */
151 static void modpowF4(const IAvbKey* key, uint8_t* inout) {
152   uint32_t* a = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
153   uint32_t* aR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
154   uint32_t* aaR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
155   if (a == NULL || aR == NULL || aaR == NULL) {
156     goto out;
157   }
158 
159   uint32_t* aaa = aaR; /* Re-use location. */
160   int i;
161 
162   /* Convert from big endian byte array to little endian word array. */
163   for (i = 0; i < (int)key->len; ++i) {
164     uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) |
165                    (inout[((key->len - 1 - i) * 4) + 1] << 16) |
166                    (inout[((key->len - 1 - i) * 4) + 2] << 8) |
167                    (inout[((key->len - 1 - i) * 4) + 3] << 0);
168     a[i] = tmp;
169   }
170 
171   montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M   */
172   for (i = 0; i < 16; i += 2) {
173     montMul(key, aaR, aR, aR);  /* aaR = aR * aR / R mod M */
174     montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
175   }
176   montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
177 
178   /* Make sure aaa < mod; aaa is at most 1x mod too large. */
179   if (geM(key, aaa)) {
180     subM(key, aaa);
181   }
182 
183   /* Convert to bigendian byte array */
184   for (i = (int)key->len - 1; i >= 0; --i) {
185     uint32_t tmp = aaa[i];
186     *inout++ = (uint8_t)(tmp >> 24);
187     *inout++ = (uint8_t)(tmp >> 16);
188     *inout++ = (uint8_t)(tmp >> 8);
189     *inout++ = (uint8_t)(tmp >> 0);
190   }
191 
192 out:
193   if (a != NULL) {
194     avb_free(a);
195   }
196   if (aR != NULL) {
197     avb_free(aR);
198   }
199   if (aaR != NULL) {
200     avb_free(aaR);
201   }
202 }
203 
204 /* Verify a RSA PKCS1.5 signature against an expected hash.
205  * Returns false on failure, true on success.
206  */
207 bool avb_rsa_verify(const uint8_t* key,
208                     size_t key_num_bytes,
209                     const uint8_t* sig,
210                     size_t sig_num_bytes,
211                     const uint8_t* hash,
212                     size_t hash_num_bytes,
213                     const uint8_t* padding,
214                     size_t padding_num_bytes) {
215   uint8_t* buf = NULL;
216   IAvbKey* parsed_key = NULL;
217   bool success = false;
218 
219   if (key == NULL || sig == NULL || hash == NULL || padding == NULL) {
220     avb_error("Invalid input.\n");
221     goto out;
222   }
223 
224   parsed_key = iavb_parse_key_data(key, key_num_bytes);
225   if (parsed_key == NULL) {
226     avb_error("Error parsing key.\n");
227     goto out;
228   }
229 
230   if (sig_num_bytes != (parsed_key->len * sizeof(uint32_t))) {
231     avb_error("Signature length does not match key length.\n");
232     goto out;
233   }
234 
235   if (padding_num_bytes != sig_num_bytes - hash_num_bytes) {
236     avb_error("Padding length does not match hash and signature lengths.\n");
237     goto out;
238   }
239 
240   buf = (uint8_t*)avb_malloc(sig_num_bytes);
241   if (buf == NULL) {
242     avb_error("Error allocating memory.\n");
243     goto out;
244   }
245   avb_memcpy(buf, sig, sig_num_bytes);
246 
247   modpowF4(parsed_key, buf);
248 
249   /* Check padding bytes.
250    *
251    * Even though there are probably no timing issues here, we use
252    * avb_safe_memcmp() just to be on the safe side.
253    */
254   if (avb_safe_memcmp(buf, padding, padding_num_bytes)) {
255     avb_error("Padding check failed.\n");
256     goto out;
257   }
258 
259   /* Check hash. */
260   if (avb_safe_memcmp(buf + padding_num_bytes, hash, hash_num_bytes)) {
261     avb_error("Hash check failed.\n");
262     goto out;
263   }
264 
265   success = true;
266 
267 out:
268   if (parsed_key != NULL) {
269     iavb_free_parsed_key(parsed_key);
270   }
271   if (buf != NULL) {
272     avb_free(buf);
273   }
274   return success;
275 }
276