1 /* 2 * This implementation is based on code from uClibc-0.9.30.3 but was 3 * modified and extended for use within U-Boot. 4 * 5 * Copyright (C) 2010 Wolfgang Denk <wd@denx.de> 6 * 7 * Original license header: 8 * 9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. 10 * This file is part of the GNU C Library. 11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. 12 * 13 * The GNU C Library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2.1 of the License, or (at your option) any later version. 17 * 18 * The GNU C Library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with the GNU C Library; if not, write to the Free 25 * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 26 * 02111-1307 USA. 27 */ 28 29 #include <errno.h> 30 #include <malloc.h> 31 32 #ifdef USE_HOSTCC /* HOST build */ 33 # include <string.h> 34 # include <assert.h> 35 36 # ifndef debug 37 # ifdef DEBUG 38 # define debug(fmt,args...) printf(fmt ,##args) 39 # else 40 # define debug(fmt,args...) 41 # endif 42 # endif 43 #else /* U-Boot build */ 44 # include <common.h> 45 # include <linux/string.h> 46 #endif 47 48 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ 49 #define CONFIG_ENV_MIN_ENTRIES 64 50 #endif 51 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ 52 #define CONFIG_ENV_MAX_ENTRIES 512 53 #endif 54 55 #include "search.h" 56 57 /* 58 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 59 * [Knuth] The Art of Computer Programming, part 3 (6.4) 60 */ 61 62 /* 63 * The reentrant version has no static variables to maintain the state. 64 * Instead the interface of all functions is extended to take an argument 65 * which describes the current status. 66 */ 67 typedef struct _ENTRY { 68 int used; 69 ENTRY entry; 70 } _ENTRY; 71 72 73 /* 74 * hcreate() 75 */ 76 77 /* 78 * For the used double hash method the table size has to be a prime. To 79 * correct the user given table size we need a prime test. This trivial 80 * algorithm is adequate because 81 * a) the code is (most probably) called a few times per program run and 82 * b) the number is small because the table must fit in the core 83 * */ 84 static int isprime(unsigned int number) 85 { 86 /* no even number will be passed */ 87 unsigned int div = 3; 88 89 while (div * div < number && number % div != 0) 90 div += 2; 91 92 return number % div != 0; 93 } 94 95 /* 96 * Before using the hash table we must allocate memory for it. 97 * Test for an existing table are done. We allocate one element 98 * more as the found prime number says. This is done for more effective 99 * indexing as explained in the comment for the hsearch function. 100 * The contents of the table is zeroed, especially the field used 101 * becomes zero. 102 */ 103 104 int hcreate_r(size_t nel, struct hsearch_data *htab) 105 { 106 /* Test for correct arguments. */ 107 if (htab == NULL) { 108 __set_errno(EINVAL); 109 return 0; 110 } 111 112 /* There is still another table active. Return with error. */ 113 if (htab->table != NULL) 114 return 0; 115 116 /* Change nel to the first prime number not smaller as nel. */ 117 nel |= 1; /* make odd */ 118 while (!isprime(nel)) 119 nel += 2; 120 121 htab->size = nel; 122 htab->filled = 0; 123 124 /* allocate memory and zero out */ 125 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); 126 if (htab->table == NULL) 127 return 0; 128 129 /* everything went alright */ 130 return 1; 131 } 132 133 134 /* 135 * hdestroy() 136 */ 137 138 /* 139 * After using the hash table it has to be destroyed. The used memory can 140 * be freed and the local static variable can be marked as not used. 141 */ 142 143 void hdestroy_r(struct hsearch_data *htab) 144 { 145 int i; 146 147 /* Test for correct arguments. */ 148 if (htab == NULL) { 149 __set_errno(EINVAL); 150 return; 151 } 152 153 /* free used memory */ 154 for (i = 1; i <= htab->size; ++i) { 155 if (htab->table[i].used > 0) { 156 ENTRY *ep = &htab->table[i].entry; 157 158 free(ep->key); 159 free(ep->data); 160 } 161 } 162 free(htab->table); 163 164 /* the sign for an existing table is an value != NULL in htable */ 165 htab->table = NULL; 166 } 167 168 /* 169 * hsearch() 170 */ 171 172 /* 173 * This is the search function. It uses double hashing with open addressing. 174 * The argument item.key has to be a pointer to an zero terminated, most 175 * probably strings of chars. The function for generating a number of the 176 * strings is simple but fast. It can be replaced by a more complex function 177 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. 178 * 179 * We use an trick to speed up the lookup. The table is created by hcreate 180 * with one more element available. This enables us to use the index zero 181 * special. This index will never be used because we store the first hash 182 * index in the field used where zero means not used. Every other value 183 * means used. The used field can be used as a first fast comparison for 184 * equality of the stored and the parameter value. This helps to prevent 185 * unnecessary expensive calls of strcmp. 186 * 187 * This implementation differs from the standard library version of 188 * this function in a number of ways: 189 * 190 * - While the standard version does not make any assumptions about 191 * the type of the stored data objects at all, this implementation 192 * works with NUL terminated strings only. 193 * - Instead of storing just pointers to the original objects, we 194 * create local copies so the caller does not need to care about the 195 * data any more. 196 * - The standard implementation does not provide a way to update an 197 * existing entry. This version will create a new entry or update an 198 * existing one when both "action == ENTER" and "item.data != NULL". 199 * - Instead of returning 1 on success, we return the index into the 200 * internal hash table, which is also guaranteed to be positive. 201 * This allows us direct access to the found hash table slot for 202 * example for functions like hdelete(). 203 */ 204 205 int hmatch_r(const char *match, int last_idx, ENTRY ** retval, 206 struct hsearch_data *htab) 207 { 208 unsigned int idx; 209 size_t key_len = strlen(match); 210 211 for (idx = last_idx + 1; idx < htab->size; ++idx) { 212 if (htab->table[idx].used > 0) 213 continue; 214 if (!strncmp(match, htab->table[idx].entry.key, key_len)) { 215 *retval = &htab->table[idx].entry; 216 return idx; 217 } 218 } 219 220 __set_errno(ESRCH); 221 *retval = NULL; 222 return 0; 223 } 224 225 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, 226 struct hsearch_data *htab) 227 { 228 unsigned int hval; 229 unsigned int count; 230 unsigned int len = strlen(item.key); 231 unsigned int idx; 232 unsigned int first_deleted = 0; 233 234 /* Compute an value for the given string. Perhaps use a better method. */ 235 hval = len; 236 count = len; 237 while (count-- > 0) { 238 hval <<= 4; 239 hval += item.key[count]; 240 } 241 242 /* 243 * First hash function: 244 * simply take the modul but prevent zero. 245 */ 246 hval %= htab->size; 247 if (hval == 0) 248 ++hval; 249 250 /* The first index tried. */ 251 idx = hval; 252 253 if (htab->table[idx].used) { 254 /* 255 * Further action might be required according to the 256 * action value. 257 */ 258 unsigned hval2; 259 260 if (htab->table[idx].used == -1 261 && !first_deleted) 262 first_deleted = idx; 263 264 if (htab->table[idx].used == hval 265 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 266 /* Overwrite existing value? */ 267 if ((action == ENTER) && (item.data != NULL)) { 268 free(htab->table[idx].entry.data); 269 htab->table[idx].entry.data = 270 strdup(item.data); 271 if (!htab->table[idx].entry.data) { 272 __set_errno(ENOMEM); 273 *retval = NULL; 274 return 0; 275 } 276 } 277 /* return found entry */ 278 *retval = &htab->table[idx].entry; 279 return idx; 280 } 281 282 /* 283 * Second hash function: 284 * as suggested in [Knuth] 285 */ 286 hval2 = 1 + hval % (htab->size - 2); 287 288 do { 289 /* 290 * Because SIZE is prime this guarantees to 291 * step through all available indices. 292 */ 293 if (idx <= hval2) 294 idx = htab->size + idx - hval2; 295 else 296 idx -= hval2; 297 298 /* 299 * If we visited all entries leave the loop 300 * unsuccessfully. 301 */ 302 if (idx == hval) 303 break; 304 305 /* If entry is found use it. */ 306 if ((htab->table[idx].used == hval) 307 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 308 /* Overwrite existing value? */ 309 if ((action == ENTER) && (item.data != NULL)) { 310 free(htab->table[idx].entry.data); 311 htab->table[idx].entry.data = 312 strdup(item.data); 313 if (!htab->table[idx].entry.data) { 314 __set_errno(ENOMEM); 315 *retval = NULL; 316 return 0; 317 } 318 } 319 /* return found entry */ 320 *retval = &htab->table[idx].entry; 321 return idx; 322 } 323 } 324 while (htab->table[idx].used); 325 } 326 327 /* An empty bucket has been found. */ 328 if (action == ENTER) { 329 /* 330 * If table is full and another entry should be 331 * entered return with error. 332 */ 333 if (htab->filled == htab->size) { 334 __set_errno(ENOMEM); 335 *retval = NULL; 336 return 0; 337 } 338 339 /* 340 * Create new entry; 341 * create copies of item.key and item.data 342 */ 343 if (first_deleted) 344 idx = first_deleted; 345 346 htab->table[idx].used = hval; 347 htab->table[idx].entry.key = strdup(item.key); 348 htab->table[idx].entry.data = strdup(item.data); 349 if (!htab->table[idx].entry.key || 350 !htab->table[idx].entry.data) { 351 __set_errno(ENOMEM); 352 *retval = NULL; 353 return 0; 354 } 355 356 ++htab->filled; 357 358 /* return new entry */ 359 *retval = &htab->table[idx].entry; 360 return 1; 361 } 362 363 __set_errno(ESRCH); 364 *retval = NULL; 365 return 0; 366 } 367 368 369 /* 370 * hdelete() 371 */ 372 373 /* 374 * The standard implementation of hsearch(3) does not provide any way 375 * to delete any entries from the hash table. We extend the code to 376 * do that. 377 */ 378 379 int hdelete_r(const char *key, struct hsearch_data *htab) 380 { 381 ENTRY e, *ep; 382 int idx; 383 384 debug("hdelete: DELETE key \"%s\"\n", key); 385 386 e.key = (char *)key; 387 388 if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) { 389 __set_errno(ESRCH); 390 return 0; /* not found */ 391 } 392 393 /* free used ENTRY */ 394 debug("hdelete: DELETING key \"%s\"\n", key); 395 396 free(ep->key); 397 free(ep->data); 398 htab->table[idx].used = -1; 399 400 --htab->filled; 401 402 return 1; 403 } 404 405 /* 406 * hexport() 407 */ 408 409 /* 410 * Export the data stored in the hash table in linearized form. 411 * 412 * Entries are exported as "name=value" strings, separated by an 413 * arbitrary (non-NUL, of course) separator character. This allows to 414 * use this function both when formatting the U-Boot environment for 415 * external storage (using '\0' as separator), but also when using it 416 * for the "printenv" command to print all variables, simply by using 417 * as '\n" as separator. This can also be used for new features like 418 * exporting the environment data as text file, including the option 419 * for later re-import. 420 * 421 * The entries in the result list will be sorted by ascending key 422 * values. 423 * 424 * If the separator character is different from NUL, then any 425 * separator characters and backslash characters in the values will 426 * be escaped by a preceeding backslash in output. This is needed for 427 * example to enable multi-line values, especially when the output 428 * shall later be parsed (for example, for re-import). 429 * 430 * There are several options how the result buffer is handled: 431 * 432 * *resp size 433 * ----------- 434 * NULL 0 A string of sufficient length will be allocated. 435 * NULL >0 A string of the size given will be 436 * allocated. An error will be returned if the size is 437 * not sufficient. Any unused bytes in the string will 438 * be '\0'-padded. 439 * !NULL 0 The user-supplied buffer will be used. No length 440 * checking will be performed, i. e. it is assumed that 441 * the buffer size will always be big enough. DANGEROUS. 442 * !NULL >0 The user-supplied buffer will be used. An error will 443 * be returned if the size is not sufficient. Any unused 444 * bytes in the string will be '\0'-padded. 445 */ 446 447 static int cmpkey(const void *p1, const void *p2) 448 { 449 ENTRY *e1 = *(ENTRY **) p1; 450 ENTRY *e2 = *(ENTRY **) p2; 451 452 return (strcmp(e1->key, e2->key)); 453 } 454 455 ssize_t hexport_r(struct hsearch_data *htab, const char sep, 456 char **resp, size_t size) 457 { 458 ENTRY *list[htab->size]; 459 char *res, *p; 460 size_t totlen; 461 int i, n; 462 463 /* Test for correct arguments. */ 464 if ((resp == NULL) || (htab == NULL)) { 465 __set_errno(EINVAL); 466 return (-1); 467 } 468 469 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n", 470 htab, htab->size, htab->filled, size); 471 /* 472 * Pass 1: 473 * search used entries, 474 * save addresses and compute total length 475 */ 476 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { 477 478 if (htab->table[i].used > 0) { 479 ENTRY *ep = &htab->table[i].entry; 480 481 list[n++] = ep; 482 483 totlen += strlen(ep->key) + 2; 484 485 if (sep == '\0') { 486 totlen += strlen(ep->data); 487 } else { /* check if escapes are needed */ 488 char *s = ep->data; 489 490 while (*s) { 491 ++totlen; 492 /* add room for needed escape chars */ 493 if ((*s == sep) || (*s == '\\')) 494 ++totlen; 495 ++s; 496 } 497 } 498 totlen += 2; /* for '=' and 'sep' char */ 499 } 500 } 501 502 #ifdef DEBUG 503 /* Pass 1a: print unsorted list */ 504 printf("Unsorted: n=%d\n", n); 505 for (i = 0; i < n; ++i) { 506 printf("\t%3d: %p ==> %-10s => %s\n", 507 i, list[i], list[i]->key, list[i]->data); 508 } 509 #endif 510 511 /* Sort list by keys */ 512 qsort(list, n, sizeof(ENTRY *), cmpkey); 513 514 /* Check if the user supplied buffer size is sufficient */ 515 if (size) { 516 if (size < totlen + 1) { /* provided buffer too small */ 517 debug("### buffer too small: %d, but need %d\n", 518 size, totlen + 1); 519 __set_errno(ENOMEM); 520 return (-1); 521 } 522 } else { 523 size = totlen + 1; 524 } 525 526 /* Check if the user provided a buffer */ 527 if (*resp) { 528 /* yes; clear it */ 529 res = *resp; 530 memset(res, '\0', size); 531 } else { 532 /* no, allocate and clear one */ 533 *resp = res = calloc(1, size); 534 if (res == NULL) { 535 __set_errno(ENOMEM); 536 return (-1); 537 } 538 } 539 /* 540 * Pass 2: 541 * export sorted list of result data 542 */ 543 for (i = 0, p = res; i < n; ++i) { 544 char *s; 545 546 s = list[i]->key; 547 while (*s) 548 *p++ = *s++; 549 *p++ = '='; 550 551 s = list[i]->data; 552 553 while (*s) { 554 if ((*s == sep) || (*s == '\\')) 555 *p++ = '\\'; /* escape */ 556 *p++ = *s++; 557 } 558 *p++ = sep; 559 } 560 *p = '\0'; /* terminate result */ 561 562 return size; 563 } 564 565 566 /* 567 * himport() 568 */ 569 570 /* 571 * Import linearized data into hash table. 572 * 573 * This is the inverse function to hexport(): it takes a linear list 574 * of "name=value" pairs and creates hash table entries from it. 575 * 576 * Entries without "value", i. e. consisting of only "name" or 577 * "name=", will cause this entry to be deleted from the hash table. 578 * 579 * The "flag" argument can be used to control the behaviour: when the 580 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. 581 * new data will be added to an existing hash table; otherwise, old 582 * data will be discarded and a new hash table will be created. 583 * 584 * The separator character for the "name=value" pairs can be selected, 585 * so we both support importing from externally stored environment 586 * data (separated by NUL characters) and from plain text files 587 * (entries separated by newline characters). 588 * 589 * To allow for nicely formatted text input, leading white space 590 * (sequences of SPACE and TAB chars) is ignored, and entries starting 591 * (after removal of any leading white space) with a '#' character are 592 * considered comments and ignored. 593 * 594 * [NOTE: this means that a variable name cannot start with a '#' 595 * character.] 596 * 597 * When using a non-NUL separator character, backslash is used as 598 * escape character in the value part, allowing for example for 599 * multi-line values. 600 * 601 * In theory, arbitrary separator characters can be used, but only 602 * '\0' and '\n' have really been tested. 603 */ 604 605 int himport_r(struct hsearch_data *htab, 606 const char *env, size_t size, const char sep, int flag) 607 { 608 char *data, *sp, *dp, *name, *value; 609 610 /* Test for correct arguments. */ 611 if (htab == NULL) { 612 __set_errno(EINVAL); 613 return 0; 614 } 615 616 /* we allocate new space to make sure we can write to the array */ 617 if ((data = malloc(size)) == NULL) { 618 debug("himport_r: can't malloc %d bytes\n", size); 619 __set_errno(ENOMEM); 620 return 0; 621 } 622 memcpy(data, env, size); 623 dp = data; 624 625 if ((flag & H_NOCLEAR) == 0) { 626 /* Destroy old hash table if one exists */ 627 debug("Destroy Hash Table: %p table = %p\n", htab, 628 htab->table); 629 if (htab->table) 630 hdestroy_r(htab); 631 } 632 633 /* 634 * Create new hash table (if needed). The computation of the hash 635 * table size is based on heuristics: in a sample of some 70+ 636 * existing systems we found an average size of 39+ bytes per entry 637 * in the environment (for the whole key=value pair). Assuming a 638 * size of 8 per entry (= safety factor of ~5) should provide enough 639 * safety margin for any existing environment definitions and still 640 * allow for more than enough dynamic additions. Note that the 641 * "size" argument is supposed to give the maximum enviroment size 642 * (CONFIG_ENV_SIZE). This heuristics will result in 643 * unreasonably large numbers (and thus memory footprint) for 644 * big flash environments (>8,000 entries for 64 KB 645 * envrionment size), so we clip it to a reasonable value. 646 * On the other hand we need to add some more entries for free 647 * space when importing very small buffers. Both boundaries can 648 * be overwritten in the board config file if needed. 649 */ 650 651 if (!htab->table) { 652 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; 653 654 if (nent > CONFIG_ENV_MAX_ENTRIES) 655 nent = CONFIG_ENV_MAX_ENTRIES; 656 657 debug("Create Hash Table: N=%d\n", nent); 658 659 if (hcreate_r(nent, htab) == 0) { 660 free(data); 661 return 0; 662 } 663 } 664 665 /* Parse environment; allow for '\0' and 'sep' as separators */ 666 do { 667 ENTRY e, *rv; 668 669 /* skip leading white space */ 670 while ((*dp == ' ') || (*dp == '\t')) 671 ++dp; 672 673 /* skip comment lines */ 674 if (*dp == '#') { 675 while (*dp && (*dp != sep)) 676 ++dp; 677 ++dp; 678 continue; 679 } 680 681 /* parse name */ 682 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) 683 ; 684 685 /* deal with "name" and "name=" entries (delete var) */ 686 if (*dp == '\0' || *(dp + 1) == '\0' || 687 *dp == sep || *(dp + 1) == sep) { 688 if (*dp == '=') 689 *dp++ = '\0'; 690 *dp++ = '\0'; /* terminate name */ 691 692 debug("DELETE CANDIDATE: \"%s\"\n", name); 693 694 if (hdelete_r(name, htab) == 0) 695 debug("DELETE ERROR ##############################\n"); 696 697 continue; 698 } 699 *dp++ = '\0'; /* terminate name */ 700 701 /* parse value; deal with escapes */ 702 for (value = sp = dp; *dp && (*dp != sep); ++dp) { 703 if ((*dp == '\\') && *(dp + 1)) 704 ++dp; 705 *sp++ = *dp; 706 } 707 *sp++ = '\0'; /* terminate value */ 708 ++dp; 709 710 /* enter into hash table */ 711 e.key = name; 712 e.data = value; 713 714 hsearch_r(e, ENTER, &rv, htab); 715 if (rv == NULL) { 716 printf("himport_r: can't insert \"%s=%s\" into hash table\n", 717 name, value); 718 return 0; 719 } 720 721 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", 722 htab, htab->filled, htab->size, 723 rv, name, value); 724 } while ((dp < data + size) && *dp); /* size check needed for text */ 725 /* without '\0' termination */ 726 debug("INSERT: free(data = %p)\n", data); 727 free(data); 728 729 debug("INSERT: done\n"); 730 return 1; /* everything OK */ 731 } 732