xref: /openbmc/u-boot/lib/hashtable.c (revision 5df4b0ad0dff3cef1bd6660bcc8cba028c80adcb)
1 /*
2  * This implementation is based on code from uClibc-0.9.30.3 but was
3  * modified and extended for use within U-Boot.
4  *
5  * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
6  *
7  * Original license header:
8  *
9  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10  * This file is part of the GNU C Library.
11  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12  *
13  * The GNU C Library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2.1 of the License, or (at your option) any later version.
17  *
18  * The GNU C Library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with the GNU C Library; if not, write to the Free
25  * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26  * 02111-1307 USA.
27  */
28 
29 #include <errno.h>
30 #include <malloc.h>
31 
32 #ifdef USE_HOSTCC		/* HOST build */
33 # include <string.h>
34 # include <assert.h>
35 
36 # ifndef debug
37 #  ifdef DEBUG
38 #   define debug(fmt,args...)	printf(fmt ,##args)
39 #  else
40 #   define debug(fmt,args...)
41 #  endif
42 # endif
43 #else				/* U-Boot build */
44 # include <common.h>
45 # include <linux/string.h>
46 #endif
47 
48 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
49 #define	CONFIG_ENV_MIN_ENTRIES 64
50 #endif
51 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
52 #define	CONFIG_ENV_MAX_ENTRIES 512
53 #endif
54 
55 #include "search.h"
56 
57 /*
58  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
59  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
60  */
61 
62 /*
63  * The reentrant version has no static variables to maintain the state.
64  * Instead the interface of all functions is extended to take an argument
65  * which describes the current status.
66  */
67 typedef struct _ENTRY {
68 	int used;
69 	ENTRY entry;
70 } _ENTRY;
71 
72 
73 /*
74  * hcreate()
75  */
76 
77 /*
78  * For the used double hash method the table size has to be a prime. To
79  * correct the user given table size we need a prime test.  This trivial
80  * algorithm is adequate because
81  * a)  the code is (most probably) called a few times per program run and
82  * b)  the number is small because the table must fit in the core
83  * */
84 static int isprime(unsigned int number)
85 {
86 	/* no even number will be passed */
87 	unsigned int div = 3;
88 
89 	while (div * div < number && number % div != 0)
90 		div += 2;
91 
92 	return number % div != 0;
93 }
94 
95 /*
96  * Before using the hash table we must allocate memory for it.
97  * Test for an existing table are done. We allocate one element
98  * more as the found prime number says. This is done for more effective
99  * indexing as explained in the comment for the hsearch function.
100  * The contents of the table is zeroed, especially the field used
101  * becomes zero.
102  */
103 
104 int hcreate_r(size_t nel, struct hsearch_data *htab)
105 {
106 	/* Test for correct arguments.  */
107 	if (htab == NULL) {
108 		__set_errno(EINVAL);
109 		return 0;
110 	}
111 
112 	/* There is still another table active. Return with error. */
113 	if (htab->table != NULL)
114 		return 0;
115 
116 	/* Change nel to the first prime number not smaller as nel. */
117 	nel |= 1;		/* make odd */
118 	while (!isprime(nel))
119 		nel += 2;
120 
121 	htab->size = nel;
122 	htab->filled = 0;
123 
124 	/* allocate memory and zero out */
125 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
126 	if (htab->table == NULL)
127 		return 0;
128 
129 	/* everything went alright */
130 	return 1;
131 }
132 
133 
134 /*
135  * hdestroy()
136  */
137 
138 /*
139  * After using the hash table it has to be destroyed. The used memory can
140  * be freed and the local static variable can be marked as not used.
141  */
142 
143 void hdestroy_r(struct hsearch_data *htab)
144 {
145 	int i;
146 
147 	/* Test for correct arguments.  */
148 	if (htab == NULL) {
149 		__set_errno(EINVAL);
150 		return;
151 	}
152 
153 	/* free used memory */
154 	for (i = 1; i <= htab->size; ++i) {
155 		if (htab->table[i].used > 0) {
156 			ENTRY *ep = &htab->table[i].entry;
157 
158 			free(ep->key);
159 			free(ep->data);
160 		}
161 	}
162 	free(htab->table);
163 
164 	/* the sign for an existing table is an value != NULL in htable */
165 	htab->table = NULL;
166 }
167 
168 /*
169  * hsearch()
170  */
171 
172 /*
173  * This is the search function. It uses double hashing with open addressing.
174  * The argument item.key has to be a pointer to an zero terminated, most
175  * probably strings of chars. The function for generating a number of the
176  * strings is simple but fast. It can be replaced by a more complex function
177  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
178  *
179  * We use an trick to speed up the lookup. The table is created by hcreate
180  * with one more element available. This enables us to use the index zero
181  * special. This index will never be used because we store the first hash
182  * index in the field used where zero means not used. Every other value
183  * means used. The used field can be used as a first fast comparison for
184  * equality of the stored and the parameter value. This helps to prevent
185  * unnecessary expensive calls of strcmp.
186  *
187  * This implementation differs from the standard library version of
188  * this function in a number of ways:
189  *
190  * - While the standard version does not make any assumptions about
191  *   the type of the stored data objects at all, this implementation
192  *   works with NUL terminated strings only.
193  * - Instead of storing just pointers to the original objects, we
194  *   create local copies so the caller does not need to care about the
195  *   data any more.
196  * - The standard implementation does not provide a way to update an
197  *   existing entry.  This version will create a new entry or update an
198  *   existing one when both "action == ENTER" and "item.data != NULL".
199  * - Instead of returning 1 on success, we return the index into the
200  *   internal hash table, which is also guaranteed to be positive.
201  *   This allows us direct access to the found hash table slot for
202  *   example for functions like hdelete().
203  */
204 
205 int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
206 	     struct hsearch_data *htab)
207 {
208 	unsigned int idx;
209 	size_t key_len = strlen(match);
210 
211 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
212 		if (htab->table[idx].used > 0)
213 			continue;
214 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
215 			*retval = &htab->table[idx].entry;
216 			return idx;
217 		}
218 	}
219 
220 	__set_errno(ESRCH);
221 	*retval = NULL;
222 	return 0;
223 }
224 
225 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
226 	      struct hsearch_data *htab)
227 {
228 	unsigned int hval;
229 	unsigned int count;
230 	unsigned int len = strlen(item.key);
231 	unsigned int idx;
232 	unsigned int first_deleted = 0;
233 
234 	/* Compute an value for the given string. Perhaps use a better method. */
235 	hval = len;
236 	count = len;
237 	while (count-- > 0) {
238 		hval <<= 4;
239 		hval += item.key[count];
240 	}
241 
242 	/*
243 	 * First hash function:
244 	 * simply take the modul but prevent zero.
245 	 */
246 	hval %= htab->size;
247 	if (hval == 0)
248 		++hval;
249 
250 	/* The first index tried. */
251 	idx = hval;
252 
253 	if (htab->table[idx].used) {
254 		/*
255 		 * Further action might be required according to the
256 		 * action value.
257 		 */
258 		unsigned hval2;
259 
260 		if (htab->table[idx].used == -1
261 		    && !first_deleted)
262 			first_deleted = idx;
263 
264 		if (htab->table[idx].used == hval
265 		    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
266 			/* Overwrite existing value? */
267 			if ((action == ENTER) && (item.data != NULL)) {
268 				free(htab->table[idx].entry.data);
269 				htab->table[idx].entry.data =
270 					strdup(item.data);
271 				if (!htab->table[idx].entry.data) {
272 					__set_errno(ENOMEM);
273 					*retval = NULL;
274 					return 0;
275 				}
276 			}
277 			/* return found entry */
278 			*retval = &htab->table[idx].entry;
279 			return idx;
280 		}
281 
282 		/*
283 		 * Second hash function:
284 		 * as suggested in [Knuth]
285 		 */
286 		hval2 = 1 + hval % (htab->size - 2);
287 
288 		do {
289 			/*
290 			 * Because SIZE is prime this guarantees to
291 			 * step through all available indices.
292 			 */
293 			if (idx <= hval2)
294 				idx = htab->size + idx - hval2;
295 			else
296 				idx -= hval2;
297 
298 			/*
299 			 * If we visited all entries leave the loop
300 			 * unsuccessfully.
301 			 */
302 			if (idx == hval)
303 				break;
304 
305 			/* If entry is found use it. */
306 			if ((htab->table[idx].used == hval)
307 			    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
308 				/* Overwrite existing value? */
309 				if ((action == ENTER) && (item.data != NULL)) {
310 					free(htab->table[idx].entry.data);
311 					htab->table[idx].entry.data =
312 						strdup(item.data);
313 					if (!htab->table[idx].entry.data) {
314 						__set_errno(ENOMEM);
315 						*retval = NULL;
316 						return 0;
317 					}
318 				}
319 				/* return found entry */
320 				*retval = &htab->table[idx].entry;
321 				return idx;
322 			}
323 		}
324 		while (htab->table[idx].used);
325 	}
326 
327 	/* An empty bucket has been found. */
328 	if (action == ENTER) {
329 		/*
330 		 * If table is full and another entry should be
331 		 * entered return with error.
332 		 */
333 		if (htab->filled == htab->size) {
334 			__set_errno(ENOMEM);
335 			*retval = NULL;
336 			return 0;
337 		}
338 
339 		/*
340 		 * Create new entry;
341 		 * create copies of item.key and item.data
342 		 */
343 		if (first_deleted)
344 			idx = first_deleted;
345 
346 		htab->table[idx].used = hval;
347 		htab->table[idx].entry.key = strdup(item.key);
348 		htab->table[idx].entry.data = strdup(item.data);
349 		if (!htab->table[idx].entry.key ||
350 		    !htab->table[idx].entry.data) {
351 			__set_errno(ENOMEM);
352 			*retval = NULL;
353 			return 0;
354 		}
355 
356 		++htab->filled;
357 
358 		/* return new entry */
359 		*retval = &htab->table[idx].entry;
360 		return 1;
361 	}
362 
363 	__set_errno(ESRCH);
364 	*retval = NULL;
365 	return 0;
366 }
367 
368 
369 /*
370  * hdelete()
371  */
372 
373 /*
374  * The standard implementation of hsearch(3) does not provide any way
375  * to delete any entries from the hash table.  We extend the code to
376  * do that.
377  */
378 
379 int hdelete_r(const char *key, struct hsearch_data *htab)
380 {
381 	ENTRY e, *ep;
382 	int idx;
383 
384 	debug("hdelete: DELETE key \"%s\"\n", key);
385 
386 	e.key = (char *)key;
387 
388 	if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) {
389 		__set_errno(ESRCH);
390 		return 0;	/* not found */
391 	}
392 
393 	/* free used ENTRY */
394 	debug("hdelete: DELETING key \"%s\"\n", key);
395 
396 	free(ep->key);
397 	free(ep->data);
398 	htab->table[idx].used = -1;
399 
400 	--htab->filled;
401 
402 	return 1;
403 }
404 
405 /*
406  * hexport()
407  */
408 
409 /*
410  * Export the data stored in the hash table in linearized form.
411  *
412  * Entries are exported as "name=value" strings, separated by an
413  * arbitrary (non-NUL, of course) separator character. This allows to
414  * use this function both when formatting the U-Boot environment for
415  * external storage (using '\0' as separator), but also when using it
416  * for the "printenv" command to print all variables, simply by using
417  * as '\n" as separator. This can also be used for new features like
418  * exporting the environment data as text file, including the option
419  * for later re-import.
420  *
421  * The entries in the result list will be sorted by ascending key
422  * values.
423  *
424  * If the separator character is different from NUL, then any
425  * separator characters and backslash characters in the values will
426  * be escaped by a preceeding backslash in output. This is needed for
427  * example to enable multi-line values, especially when the output
428  * shall later be parsed (for example, for re-import).
429  *
430  * There are several options how the result buffer is handled:
431  *
432  * *resp  size
433  * -----------
434  *  NULL    0	A string of sufficient length will be allocated.
435  *  NULL   >0	A string of the size given will be
436  *		allocated. An error will be returned if the size is
437  *		not sufficient.  Any unused bytes in the string will
438  *		be '\0'-padded.
439  * !NULL    0	The user-supplied buffer will be used. No length
440  *		checking will be performed, i. e. it is assumed that
441  *		the buffer size will always be big enough. DANGEROUS.
442  * !NULL   >0	The user-supplied buffer will be used. An error will
443  *		be returned if the size is not sufficient.  Any unused
444  *		bytes in the string will be '\0'-padded.
445  */
446 
447 static int cmpkey(const void *p1, const void *p2)
448 {
449 	ENTRY *e1 = *(ENTRY **) p1;
450 	ENTRY *e2 = *(ENTRY **) p2;
451 
452 	return (strcmp(e1->key, e2->key));
453 }
454 
455 ssize_t hexport_r(struct hsearch_data *htab, const char sep,
456 		 char **resp, size_t size)
457 {
458 	ENTRY *list[htab->size];
459 	char *res, *p;
460 	size_t totlen;
461 	int i, n;
462 
463 	/* Test for correct arguments.  */
464 	if ((resp == NULL) || (htab == NULL)) {
465 		__set_errno(EINVAL);
466 		return (-1);
467 	}
468 
469 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, size = %d\n",
470 		htab, htab->size, htab->filled, size);
471 	/*
472 	 * Pass 1:
473 	 * search used entries,
474 	 * save addresses and compute total length
475 	 */
476 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
477 
478 		if (htab->table[i].used > 0) {
479 			ENTRY *ep = &htab->table[i].entry;
480 
481 			list[n++] = ep;
482 
483 			totlen += strlen(ep->key) + 2;
484 
485 			if (sep == '\0') {
486 				totlen += strlen(ep->data);
487 			} else {	/* check if escapes are needed */
488 				char *s = ep->data;
489 
490 				while (*s) {
491 					++totlen;
492 					/* add room for needed escape chars */
493 					if ((*s == sep) || (*s == '\\'))
494 						++totlen;
495 					++s;
496 				}
497 			}
498 			totlen += 2;	/* for '=' and 'sep' char */
499 		}
500 	}
501 
502 #ifdef DEBUG
503 	/* Pass 1a: print unsorted list */
504 	printf("Unsorted: n=%d\n", n);
505 	for (i = 0; i < n; ++i) {
506 		printf("\t%3d: %p ==> %-10s => %s\n",
507 		       i, list[i], list[i]->key, list[i]->data);
508 	}
509 #endif
510 
511 	/* Sort list by keys */
512 	qsort(list, n, sizeof(ENTRY *), cmpkey);
513 
514 	/* Check if the user supplied buffer size is sufficient */
515 	if (size) {
516 		if (size < totlen + 1) {	/* provided buffer too small */
517 			debug("### buffer too small: %d, but need %d\n",
518 				size, totlen + 1);
519 			__set_errno(ENOMEM);
520 			return (-1);
521 		}
522 	} else {
523 		size = totlen + 1;
524 	}
525 
526 	/* Check if the user provided a buffer */
527 	if (*resp) {
528 		/* yes; clear it */
529 		res = *resp;
530 		memset(res, '\0', size);
531 	} else {
532 		/* no, allocate and clear one */
533 		*resp = res = calloc(1, size);
534 		if (res == NULL) {
535 			__set_errno(ENOMEM);
536 			return (-1);
537 		}
538 	}
539 	/*
540 	 * Pass 2:
541 	 * export sorted list of result data
542 	 */
543 	for (i = 0, p = res; i < n; ++i) {
544 		char *s;
545 
546 		s = list[i]->key;
547 		while (*s)
548 			*p++ = *s++;
549 		*p++ = '=';
550 
551 		s = list[i]->data;
552 
553 		while (*s) {
554 			if ((*s == sep) || (*s == '\\'))
555 				*p++ = '\\';	/* escape */
556 			*p++ = *s++;
557 		}
558 		*p++ = sep;
559 	}
560 	*p = '\0';		/* terminate result */
561 
562 	return size;
563 }
564 
565 
566 /*
567  * himport()
568  */
569 
570 /*
571  * Import linearized data into hash table.
572  *
573  * This is the inverse function to hexport(): it takes a linear list
574  * of "name=value" pairs and creates hash table entries from it.
575  *
576  * Entries without "value", i. e. consisting of only "name" or
577  * "name=", will cause this entry to be deleted from the hash table.
578  *
579  * The "flag" argument can be used to control the behaviour: when the
580  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
581  * new data will be added to an existing hash table; otherwise, old
582  * data will be discarded and a new hash table will be created.
583  *
584  * The separator character for the "name=value" pairs can be selected,
585  * so we both support importing from externally stored environment
586  * data (separated by NUL characters) and from plain text files
587  * (entries separated by newline characters).
588  *
589  * To allow for nicely formatted text input, leading white space
590  * (sequences of SPACE and TAB chars) is ignored, and entries starting
591  * (after removal of any leading white space) with a '#' character are
592  * considered comments and ignored.
593  *
594  * [NOTE: this means that a variable name cannot start with a '#'
595  * character.]
596  *
597  * When using a non-NUL separator character, backslash is used as
598  * escape character in the value part, allowing for example for
599  * multi-line values.
600  *
601  * In theory, arbitrary separator characters can be used, but only
602  * '\0' and '\n' have really been tested.
603  */
604 
605 int himport_r(struct hsearch_data *htab,
606 	      const char *env, size_t size, const char sep, int flag)
607 {
608 	char *data, *sp, *dp, *name, *value;
609 
610 	/* Test for correct arguments.  */
611 	if (htab == NULL) {
612 		__set_errno(EINVAL);
613 		return 0;
614 	}
615 
616 	/* we allocate new space to make sure we can write to the array */
617 	if ((data = malloc(size)) == NULL) {
618 		debug("himport_r: can't malloc %d bytes\n", size);
619 		__set_errno(ENOMEM);
620 		return 0;
621 	}
622 	memcpy(data, env, size);
623 	dp = data;
624 
625 	if ((flag & H_NOCLEAR) == 0) {
626 		/* Destroy old hash table if one exists */
627 		debug("Destroy Hash Table: %p table = %p\n", htab,
628 		       htab->table);
629 		if (htab->table)
630 			hdestroy_r(htab);
631 	}
632 
633 	/*
634 	 * Create new hash table (if needed).  The computation of the hash
635 	 * table size is based on heuristics: in a sample of some 70+
636 	 * existing systems we found an average size of 39+ bytes per entry
637 	 * in the environment (for the whole key=value pair). Assuming a
638 	 * size of 8 per entry (= safety factor of ~5) should provide enough
639 	 * safety margin for any existing environment definitions and still
640 	 * allow for more than enough dynamic additions. Note that the
641 	 * "size" argument is supposed to give the maximum enviroment size
642 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
643 	 * unreasonably large numbers (and thus memory footprint) for
644 	 * big flash environments (>8,000 entries for 64 KB
645 	 * envrionment size), so we clip it to a reasonable value.
646 	 * On the other hand we need to add some more entries for free
647 	 * space when importing very small buffers. Both boundaries can
648 	 * be overwritten in the board config file if needed.
649 	 */
650 
651 	if (!htab->table) {
652 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
653 
654 		if (nent > CONFIG_ENV_MAX_ENTRIES)
655 			nent = CONFIG_ENV_MAX_ENTRIES;
656 
657 		debug("Create Hash Table: N=%d\n", nent);
658 
659 		if (hcreate_r(nent, htab) == 0) {
660 			free(data);
661 			return 0;
662 		}
663 	}
664 
665 	/* Parse environment; allow for '\0' and 'sep' as separators */
666 	do {
667 		ENTRY e, *rv;
668 
669 		/* skip leading white space */
670 		while ((*dp == ' ') || (*dp == '\t'))
671 			++dp;
672 
673 		/* skip comment lines */
674 		if (*dp == '#') {
675 			while (*dp && (*dp != sep))
676 				++dp;
677 			++dp;
678 			continue;
679 		}
680 
681 		/* parse name */
682 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
683 			;
684 
685 		/* deal with "name" and "name=" entries (delete var) */
686 		if (*dp == '\0' || *(dp + 1) == '\0' ||
687 		    *dp == sep || *(dp + 1) == sep) {
688 			if (*dp == '=')
689 				*dp++ = '\0';
690 			*dp++ = '\0';	/* terminate name */
691 
692 			debug("DELETE CANDIDATE: \"%s\"\n", name);
693 
694 			if (hdelete_r(name, htab) == 0)
695 				debug("DELETE ERROR ##############################\n");
696 
697 			continue;
698 		}
699 		*dp++ = '\0';	/* terminate name */
700 
701 		/* parse value; deal with escapes */
702 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
703 			if ((*dp == '\\') && *(dp + 1))
704 				++dp;
705 			*sp++ = *dp;
706 		}
707 		*sp++ = '\0';	/* terminate value */
708 		++dp;
709 
710 		/* enter into hash table */
711 		e.key = name;
712 		e.data = value;
713 
714 		hsearch_r(e, ENTER, &rv, htab);
715 		if (rv == NULL) {
716 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
717 				name, value);
718 			return 0;
719 		}
720 
721 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
722 			htab, htab->filled, htab->size,
723 			rv, name, value);
724 	} while ((dp < data + size) && *dp);	/* size check needed for text */
725 						/* without '\0' termination */
726 	debug("INSERT: free(data = %p)\n", data);
727 	free(data);
728 
729 	debug("INSERT: done\n");
730 	return 1;		/* everything OK */
731 }
732