1 /* 2 * Copyright (c) 2011 The Chromium OS Authors. 3 * SPDX-License-Identifier: GPL-2.0+ 4 */ 5 6 #ifndef USE_HOSTCC 7 #include <common.h> 8 #include <errno.h> 9 #include <serial.h> 10 #include <libfdt.h> 11 #include <fdtdec.h> 12 #include <linux/ctype.h> 13 14 DECLARE_GLOBAL_DATA_PTR; 15 16 /* 17 * Here are the type we know about. One day we might allow drivers to 18 * register. For now we just put them here. The COMPAT macro allows us to 19 * turn this into a sparse list later, and keeps the ID with the name. 20 */ 21 #define COMPAT(id, name) name 22 static const char * const compat_names[COMPAT_COUNT] = { 23 COMPAT(UNKNOWN, "<none>"), 24 COMPAT(NVIDIA_TEGRA20_USB, "nvidia,tegra20-ehci"), 25 COMPAT(NVIDIA_TEGRA30_USB, "nvidia,tegra30-ehci"), 26 COMPAT(NVIDIA_TEGRA114_USB, "nvidia,tegra114-ehci"), 27 COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"), 28 COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"), 29 COMPAT(NVIDIA_TEGRA20_KBC, "nvidia,tegra20-kbc"), 30 COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"), 31 COMPAT(NVIDIA_TEGRA20_PWM, "nvidia,tegra20-pwm"), 32 COMPAT(NVIDIA_TEGRA20_DC, "nvidia,tegra20-dc"), 33 COMPAT(NVIDIA_TEGRA124_SDMMC, "nvidia,tegra124-sdhci"), 34 COMPAT(NVIDIA_TEGRA30_SDMMC, "nvidia,tegra30-sdhci"), 35 COMPAT(NVIDIA_TEGRA20_SDMMC, "nvidia,tegra20-sdhci"), 36 COMPAT(NVIDIA_TEGRA124_PCIE, "nvidia,tegra124-pcie"), 37 COMPAT(NVIDIA_TEGRA30_PCIE, "nvidia,tegra30-pcie"), 38 COMPAT(NVIDIA_TEGRA20_PCIE, "nvidia,tegra20-pcie"), 39 COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"), 40 COMPAT(SMSC_LAN9215, "smsc,lan9215"), 41 COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"), 42 COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"), 43 COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"), 44 COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"), 45 COMPAT(GOOGLE_CROS_EC, "google,cros-ec"), 46 COMPAT(GOOGLE_CROS_EC_KEYB, "google,cros-ec-keyb"), 47 COMPAT(SAMSUNG_EXYNOS_EHCI, "samsung,exynos-ehci"), 48 COMPAT(SAMSUNG_EXYNOS5_XHCI, "samsung,exynos5250-xhci"), 49 COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"), 50 COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"), 51 COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"), 52 COMPAT(SAMSUNG_EXYNOS_FIMD, "samsung,exynos-fimd"), 53 COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"), 54 COMPAT(SAMSUNG_EXYNOS5_DP, "samsung,exynos5-dp"), 55 COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"), 56 COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"), 57 COMPAT(SAMSUNG_EXYNOS_SERIAL, "samsung,exynos4210-uart"), 58 COMPAT(MAXIM_MAX77686_PMIC, "maxim,max77686_pmic"), 59 COMPAT(GENERIC_SPI_FLASH, "spi-flash"), 60 COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"), 61 COMPAT(INFINEON_SLB9635_TPM, "infineon,slb9635-tpm"), 62 COMPAT(INFINEON_SLB9645_TPM, "infineon,slb9645-tpm"), 63 COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"), 64 COMPAT(SANDBOX_HOST_EMULATION, "sandbox,host-emulation"), 65 COMPAT(SANDBOX_LCD_SDL, "sandbox,lcd-sdl"), 66 COMPAT(TI_TPS65090, "ti,tps65090"), 67 COMPAT(COMPAT_NXP_PTN3460, "nxp,ptn3460"), 68 COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"), 69 COMPAT(PARADE_PS8625, "parade,ps8625"), 70 COMPAT(COMPAT_INTEL_LPC, "intel,lpc"), 71 COMPAT(INTEL_MICROCODE, "intel,microcode"), 72 COMPAT(MEMORY_SPD, "memory-spd"), 73 COMPAT(INTEL_PANTHERPOINT_AHCI, "intel,pantherpoint-ahci"), 74 COMPAT(INTEL_MODEL_206AX, "intel,model-206ax"), 75 COMPAT(INTEL_GMA, "intel,gma"), 76 COMPAT(AMS_AS3722, "ams,as3722"), 77 COMPAT(INTEL_ICH_SPI, "intel,ich-spi"), 78 COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"), 79 COMPAT(SOCIONEXT_XHCI, "socionext,uniphier-xhci"), 80 }; 81 82 const char *fdtdec_get_compatible(enum fdt_compat_id id) 83 { 84 /* We allow reading of the 'unknown' ID for testing purposes */ 85 assert(id >= 0 && id < COMPAT_COUNT); 86 return compat_names[id]; 87 } 88 89 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node, 90 const char *prop_name, fdt_size_t *sizep) 91 { 92 const fdt_addr_t *cell; 93 int len; 94 95 debug("%s: %s: ", __func__, prop_name); 96 cell = fdt_getprop(blob, node, prop_name, &len); 97 if (cell && ((!sizep && len == sizeof(fdt_addr_t)) || 98 len == sizeof(fdt_addr_t) * 2)) { 99 fdt_addr_t addr = fdt_addr_to_cpu(*cell); 100 if (sizep) { 101 const fdt_size_t *size; 102 103 size = (fdt_size_t *)((char *)cell + 104 sizeof(fdt_addr_t)); 105 *sizep = fdt_size_to_cpu(*size); 106 debug("addr=%08lx, size=%08x\n", 107 (ulong)addr, *sizep); 108 } else { 109 debug("%08lx\n", (ulong)addr); 110 } 111 return addr; 112 } 113 debug("(not found)\n"); 114 return FDT_ADDR_T_NONE; 115 } 116 117 fdt_addr_t fdtdec_get_addr(const void *blob, int node, 118 const char *prop_name) 119 { 120 return fdtdec_get_addr_size(blob, node, prop_name, NULL); 121 } 122 123 #ifdef CONFIG_PCI 124 int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type, 125 const char *prop_name, struct fdt_pci_addr *addr) 126 { 127 const u32 *cell; 128 int len; 129 int ret = -ENOENT; 130 131 debug("%s: %s: ", __func__, prop_name); 132 133 /* 134 * If we follow the pci bus bindings strictly, we should check 135 * the value of the node's parent node's #address-cells and 136 * #size-cells. They need to be 3 and 2 accordingly. However, 137 * for simplicity we skip the check here. 138 */ 139 cell = fdt_getprop(blob, node, prop_name, &len); 140 if (!cell) 141 goto fail; 142 143 if ((len % FDT_PCI_REG_SIZE) == 0) { 144 int num = len / FDT_PCI_REG_SIZE; 145 int i; 146 147 for (i = 0; i < num; i++) { 148 debug("pci address #%d: %08lx %08lx %08lx\n", i, 149 (ulong)fdt_addr_to_cpu(cell[0]), 150 (ulong)fdt_addr_to_cpu(cell[1]), 151 (ulong)fdt_addr_to_cpu(cell[2])); 152 if ((fdt_addr_to_cpu(*cell) & type) == type) { 153 addr->phys_hi = fdt_addr_to_cpu(cell[0]); 154 addr->phys_mid = fdt_addr_to_cpu(cell[1]); 155 addr->phys_lo = fdt_addr_to_cpu(cell[2]); 156 break; 157 } else { 158 cell += (FDT_PCI_ADDR_CELLS + 159 FDT_PCI_SIZE_CELLS); 160 } 161 } 162 163 if (i == num) 164 goto fail; 165 166 return 0; 167 } else { 168 ret = -EINVAL; 169 } 170 171 fail: 172 debug("(not found)\n"); 173 return ret; 174 } 175 176 int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device) 177 { 178 const char *list, *end; 179 int len; 180 181 list = fdt_getprop(blob, node, "compatible", &len); 182 if (!list) 183 return -ENOENT; 184 185 end = list + len; 186 while (list < end) { 187 char *s; 188 189 len = strlen(list); 190 if (len >= strlen("pciVVVV,DDDD")) { 191 s = strstr(list, "pci"); 192 193 /* 194 * check if the string is something like pciVVVV,DDDD.RR 195 * or just pciVVVV,DDDD 196 */ 197 if (s && s[7] == ',' && 198 (s[12] == '.' || s[12] == 0)) { 199 s += 3; 200 *vendor = simple_strtol(s, NULL, 16); 201 202 s += 5; 203 *device = simple_strtol(s, NULL, 16); 204 205 return 0; 206 } 207 } else { 208 list += (len + 1); 209 } 210 } 211 212 return -ENOENT; 213 } 214 215 int fdtdec_get_pci_bdf(const void *blob, int node, 216 struct fdt_pci_addr *addr, pci_dev_t *bdf) 217 { 218 u16 dt_vendor, dt_device, vendor, device; 219 int ret; 220 221 /* get vendor id & device id from the compatible string */ 222 ret = fdtdec_get_pci_vendev(blob, node, &dt_vendor, &dt_device); 223 if (ret) 224 return ret; 225 226 /* extract the bdf from fdt_pci_addr */ 227 *bdf = addr->phys_hi & 0xffff00; 228 229 /* read vendor id & device id based on bdf */ 230 pci_read_config_word(*bdf, PCI_VENDOR_ID, &vendor); 231 pci_read_config_word(*bdf, PCI_DEVICE_ID, &device); 232 233 /* 234 * Note there are two places in the device tree to fully describe 235 * a pci device: one is via compatible string with a format of 236 * "pciVVVV,DDDD" and the other one is the bdf numbers encoded in 237 * the device node's reg address property. We read the vendor id 238 * and device id based on bdf and compare the values with the 239 * "VVVV,DDDD". If they are the same, then we are good to use bdf 240 * to read device's bar. But if they are different, we have to rely 241 * on the vendor id and device id extracted from the compatible 242 * string and locate the real bdf by pci_find_device(). This is 243 * because normally we may only know device's device number and 244 * function number when writing device tree. The bus number is 245 * dynamically assigned during the pci enumeration process. 246 */ 247 if ((dt_vendor != vendor) || (dt_device != device)) { 248 *bdf = pci_find_device(dt_vendor, dt_device, 0); 249 if (*bdf == -1) 250 return -ENODEV; 251 } 252 253 return 0; 254 } 255 256 int fdtdec_get_pci_bar32(const void *blob, int node, 257 struct fdt_pci_addr *addr, u32 *bar) 258 { 259 pci_dev_t bdf; 260 int barnum; 261 int ret; 262 263 /* get pci devices's bdf */ 264 ret = fdtdec_get_pci_bdf(blob, node, addr, &bdf); 265 if (ret) 266 return ret; 267 268 /* extract the bar number from fdt_pci_addr */ 269 barnum = addr->phys_hi & 0xff; 270 if ((barnum < PCI_BASE_ADDRESS_0) || (barnum > PCI_CARDBUS_CIS)) 271 return -EINVAL; 272 273 barnum = (barnum - PCI_BASE_ADDRESS_0) / 4; 274 *bar = pci_read_bar32(pci_bus_to_hose(PCI_BUS(bdf)), bdf, barnum); 275 276 return 0; 277 } 278 #endif 279 280 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name, 281 uint64_t default_val) 282 { 283 const uint64_t *cell64; 284 int length; 285 286 cell64 = fdt_getprop(blob, node, prop_name, &length); 287 if (!cell64 || length < sizeof(*cell64)) 288 return default_val; 289 290 return fdt64_to_cpu(*cell64); 291 } 292 293 int fdtdec_get_is_enabled(const void *blob, int node) 294 { 295 const char *cell; 296 297 /* 298 * It should say "okay", so only allow that. Some fdts use "ok" but 299 * this is a bug. Please fix your device tree source file. See here 300 * for discussion: 301 * 302 * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html 303 */ 304 cell = fdt_getprop(blob, node, "status", NULL); 305 if (cell) 306 return 0 == strcmp(cell, "okay"); 307 return 1; 308 } 309 310 enum fdt_compat_id fdtdec_lookup(const void *blob, int node) 311 { 312 enum fdt_compat_id id; 313 314 /* Search our drivers */ 315 for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++) 316 if (0 == fdt_node_check_compatible(blob, node, 317 compat_names[id])) 318 return id; 319 return COMPAT_UNKNOWN; 320 } 321 322 int fdtdec_next_compatible(const void *blob, int node, 323 enum fdt_compat_id id) 324 { 325 return fdt_node_offset_by_compatible(blob, node, compat_names[id]); 326 } 327 328 int fdtdec_next_compatible_subnode(const void *blob, int node, 329 enum fdt_compat_id id, int *depthp) 330 { 331 do { 332 node = fdt_next_node(blob, node, depthp); 333 } while (*depthp > 1); 334 335 /* If this is a direct subnode, and compatible, return it */ 336 if (*depthp == 1 && 0 == fdt_node_check_compatible( 337 blob, node, compat_names[id])) 338 return node; 339 340 return -FDT_ERR_NOTFOUND; 341 } 342 343 int fdtdec_next_alias(const void *blob, const char *name, 344 enum fdt_compat_id id, int *upto) 345 { 346 #define MAX_STR_LEN 20 347 char str[MAX_STR_LEN + 20]; 348 int node, err; 349 350 /* snprintf() is not available */ 351 assert(strlen(name) < MAX_STR_LEN); 352 sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto); 353 node = fdt_path_offset(blob, str); 354 if (node < 0) 355 return node; 356 err = fdt_node_check_compatible(blob, node, compat_names[id]); 357 if (err < 0) 358 return err; 359 if (err) 360 return -FDT_ERR_NOTFOUND; 361 (*upto)++; 362 return node; 363 } 364 365 int fdtdec_find_aliases_for_id(const void *blob, const char *name, 366 enum fdt_compat_id id, int *node_list, int maxcount) 367 { 368 memset(node_list, '\0', sizeof(*node_list) * maxcount); 369 370 return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount); 371 } 372 373 /* TODO: Can we tighten this code up a little? */ 374 int fdtdec_add_aliases_for_id(const void *blob, const char *name, 375 enum fdt_compat_id id, int *node_list, int maxcount) 376 { 377 int name_len = strlen(name); 378 int nodes[maxcount]; 379 int num_found = 0; 380 int offset, node; 381 int alias_node; 382 int count; 383 int i, j; 384 385 /* find the alias node if present */ 386 alias_node = fdt_path_offset(blob, "/aliases"); 387 388 /* 389 * start with nothing, and we can assume that the root node can't 390 * match 391 */ 392 memset(nodes, '\0', sizeof(nodes)); 393 394 /* First find all the compatible nodes */ 395 for (node = count = 0; node >= 0 && count < maxcount;) { 396 node = fdtdec_next_compatible(blob, node, id); 397 if (node >= 0) 398 nodes[count++] = node; 399 } 400 if (node >= 0) 401 debug("%s: warning: maxcount exceeded with alias '%s'\n", 402 __func__, name); 403 404 /* Now find all the aliases */ 405 for (offset = fdt_first_property_offset(blob, alias_node); 406 offset > 0; 407 offset = fdt_next_property_offset(blob, offset)) { 408 const struct fdt_property *prop; 409 const char *path; 410 int number; 411 int found; 412 413 node = 0; 414 prop = fdt_get_property_by_offset(blob, offset, NULL); 415 path = fdt_string(blob, fdt32_to_cpu(prop->nameoff)); 416 if (prop->len && 0 == strncmp(path, name, name_len)) 417 node = fdt_path_offset(blob, prop->data); 418 if (node <= 0) 419 continue; 420 421 /* Get the alias number */ 422 number = simple_strtoul(path + name_len, NULL, 10); 423 if (number < 0 || number >= maxcount) { 424 debug("%s: warning: alias '%s' is out of range\n", 425 __func__, path); 426 continue; 427 } 428 429 /* Make sure the node we found is actually in our list! */ 430 found = -1; 431 for (j = 0; j < count; j++) 432 if (nodes[j] == node) { 433 found = j; 434 break; 435 } 436 437 if (found == -1) { 438 debug("%s: warning: alias '%s' points to a node " 439 "'%s' that is missing or is not compatible " 440 " with '%s'\n", __func__, path, 441 fdt_get_name(blob, node, NULL), 442 compat_names[id]); 443 continue; 444 } 445 446 /* 447 * Add this node to our list in the right place, and mark 448 * it as done. 449 */ 450 if (fdtdec_get_is_enabled(blob, node)) { 451 if (node_list[number]) { 452 debug("%s: warning: alias '%s' requires that " 453 "a node be placed in the list in a " 454 "position which is already filled by " 455 "node '%s'\n", __func__, path, 456 fdt_get_name(blob, node, NULL)); 457 continue; 458 } 459 node_list[number] = node; 460 if (number >= num_found) 461 num_found = number + 1; 462 } 463 nodes[found] = 0; 464 } 465 466 /* Add any nodes not mentioned by an alias */ 467 for (i = j = 0; i < maxcount; i++) { 468 if (!node_list[i]) { 469 for (; j < maxcount; j++) 470 if (nodes[j] && 471 fdtdec_get_is_enabled(blob, nodes[j])) 472 break; 473 474 /* Have we run out of nodes to add? */ 475 if (j == maxcount) 476 break; 477 478 assert(!node_list[i]); 479 node_list[i] = nodes[j++]; 480 if (i >= num_found) 481 num_found = i + 1; 482 } 483 } 484 485 return num_found; 486 } 487 488 int fdtdec_get_alias_seq(const void *blob, const char *base, int offset, 489 int *seqp) 490 { 491 int base_len = strlen(base); 492 const char *find_name; 493 int find_namelen; 494 int prop_offset; 495 int aliases; 496 497 find_name = fdt_get_name(blob, offset, &find_namelen); 498 debug("Looking for '%s' at %d, name %s\n", base, offset, find_name); 499 500 aliases = fdt_path_offset(blob, "/aliases"); 501 for (prop_offset = fdt_first_property_offset(blob, aliases); 502 prop_offset > 0; 503 prop_offset = fdt_next_property_offset(blob, prop_offset)) { 504 const char *prop; 505 const char *name; 506 const char *slash; 507 const char *p; 508 int len; 509 510 prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len); 511 debug(" - %s, %s\n", name, prop); 512 if (len < find_namelen || *prop != '/' || prop[len - 1] || 513 strncmp(name, base, base_len)) 514 continue; 515 516 slash = strrchr(prop, '/'); 517 if (strcmp(slash + 1, find_name)) 518 continue; 519 for (p = name + strlen(name) - 1; p > name; p--) { 520 if (!isdigit(*p)) { 521 *seqp = simple_strtoul(p + 1, NULL, 10); 522 debug("Found seq %d\n", *seqp); 523 return 0; 524 } 525 } 526 } 527 528 debug("Not found\n"); 529 return -ENOENT; 530 } 531 532 int fdtdec_get_chosen_node(const void *blob, const char *name) 533 { 534 const char *prop; 535 int chosen_node; 536 int len; 537 538 if (!blob) 539 return -FDT_ERR_NOTFOUND; 540 chosen_node = fdt_path_offset(blob, "/chosen"); 541 prop = fdt_getprop(blob, chosen_node, name, &len); 542 if (!prop) 543 return -FDT_ERR_NOTFOUND; 544 return fdt_path_offset(blob, prop); 545 } 546 547 int fdtdec_check_fdt(void) 548 { 549 /* 550 * We must have an FDT, but we cannot panic() yet since the console 551 * is not ready. So for now, just assert(). Boards which need an early 552 * FDT (prior to console ready) will need to make their own 553 * arrangements and do their own checks. 554 */ 555 assert(!fdtdec_prepare_fdt()); 556 return 0; 557 } 558 559 /* 560 * This function is a little odd in that it accesses global data. At some 561 * point if the architecture board.c files merge this will make more sense. 562 * Even now, it is common code. 563 */ 564 int fdtdec_prepare_fdt(void) 565 { 566 if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) || 567 fdt_check_header(gd->fdt_blob)) { 568 printf("No valid FDT found - please append one to U-Boot " 569 "binary, use u-boot-dtb.bin or define " 570 "CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n"); 571 return -1; 572 } 573 return 0; 574 } 575 576 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name) 577 { 578 const u32 *phandle; 579 int lookup; 580 581 debug("%s: %s\n", __func__, prop_name); 582 phandle = fdt_getprop(blob, node, prop_name, NULL); 583 if (!phandle) 584 return -FDT_ERR_NOTFOUND; 585 586 lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle)); 587 return lookup; 588 } 589 590 /** 591 * Look up a property in a node and check that it has a minimum length. 592 * 593 * @param blob FDT blob 594 * @param node node to examine 595 * @param prop_name name of property to find 596 * @param min_len minimum property length in bytes 597 * @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not 598 found, or -FDT_ERR_BADLAYOUT if not enough data 599 * @return pointer to cell, which is only valid if err == 0 600 */ 601 static const void *get_prop_check_min_len(const void *blob, int node, 602 const char *prop_name, int min_len, int *err) 603 { 604 const void *cell; 605 int len; 606 607 debug("%s: %s\n", __func__, prop_name); 608 cell = fdt_getprop(blob, node, prop_name, &len); 609 if (!cell) 610 *err = -FDT_ERR_NOTFOUND; 611 else if (len < min_len) 612 *err = -FDT_ERR_BADLAYOUT; 613 else 614 *err = 0; 615 return cell; 616 } 617 618 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name, 619 u32 *array, int count) 620 { 621 const u32 *cell; 622 int i, err = 0; 623 624 debug("%s: %s\n", __func__, prop_name); 625 cell = get_prop_check_min_len(blob, node, prop_name, 626 sizeof(u32) * count, &err); 627 if (!err) { 628 for (i = 0; i < count; i++) 629 array[i] = fdt32_to_cpu(cell[i]); 630 } 631 return err; 632 } 633 634 int fdtdec_get_int_array_count(const void *blob, int node, 635 const char *prop_name, u32 *array, int count) 636 { 637 const u32 *cell; 638 int len, elems; 639 int i; 640 641 debug("%s: %s\n", __func__, prop_name); 642 cell = fdt_getprop(blob, node, prop_name, &len); 643 if (!cell) 644 return -FDT_ERR_NOTFOUND; 645 elems = len / sizeof(u32); 646 if (count > elems) 647 count = elems; 648 for (i = 0; i < count; i++) 649 array[i] = fdt32_to_cpu(cell[i]); 650 651 return count; 652 } 653 654 const u32 *fdtdec_locate_array(const void *blob, int node, 655 const char *prop_name, int count) 656 { 657 const u32 *cell; 658 int err; 659 660 cell = get_prop_check_min_len(blob, node, prop_name, 661 sizeof(u32) * count, &err); 662 return err ? NULL : cell; 663 } 664 665 int fdtdec_get_bool(const void *blob, int node, const char *prop_name) 666 { 667 const s32 *cell; 668 int len; 669 670 debug("%s: %s\n", __func__, prop_name); 671 cell = fdt_getprop(blob, node, prop_name, &len); 672 return cell != NULL; 673 } 674 675 int fdtdec_parse_phandle_with_args(const void *blob, int src_node, 676 const char *list_name, 677 const char *cells_name, 678 int cell_count, int index, 679 struct fdtdec_phandle_args *out_args) 680 { 681 const __be32 *list, *list_end; 682 int rc = 0, size, cur_index = 0; 683 uint32_t count = 0; 684 int node = -1; 685 int phandle; 686 687 /* Retrieve the phandle list property */ 688 list = fdt_getprop(blob, src_node, list_name, &size); 689 if (!list) 690 return -ENOENT; 691 list_end = list + size / sizeof(*list); 692 693 /* Loop over the phandles until all the requested entry is found */ 694 while (list < list_end) { 695 rc = -EINVAL; 696 count = 0; 697 698 /* 699 * If phandle is 0, then it is an empty entry with no 700 * arguments. Skip forward to the next entry. 701 */ 702 phandle = be32_to_cpup(list++); 703 if (phandle) { 704 /* 705 * Find the provider node and parse the #*-cells 706 * property to determine the argument length. 707 * 708 * This is not needed if the cell count is hard-coded 709 * (i.e. cells_name not set, but cell_count is set), 710 * except when we're going to return the found node 711 * below. 712 */ 713 if (cells_name || cur_index == index) { 714 node = fdt_node_offset_by_phandle(blob, 715 phandle); 716 if (!node) { 717 debug("%s: could not find phandle\n", 718 fdt_get_name(blob, src_node, 719 NULL)); 720 goto err; 721 } 722 } 723 724 if (cells_name) { 725 count = fdtdec_get_int(blob, node, cells_name, 726 -1); 727 if (count == -1) { 728 debug("%s: could not get %s for %s\n", 729 fdt_get_name(blob, src_node, 730 NULL), 731 cells_name, 732 fdt_get_name(blob, node, 733 NULL)); 734 goto err; 735 } 736 } else { 737 count = cell_count; 738 } 739 740 /* 741 * Make sure that the arguments actually fit in the 742 * remaining property data length 743 */ 744 if (list + count > list_end) { 745 debug("%s: arguments longer than property\n", 746 fdt_get_name(blob, src_node, NULL)); 747 goto err; 748 } 749 } 750 751 /* 752 * All of the error cases above bail out of the loop, so at 753 * this point, the parsing is successful. If the requested 754 * index matches, then fill the out_args structure and return, 755 * or return -ENOENT for an empty entry. 756 */ 757 rc = -ENOENT; 758 if (cur_index == index) { 759 if (!phandle) 760 goto err; 761 762 if (out_args) { 763 int i; 764 765 if (count > MAX_PHANDLE_ARGS) { 766 debug("%s: too many arguments %d\n", 767 fdt_get_name(blob, src_node, 768 NULL), count); 769 count = MAX_PHANDLE_ARGS; 770 } 771 out_args->node = node; 772 out_args->args_count = count; 773 for (i = 0; i < count; i++) { 774 out_args->args[i] = 775 be32_to_cpup(list++); 776 } 777 } 778 779 /* Found it! return success */ 780 return 0; 781 } 782 783 node = -1; 784 list += count; 785 cur_index++; 786 } 787 788 /* 789 * Result will be one of: 790 * -ENOENT : index is for empty phandle 791 * -EINVAL : parsing error on data 792 * [1..n] : Number of phandle (count mode; when index = -1) 793 */ 794 rc = index < 0 ? cur_index : -ENOENT; 795 err: 796 return rc; 797 } 798 799 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name, 800 u8 *array, int count) 801 { 802 const u8 *cell; 803 int err; 804 805 cell = get_prop_check_min_len(blob, node, prop_name, count, &err); 806 if (!err) 807 memcpy(array, cell, count); 808 return err; 809 } 810 811 const u8 *fdtdec_locate_byte_array(const void *blob, int node, 812 const char *prop_name, int count) 813 { 814 const u8 *cell; 815 int err; 816 817 cell = get_prop_check_min_len(blob, node, prop_name, count, &err); 818 if (err) 819 return NULL; 820 return cell; 821 } 822 823 int fdtdec_get_config_int(const void *blob, const char *prop_name, 824 int default_val) 825 { 826 int config_node; 827 828 debug("%s: %s\n", __func__, prop_name); 829 config_node = fdt_path_offset(blob, "/config"); 830 if (config_node < 0) 831 return default_val; 832 return fdtdec_get_int(blob, config_node, prop_name, default_val); 833 } 834 835 int fdtdec_get_config_bool(const void *blob, const char *prop_name) 836 { 837 int config_node; 838 const void *prop; 839 840 debug("%s: %s\n", __func__, prop_name); 841 config_node = fdt_path_offset(blob, "/config"); 842 if (config_node < 0) 843 return 0; 844 prop = fdt_get_property(blob, config_node, prop_name, NULL); 845 846 return prop != NULL; 847 } 848 849 char *fdtdec_get_config_string(const void *blob, const char *prop_name) 850 { 851 const char *nodep; 852 int nodeoffset; 853 int len; 854 855 debug("%s: %s\n", __func__, prop_name); 856 nodeoffset = fdt_path_offset(blob, "/config"); 857 if (nodeoffset < 0) 858 return NULL; 859 860 nodep = fdt_getprop(blob, nodeoffset, prop_name, &len); 861 if (!nodep) 862 return NULL; 863 864 return (char *)nodep; 865 } 866 867 int fdtdec_decode_region(const void *blob, int node, const char *prop_name, 868 fdt_addr_t *basep, fdt_size_t *sizep) 869 { 870 const fdt_addr_t *cell; 871 int len; 872 873 debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL), 874 prop_name); 875 cell = fdt_getprop(blob, node, prop_name, &len); 876 if (!cell || (len < sizeof(fdt_addr_t) * 2)) { 877 debug("cell=%p, len=%d\n", cell, len); 878 return -1; 879 } 880 881 *basep = fdt_addr_to_cpu(*cell); 882 *sizep = fdt_size_to_cpu(cell[1]); 883 debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep, 884 (ulong)*sizep); 885 886 return 0; 887 } 888 889 /** 890 * Read a flash entry from the fdt 891 * 892 * @param blob FDT blob 893 * @param node Offset of node to read 894 * @param name Name of node being read 895 * @param entry Place to put offset and size of this node 896 * @return 0 if ok, -ve on error 897 */ 898 int fdtdec_read_fmap_entry(const void *blob, int node, const char *name, 899 struct fmap_entry *entry) 900 { 901 const char *prop; 902 u32 reg[2]; 903 904 if (fdtdec_get_int_array(blob, node, "reg", reg, 2)) { 905 debug("Node '%s' has bad/missing 'reg' property\n", name); 906 return -FDT_ERR_NOTFOUND; 907 } 908 entry->offset = reg[0]; 909 entry->length = reg[1]; 910 entry->used = fdtdec_get_int(blob, node, "used", entry->length); 911 prop = fdt_getprop(blob, node, "compress", NULL); 912 entry->compress_algo = prop && !strcmp(prop, "lzo") ? 913 FMAP_COMPRESS_LZO : FMAP_COMPRESS_NONE; 914 prop = fdt_getprop(blob, node, "hash", &entry->hash_size); 915 entry->hash_algo = prop ? FMAP_HASH_SHA256 : FMAP_HASH_NONE; 916 entry->hash = (uint8_t *)prop; 917 918 return 0; 919 } 920 921 static u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells) 922 { 923 u64 number = 0; 924 925 while (cells--) 926 number = (number << 32) | fdt32_to_cpu(*ptr++); 927 928 return number; 929 } 930 931 int fdt_get_resource(const void *fdt, int node, const char *property, 932 unsigned int index, struct fdt_resource *res) 933 { 934 const fdt32_t *ptr, *end; 935 int na, ns, len, parent; 936 unsigned int i = 0; 937 938 parent = fdt_parent_offset(fdt, node); 939 if (parent < 0) 940 return parent; 941 942 na = fdt_address_cells(fdt, parent); 943 ns = fdt_size_cells(fdt, parent); 944 945 ptr = fdt_getprop(fdt, node, property, &len); 946 if (!ptr) 947 return len; 948 949 end = ptr + len / sizeof(*ptr); 950 951 while (ptr + na + ns <= end) { 952 if (i == index) { 953 res->start = res->end = fdtdec_get_number(ptr, na); 954 res->end += fdtdec_get_number(&ptr[na], ns) - 1; 955 return 0; 956 } 957 958 ptr += na + ns; 959 i++; 960 } 961 962 return -FDT_ERR_NOTFOUND; 963 } 964 965 int fdt_get_named_resource(const void *fdt, int node, const char *property, 966 const char *prop_names, const char *name, 967 struct fdt_resource *res) 968 { 969 int index; 970 971 index = fdt_find_string(fdt, node, prop_names, name); 972 if (index < 0) 973 return index; 974 975 return fdt_get_resource(fdt, node, property, index, res); 976 } 977 978 int fdtdec_decode_memory_region(const void *blob, int config_node, 979 const char *mem_type, const char *suffix, 980 fdt_addr_t *basep, fdt_size_t *sizep) 981 { 982 char prop_name[50]; 983 const char *mem; 984 fdt_size_t size, offset_size; 985 fdt_addr_t base, offset; 986 int node; 987 988 if (config_node == -1) { 989 config_node = fdt_path_offset(blob, "/config"); 990 if (config_node < 0) { 991 debug("%s: Cannot find /config node\n", __func__); 992 return -ENOENT; 993 } 994 } 995 if (!suffix) 996 suffix = ""; 997 998 snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type, 999 suffix); 1000 mem = fdt_getprop(blob, config_node, prop_name, NULL); 1001 if (!mem) { 1002 debug("%s: No memory type for '%s', using /memory\n", __func__, 1003 prop_name); 1004 mem = "/memory"; 1005 } 1006 1007 node = fdt_path_offset(blob, mem); 1008 if (node < 0) { 1009 debug("%s: Failed to find node '%s': %s\n", __func__, mem, 1010 fdt_strerror(node)); 1011 return -ENOENT; 1012 } 1013 1014 /* 1015 * Not strictly correct - the memory may have multiple banks. We just 1016 * use the first 1017 */ 1018 if (fdtdec_decode_region(blob, node, "reg", &base, &size)) { 1019 debug("%s: Failed to decode memory region %s\n", __func__, 1020 mem); 1021 return -EINVAL; 1022 } 1023 1024 snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type, 1025 suffix); 1026 if (fdtdec_decode_region(blob, config_node, prop_name, &offset, 1027 &offset_size)) { 1028 debug("%s: Failed to decode memory region '%s'\n", __func__, 1029 prop_name); 1030 return -EINVAL; 1031 } 1032 1033 *basep = base + offset; 1034 *sizep = offset_size; 1035 1036 return 0; 1037 } 1038 #endif 1039