xref: /openbmc/u-boot/lib/efi_loader/efi_memory.c (revision e23b19f4a8f790f9206f7af3363695b2ec06c1f6)
1 /*
2  *  EFI application memory management
3  *
4  *  Copyright (c) 2016 Alexander Graf
5  *
6  *  SPDX-License-Identifier:     GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <efi_loader.h>
11 #include <malloc.h>
12 #include <asm/global_data.h>
13 #include <libfdt_env.h>
14 #include <linux/list_sort.h>
15 #include <inttypes.h>
16 #include <watchdog.h>
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 struct efi_mem_list {
21 	struct list_head link;
22 	struct efi_mem_desc desc;
23 };
24 
25 #define EFI_CARVE_NO_OVERLAP		-1
26 #define EFI_CARVE_LOOP_AGAIN		-2
27 #define EFI_CARVE_OVERLAPS_NONRAM	-3
28 
29 /* This list contains all memory map items */
30 LIST_HEAD(efi_mem);
31 
32 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
33 void *efi_bounce_buffer;
34 #endif
35 
36 /*
37  * U-Boot services each EFI AllocatePool request as a separate
38  * (multiple) page allocation.  We have to track the number of pages
39  * to be able to free the correct amount later.
40  * EFI requires 8 byte alignment for pool allocations, so we can
41  * prepend each allocation with an 64 bit header tracking the
42  * allocation size, and hand out the remainder to the caller.
43  */
44 struct efi_pool_allocation {
45 	u64 num_pages;
46 	char data[] __aligned(ARCH_DMA_MINALIGN);
47 };
48 
49 /*
50  * Sorts the memory list from highest address to lowest address
51  *
52  * When allocating memory we should always start from the highest
53  * address chunk, so sort the memory list such that the first list
54  * iterator gets the highest address and goes lower from there.
55  */
56 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
57 {
58 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
59 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
60 
61 	if (mema->desc.physical_start == memb->desc.physical_start)
62 		return 0;
63 	else if (mema->desc.physical_start < memb->desc.physical_start)
64 		return 1;
65 	else
66 		return -1;
67 }
68 
69 static void efi_mem_sort(void)
70 {
71 	list_sort(NULL, &efi_mem, efi_mem_cmp);
72 }
73 
74 /*
75  * Unmaps all memory occupied by the carve_desc region from the
76  * list entry pointed to by map.
77  *
78  * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap.
79  * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap,
80  *    and the map contains anything but free ram.
81  *    (only when overlap_only_ram is true)
82  * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed
83  *    again, as it has been altered
84  * Returns the number of overlapping pages. The pages are removed from
85  *     the mapping list.
86  *
87  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
88  * to readd the already carved out pages to the mapping.
89  */
90 static int efi_mem_carve_out(struct efi_mem_list *map,
91 			     struct efi_mem_desc *carve_desc,
92 			     bool overlap_only_ram)
93 {
94 	struct efi_mem_list *newmap;
95 	struct efi_mem_desc *map_desc = &map->desc;
96 	uint64_t map_start = map_desc->physical_start;
97 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
98 	uint64_t carve_start = carve_desc->physical_start;
99 	uint64_t carve_end = carve_start +
100 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
101 
102 	/* check whether we're overlapping */
103 	if ((carve_end <= map_start) || (carve_start >= map_end))
104 		return EFI_CARVE_NO_OVERLAP;
105 
106 	/* We're overlapping with non-RAM, warn the caller if desired */
107 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
108 		return EFI_CARVE_OVERLAPS_NONRAM;
109 
110 	/* Sanitize carve_start and carve_end to lie within our bounds */
111 	carve_start = max(carve_start, map_start);
112 	carve_end = min(carve_end, map_end);
113 
114 	/* Carving at the beginning of our map? Just move it! */
115 	if (carve_start == map_start) {
116 		if (map_end == carve_end) {
117 			/* Full overlap, just remove map */
118 			list_del(&map->link);
119 			free(map);
120 		} else {
121 			map->desc.physical_start = carve_end;
122 			map->desc.num_pages = (map_end - carve_end)
123 					      >> EFI_PAGE_SHIFT;
124 		}
125 
126 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
127 	}
128 
129 	/*
130 	 * Overlapping maps, just split the list map at carve_start,
131 	 * it will get moved or removed in the next iteration.
132 	 *
133 	 * [ map_desc |__carve_start__| newmap ]
134 	 */
135 
136 	/* Create a new map from [ carve_start ... map_end ] */
137 	newmap = calloc(1, sizeof(*newmap));
138 	newmap->desc = map->desc;
139 	newmap->desc.physical_start = carve_start;
140 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
141 	/* Insert before current entry (descending address order) */
142 	list_add_tail(&newmap->link, &map->link);
143 
144 	/* Shrink the map to [ map_start ... carve_start ] */
145 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
146 
147 	return EFI_CARVE_LOOP_AGAIN;
148 }
149 
150 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
151 			    bool overlap_only_ram)
152 {
153 	struct list_head *lhandle;
154 	struct efi_mem_list *newlist;
155 	bool carve_again;
156 	uint64_t carved_pages = 0;
157 
158 	debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
159 	      start, pages, memory_type, overlap_only_ram ? "yes" : "no");
160 
161 	if (!pages)
162 		return start;
163 
164 	newlist = calloc(1, sizeof(*newlist));
165 	newlist->desc.type = memory_type;
166 	newlist->desc.physical_start = start;
167 	newlist->desc.virtual_start = start;
168 	newlist->desc.num_pages = pages;
169 
170 	switch (memory_type) {
171 	case EFI_RUNTIME_SERVICES_CODE:
172 	case EFI_RUNTIME_SERVICES_DATA:
173 		newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
174 					  (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
175 		break;
176 	case EFI_MMAP_IO:
177 		newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
178 		break;
179 	default:
180 		newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
181 		break;
182 	}
183 
184 	/* Add our new map */
185 	do {
186 		carve_again = false;
187 		list_for_each(lhandle, &efi_mem) {
188 			struct efi_mem_list *lmem;
189 			int r;
190 
191 			lmem = list_entry(lhandle, struct efi_mem_list, link);
192 			r = efi_mem_carve_out(lmem, &newlist->desc,
193 					      overlap_only_ram);
194 			switch (r) {
195 			case EFI_CARVE_OVERLAPS_NONRAM:
196 				/*
197 				 * The user requested to only have RAM overlaps,
198 				 * but we hit a non-RAM region. Error out.
199 				 */
200 				return 0;
201 			case EFI_CARVE_NO_OVERLAP:
202 				/* Just ignore this list entry */
203 				break;
204 			case EFI_CARVE_LOOP_AGAIN:
205 				/*
206 				 * We split an entry, but need to loop through
207 				 * the list again to actually carve it.
208 				 */
209 				carve_again = true;
210 				break;
211 			default:
212 				/* We carved a number of pages */
213 				carved_pages += r;
214 				carve_again = true;
215 				break;
216 			}
217 
218 			if (carve_again) {
219 				/* The list changed, we need to start over */
220 				break;
221 			}
222 		}
223 	} while (carve_again);
224 
225 	if (overlap_only_ram && (carved_pages != pages)) {
226 		/*
227 		 * The payload wanted to have RAM overlaps, but we overlapped
228 		 * with an unallocated region. Error out.
229 		 */
230 		return 0;
231 	}
232 
233 	/* Add our new map */
234         list_add_tail(&newlist->link, &efi_mem);
235 
236 	/* And make sure memory is listed in descending order */
237 	efi_mem_sort();
238 
239 	return start;
240 }
241 
242 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
243 {
244 	struct list_head *lhandle;
245 
246 	list_for_each(lhandle, &efi_mem) {
247 		struct efi_mem_list *lmem = list_entry(lhandle,
248 			struct efi_mem_list, link);
249 		struct efi_mem_desc *desc = &lmem->desc;
250 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
251 		uint64_t desc_end = desc->physical_start + desc_len;
252 		uint64_t curmax = min(max_addr, desc_end);
253 		uint64_t ret = curmax - len;
254 
255 		/* We only take memory from free RAM */
256 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
257 			continue;
258 
259 		/* Out of bounds for max_addr */
260 		if ((ret + len) > max_addr)
261 			continue;
262 
263 		/* Out of bounds for upper map limit */
264 		if ((ret + len) > desc_end)
265 			continue;
266 
267 		/* Out of bounds for lower map limit */
268 		if (ret < desc->physical_start)
269 			continue;
270 
271 		/* Return the highest address in this map within bounds */
272 		return ret;
273 	}
274 
275 	return 0;
276 }
277 
278 /*
279  * Allocate memory pages.
280  *
281  * @type		type of allocation to be performed
282  * @memory_type		usage type of the allocated memory
283  * @pages		number of pages to be allocated
284  * @memory		allocated memory
285  * @return		status code
286  */
287 efi_status_t efi_allocate_pages(int type, int memory_type,
288 				efi_uintn_t pages, uint64_t *memory)
289 {
290 	u64 len = pages << EFI_PAGE_SHIFT;
291 	efi_status_t r = EFI_SUCCESS;
292 	uint64_t addr;
293 
294 	switch (type) {
295 	case 0:
296 		/* Any page */
297 		addr = efi_find_free_memory(len, gd->start_addr_sp);
298 		if (!addr) {
299 			r = EFI_NOT_FOUND;
300 			break;
301 		}
302 		break;
303 	case 1:
304 		/* Max address */
305 		addr = efi_find_free_memory(len, *memory);
306 		if (!addr) {
307 			r = EFI_NOT_FOUND;
308 			break;
309 		}
310 		break;
311 	case 2:
312 		/* Exact address, reserve it. The addr is already in *memory. */
313 		addr = *memory;
314 		break;
315 	default:
316 		/* UEFI doesn't specify other allocation types */
317 		r = EFI_INVALID_PARAMETER;
318 		break;
319 	}
320 
321 	if (r == EFI_SUCCESS) {
322 		uint64_t ret;
323 
324 		/* Reserve that map in our memory maps */
325 		ret = efi_add_memory_map(addr, pages, memory_type, true);
326 		if (ret == addr) {
327 			*memory = addr;
328 		} else {
329 			/* Map would overlap, bail out */
330 			r = EFI_OUT_OF_RESOURCES;
331 		}
332 	}
333 
334 	return r;
335 }
336 
337 void *efi_alloc(uint64_t len, int memory_type)
338 {
339 	uint64_t ret = 0;
340 	uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
341 	efi_status_t r;
342 
343 	r = efi_allocate_pages(0, memory_type, pages, &ret);
344 	if (r == EFI_SUCCESS)
345 		return (void*)(uintptr_t)ret;
346 
347 	return NULL;
348 }
349 
350 /*
351  * Free memory pages.
352  *
353  * @memory	start of the memory area to be freed
354  * @pages	number of pages to be freed
355  * @return	status code
356  */
357 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
358 {
359 	uint64_t r = 0;
360 
361 	r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false);
362 	/* Merging of adjacent free regions is missing */
363 
364 	if (r == memory)
365 		return EFI_SUCCESS;
366 
367 	return EFI_NOT_FOUND;
368 }
369 
370 /*
371  * Allocate memory from pool.
372  *
373  * @pool_type	type of the pool from which memory is to be allocated
374  * @size	number of bytes to be allocated
375  * @buffer	allocated memory
376  * @return	status code
377  */
378 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
379 {
380 	efi_status_t r;
381 	efi_physical_addr_t t;
382 	u64 num_pages = (size + sizeof(struct efi_pool_allocation) +
383 			 EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
384 
385 	if (size == 0) {
386 		*buffer = NULL;
387 		return EFI_SUCCESS;
388 	}
389 
390 	r = efi_allocate_pages(0, pool_type, num_pages, &t);
391 
392 	if (r == EFI_SUCCESS) {
393 		struct efi_pool_allocation *alloc = (void *)(uintptr_t)t;
394 		alloc->num_pages = num_pages;
395 		*buffer = alloc->data;
396 	}
397 
398 	return r;
399 }
400 
401 /*
402  * Free memory from pool.
403  *
404  * @buffer	start of memory to be freed
405  * @return	status code
406  */
407 efi_status_t efi_free_pool(void *buffer)
408 {
409 	efi_status_t r;
410 	struct efi_pool_allocation *alloc;
411 
412 	if (buffer == NULL)
413 		return EFI_INVALID_PARAMETER;
414 
415 	alloc = container_of(buffer, struct efi_pool_allocation, data);
416 	/* Sanity check, was the supplied address returned by allocate_pool */
417 	assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
418 
419 	r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
420 
421 	return r;
422 }
423 
424 /*
425  * Get map describing memory usage.
426  *
427  * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
428  *			on exit the size of the copied memory map
429  * @memory_map		buffer to which the memory map is written
430  * @map_key		key for the memory map
431  * @descriptor_size	size of an individual memory descriptor
432  * @descriptor_version	version number of the memory descriptor structure
433  * @return		status code
434  */
435 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
436 				struct efi_mem_desc *memory_map,
437 				efi_uintn_t *map_key,
438 				efi_uintn_t *descriptor_size,
439 				uint32_t *descriptor_version)
440 {
441 	efi_uintn_t map_size = 0;
442 	int map_entries = 0;
443 	struct list_head *lhandle;
444 	efi_uintn_t provided_map_size = *memory_map_size;
445 
446 	list_for_each(lhandle, &efi_mem)
447 		map_entries++;
448 
449 	map_size = map_entries * sizeof(struct efi_mem_desc);
450 
451 	*memory_map_size = map_size;
452 
453 	if (provided_map_size < map_size)
454 		return EFI_BUFFER_TOO_SMALL;
455 
456 	if (descriptor_size)
457 		*descriptor_size = sizeof(struct efi_mem_desc);
458 
459 	if (descriptor_version)
460 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
461 
462 	/* Copy list into array */
463 	if (memory_map) {
464 		/* Return the list in ascending order */
465 		memory_map = &memory_map[map_entries - 1];
466 		list_for_each(lhandle, &efi_mem) {
467 			struct efi_mem_list *lmem;
468 
469 			lmem = list_entry(lhandle, struct efi_mem_list, link);
470 			*memory_map = lmem->desc;
471 			memory_map--;
472 		}
473 	}
474 
475 	*map_key = 0;
476 
477 	return EFI_SUCCESS;
478 }
479 
480 __weak void efi_add_known_memory(void)
481 {
482 	int i;
483 
484 	/* Add RAM */
485 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
486 		u64 ram_start = gd->bd->bi_dram[i].start;
487 		u64 ram_size = gd->bd->bi_dram[i].size;
488 		u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
489 		u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
490 
491 		efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
492 				   false);
493 	}
494 }
495 
496 int efi_memory_init(void)
497 {
498 	unsigned long runtime_start, runtime_end, runtime_pages;
499 	unsigned long uboot_start, uboot_pages;
500 	unsigned long uboot_stack_size = 16 * 1024 * 1024;
501 
502 	efi_add_known_memory();
503 
504 	/* Add U-Boot */
505 	uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
506 	uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
507 	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
508 
509 	/* Add Runtime Services */
510 	runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
511 	runtime_end = (ulong)&__efi_runtime_stop;
512 	runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
513 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
514 	efi_add_memory_map(runtime_start, runtime_pages,
515 			   EFI_RUNTIME_SERVICES_CODE, false);
516 
517 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
518 	/* Request a 32bit 64MB bounce buffer region */
519 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
520 
521 	if (efi_allocate_pages(1, EFI_LOADER_DATA,
522 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
523 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
524 		return -1;
525 
526 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
527 #endif
528 
529 	return 0;
530 }
531