xref: /openbmc/u-boot/lib/efi_loader/efi_memory.c (revision 25a17652c9c2cc4d88098121fc6a2b8f90020531)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  EFI application memory management
4  *
5  *  Copyright (c) 2016 Alexander Graf
6  */
7 
8 #include <common.h>
9 #include <efi_loader.h>
10 #include <malloc.h>
11 #include <mapmem.h>
12 #include <watchdog.h>
13 #include <linux/list_sort.h>
14 
15 DECLARE_GLOBAL_DATA_PTR;
16 
17 efi_uintn_t efi_memory_map_key;
18 
19 struct efi_mem_list {
20 	struct list_head link;
21 	struct efi_mem_desc desc;
22 };
23 
24 #define EFI_CARVE_NO_OVERLAP		-1
25 #define EFI_CARVE_LOOP_AGAIN		-2
26 #define EFI_CARVE_OVERLAPS_NONRAM	-3
27 
28 /* This list contains all memory map items */
29 LIST_HEAD(efi_mem);
30 
31 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
32 void *efi_bounce_buffer;
33 #endif
34 
35 /*
36  * U-Boot services each EFI AllocatePool request as a separate
37  * (multiple) page allocation.  We have to track the number of pages
38  * to be able to free the correct amount later.
39  * EFI requires 8 byte alignment for pool allocations, so we can
40  * prepend each allocation with an 64 bit header tracking the
41  * allocation size, and hand out the remainder to the caller.
42  */
43 struct efi_pool_allocation {
44 	u64 num_pages;
45 	char data[] __aligned(ARCH_DMA_MINALIGN);
46 };
47 
48 /*
49  * Sorts the memory list from highest address to lowest address
50  *
51  * When allocating memory we should always start from the highest
52  * address chunk, so sort the memory list such that the first list
53  * iterator gets the highest address and goes lower from there.
54  */
55 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
56 {
57 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
58 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
59 
60 	if (mema->desc.physical_start == memb->desc.physical_start)
61 		return 0;
62 	else if (mema->desc.physical_start < memb->desc.physical_start)
63 		return 1;
64 	else
65 		return -1;
66 }
67 
68 static void efi_mem_sort(void)
69 {
70 	list_sort(NULL, &efi_mem, efi_mem_cmp);
71 }
72 
73 /** efi_mem_carve_out - unmap memory region
74  *
75  * @map:		memory map
76  * @carve_desc:		memory region to unmap
77  * @overlap_only_ram:	the carved out region may only overlap RAM
78  * Return Value:	the number of overlapping pages which have been
79  *			removed from the map,
80  *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
81  *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
82  *			and the map contains anything but free ram
83  *			(only when overlap_only_ram is true),
84  *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
85  *			traversed again, as it has been altered.
86  *
87  * Unmaps all memory occupied by the carve_desc region from the list entry
88  * pointed to by map.
89  *
90  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
91  * to re-add the already carved out pages to the mapping.
92  */
93 static s64 efi_mem_carve_out(struct efi_mem_list *map,
94 			     struct efi_mem_desc *carve_desc,
95 			     bool overlap_only_ram)
96 {
97 	struct efi_mem_list *newmap;
98 	struct efi_mem_desc *map_desc = &map->desc;
99 	uint64_t map_start = map_desc->physical_start;
100 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
101 	uint64_t carve_start = carve_desc->physical_start;
102 	uint64_t carve_end = carve_start +
103 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
104 
105 	/* check whether we're overlapping */
106 	if ((carve_end <= map_start) || (carve_start >= map_end))
107 		return EFI_CARVE_NO_OVERLAP;
108 
109 	/* We're overlapping with non-RAM, warn the caller if desired */
110 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
111 		return EFI_CARVE_OVERLAPS_NONRAM;
112 
113 	/* Sanitize carve_start and carve_end to lie within our bounds */
114 	carve_start = max(carve_start, map_start);
115 	carve_end = min(carve_end, map_end);
116 
117 	/* Carving at the beginning of our map? Just move it! */
118 	if (carve_start == map_start) {
119 		if (map_end == carve_end) {
120 			/* Full overlap, just remove map */
121 			list_del(&map->link);
122 			free(map);
123 		} else {
124 			map->desc.physical_start = carve_end;
125 			map->desc.num_pages = (map_end - carve_end)
126 					      >> EFI_PAGE_SHIFT;
127 		}
128 
129 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
130 	}
131 
132 	/*
133 	 * Overlapping maps, just split the list map at carve_start,
134 	 * it will get moved or removed in the next iteration.
135 	 *
136 	 * [ map_desc |__carve_start__| newmap ]
137 	 */
138 
139 	/* Create a new map from [ carve_start ... map_end ] */
140 	newmap = calloc(1, sizeof(*newmap));
141 	newmap->desc = map->desc;
142 	newmap->desc.physical_start = carve_start;
143 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
144 	/* Insert before current entry (descending address order) */
145 	list_add_tail(&newmap->link, &map->link);
146 
147 	/* Shrink the map to [ map_start ... carve_start ] */
148 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
149 
150 	return EFI_CARVE_LOOP_AGAIN;
151 }
152 
153 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
154 			    bool overlap_only_ram)
155 {
156 	struct list_head *lhandle;
157 	struct efi_mem_list *newlist;
158 	bool carve_again;
159 	uint64_t carved_pages = 0;
160 
161 	debug("%s: 0x%llx 0x%llx %d %s\n", __func__,
162 	      start, pages, memory_type, overlap_only_ram ? "yes" : "no");
163 
164 	if (memory_type >= EFI_MAX_MEMORY_TYPE)
165 		return EFI_INVALID_PARAMETER;
166 
167 	if (!pages)
168 		return start;
169 
170 	++efi_memory_map_key;
171 	newlist = calloc(1, sizeof(*newlist));
172 	newlist->desc.type = memory_type;
173 	newlist->desc.physical_start = start;
174 	newlist->desc.virtual_start = start;
175 	newlist->desc.num_pages = pages;
176 
177 	switch (memory_type) {
178 	case EFI_RUNTIME_SERVICES_CODE:
179 	case EFI_RUNTIME_SERVICES_DATA:
180 		newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
181 		break;
182 	case EFI_MMAP_IO:
183 		newlist->desc.attribute = EFI_MEMORY_RUNTIME;
184 		break;
185 	default:
186 		newlist->desc.attribute = EFI_MEMORY_WB;
187 		break;
188 	}
189 
190 	/* Add our new map */
191 	do {
192 		carve_again = false;
193 		list_for_each(lhandle, &efi_mem) {
194 			struct efi_mem_list *lmem;
195 			s64 r;
196 
197 			lmem = list_entry(lhandle, struct efi_mem_list, link);
198 			r = efi_mem_carve_out(lmem, &newlist->desc,
199 					      overlap_only_ram);
200 			switch (r) {
201 			case EFI_CARVE_OVERLAPS_NONRAM:
202 				/*
203 				 * The user requested to only have RAM overlaps,
204 				 * but we hit a non-RAM region. Error out.
205 				 */
206 				return 0;
207 			case EFI_CARVE_NO_OVERLAP:
208 				/* Just ignore this list entry */
209 				break;
210 			case EFI_CARVE_LOOP_AGAIN:
211 				/*
212 				 * We split an entry, but need to loop through
213 				 * the list again to actually carve it.
214 				 */
215 				carve_again = true;
216 				break;
217 			default:
218 				/* We carved a number of pages */
219 				carved_pages += r;
220 				carve_again = true;
221 				break;
222 			}
223 
224 			if (carve_again) {
225 				/* The list changed, we need to start over */
226 				break;
227 			}
228 		}
229 	} while (carve_again);
230 
231 	if (overlap_only_ram && (carved_pages != pages)) {
232 		/*
233 		 * The payload wanted to have RAM overlaps, but we overlapped
234 		 * with an unallocated region. Error out.
235 		 */
236 		return 0;
237 	}
238 
239 	/* Add our new map */
240         list_add_tail(&newlist->link, &efi_mem);
241 
242 	/* And make sure memory is listed in descending order */
243 	efi_mem_sort();
244 
245 	return start;
246 }
247 
248 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
249 {
250 	struct list_head *lhandle;
251 
252 	list_for_each(lhandle, &efi_mem) {
253 		struct efi_mem_list *lmem = list_entry(lhandle,
254 			struct efi_mem_list, link);
255 		struct efi_mem_desc *desc = &lmem->desc;
256 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
257 		uint64_t desc_end = desc->physical_start + desc_len;
258 		uint64_t curmax = min(max_addr, desc_end);
259 		uint64_t ret = curmax - len;
260 
261 		/* We only take memory from free RAM */
262 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
263 			continue;
264 
265 		/* Out of bounds for max_addr */
266 		if ((ret + len) > max_addr)
267 			continue;
268 
269 		/* Out of bounds for upper map limit */
270 		if ((ret + len) > desc_end)
271 			continue;
272 
273 		/* Out of bounds for lower map limit */
274 		if (ret < desc->physical_start)
275 			continue;
276 
277 		/* Return the highest address in this map within bounds */
278 		return ret;
279 	}
280 
281 	return 0;
282 }
283 
284 /*
285  * Allocate memory pages.
286  *
287  * @type		type of allocation to be performed
288  * @memory_type		usage type of the allocated memory
289  * @pages		number of pages to be allocated
290  * @memory		allocated memory
291  * @return		status code
292  */
293 efi_status_t efi_allocate_pages(int type, int memory_type,
294 				efi_uintn_t pages, uint64_t *memory)
295 {
296 	u64 len = pages << EFI_PAGE_SHIFT;
297 	efi_status_t r = EFI_SUCCESS;
298 	uint64_t addr;
299 
300 	if (!memory)
301 		return EFI_INVALID_PARAMETER;
302 
303 	switch (type) {
304 	case EFI_ALLOCATE_ANY_PAGES:
305 		/* Any page */
306 		addr = efi_find_free_memory(len, gd->start_addr_sp);
307 		if (!addr) {
308 			r = EFI_NOT_FOUND;
309 			break;
310 		}
311 		break;
312 	case EFI_ALLOCATE_MAX_ADDRESS:
313 		/* Max address */
314 		addr = efi_find_free_memory(len, *memory);
315 		if (!addr) {
316 			r = EFI_NOT_FOUND;
317 			break;
318 		}
319 		break;
320 	case EFI_ALLOCATE_ADDRESS:
321 		/* Exact address, reserve it. The addr is already in *memory. */
322 		addr = *memory;
323 		break;
324 	default:
325 		/* UEFI doesn't specify other allocation types */
326 		r = EFI_INVALID_PARAMETER;
327 		break;
328 	}
329 
330 	if (r == EFI_SUCCESS) {
331 		uint64_t ret;
332 
333 		/* Reserve that map in our memory maps */
334 		ret = efi_add_memory_map(addr, pages, memory_type, true);
335 		if (ret == addr) {
336 			*memory = (uintptr_t)map_sysmem(addr, len);
337 		} else {
338 			/* Map would overlap, bail out */
339 			r = EFI_OUT_OF_RESOURCES;
340 		}
341 	}
342 
343 	return r;
344 }
345 
346 void *efi_alloc(uint64_t len, int memory_type)
347 {
348 	uint64_t ret = 0;
349 	uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
350 	efi_status_t r;
351 
352 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
353 			       &ret);
354 	if (r == EFI_SUCCESS)
355 		return (void*)(uintptr_t)ret;
356 
357 	return NULL;
358 }
359 
360 /*
361  * Free memory pages.
362  *
363  * @memory	start of the memory area to be freed
364  * @pages	number of pages to be freed
365  * @return	status code
366  */
367 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
368 {
369 	uint64_t r = 0;
370 	uint64_t addr = map_to_sysmem((void *)(uintptr_t)memory);
371 
372 	r = efi_add_memory_map(addr, pages, EFI_CONVENTIONAL_MEMORY, false);
373 	/* Merging of adjacent free regions is missing */
374 
375 	if (r == addr)
376 		return EFI_SUCCESS;
377 
378 	return EFI_NOT_FOUND;
379 }
380 
381 /*
382  * Allocate memory from pool.
383  *
384  * @pool_type	type of the pool from which memory is to be allocated
385  * @size	number of bytes to be allocated
386  * @buffer	allocated memory
387  * @return	status code
388  */
389 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
390 {
391 	efi_status_t r;
392 	struct efi_pool_allocation *alloc;
393 	u64 num_pages = (size + sizeof(struct efi_pool_allocation) +
394 			 EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
395 
396 	if (!buffer)
397 		return EFI_INVALID_PARAMETER;
398 
399 	if (size == 0) {
400 		*buffer = NULL;
401 		return EFI_SUCCESS;
402 	}
403 
404 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
405 			       (uint64_t *)&alloc);
406 
407 	if (r == EFI_SUCCESS) {
408 		alloc->num_pages = num_pages;
409 		*buffer = alloc->data;
410 	}
411 
412 	return r;
413 }
414 
415 /*
416  * Free memory from pool.
417  *
418  * @buffer	start of memory to be freed
419  * @return	status code
420  */
421 efi_status_t efi_free_pool(void *buffer)
422 {
423 	efi_status_t r;
424 	struct efi_pool_allocation *alloc;
425 
426 	if (buffer == NULL)
427 		return EFI_INVALID_PARAMETER;
428 
429 	alloc = container_of(buffer, struct efi_pool_allocation, data);
430 	/* Sanity check, was the supplied address returned by allocate_pool */
431 	assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
432 
433 	r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
434 
435 	return r;
436 }
437 
438 /*
439  * Get map describing memory usage.
440  *
441  * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
442  *			on exit the size of the copied memory map
443  * @memory_map		buffer to which the memory map is written
444  * @map_key		key for the memory map
445  * @descriptor_size	size of an individual memory descriptor
446  * @descriptor_version	version number of the memory descriptor structure
447  * @return		status code
448  */
449 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
450 				struct efi_mem_desc *memory_map,
451 				efi_uintn_t *map_key,
452 				efi_uintn_t *descriptor_size,
453 				uint32_t *descriptor_version)
454 {
455 	efi_uintn_t map_size = 0;
456 	int map_entries = 0;
457 	struct list_head *lhandle;
458 	efi_uintn_t provided_map_size;
459 
460 	if (!memory_map_size)
461 		return EFI_INVALID_PARAMETER;
462 
463 	provided_map_size = *memory_map_size;
464 
465 	list_for_each(lhandle, &efi_mem)
466 		map_entries++;
467 
468 	map_size = map_entries * sizeof(struct efi_mem_desc);
469 
470 	*memory_map_size = map_size;
471 
472 	if (provided_map_size < map_size)
473 		return EFI_BUFFER_TOO_SMALL;
474 
475 	if (!memory_map)
476 		return EFI_INVALID_PARAMETER;
477 
478 	if (descriptor_size)
479 		*descriptor_size = sizeof(struct efi_mem_desc);
480 
481 	if (descriptor_version)
482 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
483 
484 	/* Copy list into array */
485 	/* Return the list in ascending order */
486 	memory_map = &memory_map[map_entries - 1];
487 	list_for_each(lhandle, &efi_mem) {
488 		struct efi_mem_list *lmem;
489 
490 		lmem = list_entry(lhandle, struct efi_mem_list, link);
491 		*memory_map = lmem->desc;
492 		memory_map--;
493 	}
494 
495 	if (map_key)
496 		*map_key = efi_memory_map_key;
497 
498 	return EFI_SUCCESS;
499 }
500 
501 __weak void efi_add_known_memory(void)
502 {
503 	int i;
504 
505 	/* Add RAM */
506 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
507 		u64 ram_start = gd->bd->bi_dram[i].start;
508 		u64 ram_size = gd->bd->bi_dram[i].size;
509 		u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
510 		u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
511 
512 		efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
513 				   false);
514 	}
515 }
516 
517 /* Add memory regions for U-Boot's memory and for the runtime services code */
518 static void add_u_boot_and_runtime(void)
519 {
520 	unsigned long runtime_start, runtime_end, runtime_pages;
521 	unsigned long uboot_start, uboot_pages;
522 	unsigned long uboot_stack_size = 16 * 1024 * 1024;
523 
524 	/* Add U-Boot */
525 	uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
526 	uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
527 	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
528 
529 	/* Add Runtime Services */
530 	runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
531 	runtime_end = (ulong)&__efi_runtime_stop;
532 	runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
533 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
534 	efi_add_memory_map(runtime_start, runtime_pages,
535 			   EFI_RUNTIME_SERVICES_CODE, false);
536 }
537 
538 int efi_memory_init(void)
539 {
540 	efi_add_known_memory();
541 
542 	if (!IS_ENABLED(CONFIG_SANDBOX))
543 		add_u_boot_and_runtime();
544 
545 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
546 	/* Request a 32bit 64MB bounce buffer region */
547 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
548 
549 	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
550 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
551 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
552 		return -1;
553 
554 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
555 #endif
556 
557 	return 0;
558 }
559