xref: /openbmc/u-boot/include/mtd/ubi-user.h (revision ff94bc40af3481d47546595ba73c136de6af6929)
1 /*
2  * Copyright © International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:    GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 #ifndef __UBI_USER_H__
10 #define __UBI_USER_H__
11 
12 #include <linux/types.h>
13 
14 /*
15  * UBI device creation (the same as MTD device attachment)
16  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17  *
18  * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
19  * control device. The caller has to properly fill and pass
20  * &struct ubi_attach_req object - UBI will attach the MTD device specified in
21  * the request and return the newly created UBI device number as the ioctl
22  * return value.
23  *
24  * UBI device deletion (the same as MTD device detachment)
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  *
27  * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
28  * control device.
29  *
30  * UBI volume creation
31  * ~~~~~~~~~~~~~~~~~~~
32  *
33  * UBI volumes are created via the %UBI_IOCMKVOL ioctl command of UBI character
34  * device. A &struct ubi_mkvol_req object has to be properly filled and a
35  * pointer to it has to be passed to the ioctl.
36  *
37  * UBI volume deletion
38  * ~~~~~~~~~~~~~~~~~~~
39  *
40  * To delete a volume, the %UBI_IOCRMVOL ioctl command of the UBI character
41  * device should be used. A pointer to the 32-bit volume ID hast to be passed
42  * to the ioctl.
43  *
44  * UBI volume re-size
45  * ~~~~~~~~~~~~~~~~~~
46  *
47  * To re-size a volume, the %UBI_IOCRSVOL ioctl command of the UBI character
48  * device should be used. A &struct ubi_rsvol_req object has to be properly
49  * filled and a pointer to it has to be passed to the ioctl.
50  *
51  * UBI volumes re-name
52  * ~~~~~~~~~~~~~~~~~~~
53  *
54  * To re-name several volumes atomically at one go, the %UBI_IOCRNVOL command
55  * of the UBI character device should be used. A &struct ubi_rnvol_req object
56  * has to be properly filled and a pointer to it has to be passed to the ioctl.
57  *
58  * UBI volume update
59  * ~~~~~~~~~~~~~~~~~
60  *
61  * Volume update should be done via the %UBI_IOCVOLUP ioctl command of the
62  * corresponding UBI volume character device. A pointer to a 64-bit update
63  * size should be passed to the ioctl. After this, UBI expects user to write
64  * this number of bytes to the volume character device. The update is finished
65  * when the claimed number of bytes is passed. So, the volume update sequence
66  * is something like:
67  *
68  * fd = open("/dev/my_volume");
69  * ioctl(fd, UBI_IOCVOLUP, &image_size);
70  * write(fd, buf, image_size);
71  * close(fd);
72  *
73  * Logical eraseblock erase
74  * ~~~~~~~~~~~~~~~~~~~~~~~~
75  *
76  * To erase a logical eraseblock, the %UBI_IOCEBER ioctl command of the
77  * corresponding UBI volume character device should be used. This command
78  * unmaps the requested logical eraseblock, makes sure the corresponding
79  * physical eraseblock is successfully erased, and returns.
80  *
81  * Atomic logical eraseblock change
82  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
83  *
84  * Atomic logical eraseblock change operation is called using the %UBI_IOCEBCH
85  * ioctl command of the corresponding UBI volume character device. A pointer to
86  * a &struct ubi_leb_change_req object has to be passed to the ioctl. Then the
87  * user is expected to write the requested amount of bytes (similarly to what
88  * should be done in case of the "volume update" ioctl).
89  *
90  * Logical eraseblock map
91  * ~~~~~~~~~~~~~~~~~~~~~
92  *
93  * To map a logical eraseblock to a physical eraseblock, the %UBI_IOCEBMAP
94  * ioctl command should be used. A pointer to a &struct ubi_map_req object is
95  * expected to be passed. The ioctl maps the requested logical eraseblock to
96  * a physical eraseblock and returns.  Only non-mapped logical eraseblocks can
97  * be mapped. If the logical eraseblock specified in the request is already
98  * mapped to a physical eraseblock, the ioctl fails and returns error.
99  *
100  * Logical eraseblock unmap
101  * ~~~~~~~~~~~~~~~~~~~~~~~~
102  *
103  * To unmap a logical eraseblock to a physical eraseblock, the %UBI_IOCEBUNMAP
104  * ioctl command should be used. The ioctl unmaps the logical eraseblocks,
105  * schedules corresponding physical eraseblock for erasure, and returns. Unlike
106  * the "LEB erase" command, it does not wait for the physical eraseblock being
107  * erased. Note, the side effect of this is that if an unclean reboot happens
108  * after the unmap ioctl returns, you may find the LEB mapped again to the same
109  * physical eraseblock after the UBI is run again.
110  *
111  * Check if logical eraseblock is mapped
112  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
113  *
114  * To check if a logical eraseblock is mapped to a physical eraseblock, the
115  * %UBI_IOCEBISMAP ioctl command should be used. It returns %0 if the LEB is
116  * not mapped, and %1 if it is mapped.
117  *
118  * Set an UBI volume property
119  * ~~~~~~~~~~~~~~~~~~~~~~~~~
120  *
121  * To set an UBI volume property the %UBI_IOCSETPROP ioctl command should be
122  * used. A pointer to a &struct ubi_set_vol_prop_req object is expected to be
123  * passed. The object describes which property should be set, and to which value
124  * it should be set.
125  */
126 
127 /*
128  * When a new UBI volume or UBI device is created, users may either specify the
129  * volume/device number they want to create or to let UBI automatically assign
130  * the number using these constants.
131  */
132 #define UBI_VOL_NUM_AUTO (-1)
133 #define UBI_DEV_NUM_AUTO (-1)
134 
135 /* Maximum volume name length */
136 #define UBI_MAX_VOLUME_NAME 127
137 
138 /* ioctl commands of UBI character devices */
139 
140 #define UBI_IOC_MAGIC 'o'
141 
142 /* Create an UBI volume */
143 #define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
144 /* Remove an UBI volume */
145 #define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, __s32)
146 /* Re-size an UBI volume */
147 #define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
148 /* Re-name volumes */
149 #define UBI_IOCRNVOL _IOW(UBI_IOC_MAGIC, 3, struct ubi_rnvol_req)
150 
151 /* ioctl commands of the UBI control character device */
152 
153 #define UBI_CTRL_IOC_MAGIC 'o'
154 
155 /* Attach an MTD device */
156 #define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
157 /* Detach an MTD device */
158 #define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, __s32)
159 
160 /* ioctl commands of UBI volume character devices */
161 
162 #define UBI_VOL_IOC_MAGIC 'O'
163 
164 /* Start UBI volume update
165  * Note: This actually takes a pointer (__s64*), but we can't change
166  *       that without breaking the ABI on 32bit systems
167  */
168 #define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, __s64)
169 /* LEB erasure command, used for debugging, disabled by default */
170 #define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, __s32)
171 /* Atomic LEB change command */
172 #define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, __s32)
173 /* Map LEB command */
174 #define UBI_IOCEBMAP _IOW(UBI_VOL_IOC_MAGIC, 3, struct ubi_map_req)
175 /* Unmap LEB command */
176 #define UBI_IOCEBUNMAP _IOW(UBI_VOL_IOC_MAGIC, 4, __s32)
177 /* Check if LEB is mapped command */
178 #define UBI_IOCEBISMAP _IOR(UBI_VOL_IOC_MAGIC, 5, __s32)
179 /* Set an UBI volume property */
180 #define UBI_IOCSETVOLPROP _IOW(UBI_VOL_IOC_MAGIC, 6, \
181 			       struct ubi_set_vol_prop_req)
182 
183 /* Maximum MTD device name length supported by UBI */
184 #define MAX_UBI_MTD_NAME_LEN 127
185 
186 /* Maximum amount of UBI volumes that can be re-named at one go */
187 #define UBI_MAX_RNVOL 32
188 
189 /*
190  * UBI volume type constants.
191  *
192  * @UBI_DYNAMIC_VOLUME: dynamic volume
193  * @UBI_STATIC_VOLUME:  static volume
194  */
195 enum {
196 	UBI_DYNAMIC_VOLUME = 3,
197 	UBI_STATIC_VOLUME  = 4,
198 };
199 
200 /*
201  * UBI set volume property ioctl constants.
202  *
203  * @UBI_VOL_PROP_DIRECT_WRITE: allow (any non-zero value) or disallow (value 0)
204  *                             user to directly write and erase individual
205  *                             eraseblocks on dynamic volumes
206  */
207 enum {
208 	UBI_VOL_PROP_DIRECT_WRITE = 1,
209 };
210 
211 /**
212  * struct ubi_attach_req - attach MTD device request.
213  * @ubi_num: UBI device number to create
214  * @mtd_num: MTD device number to attach
215  * @vid_hdr_offset: VID header offset (use defaults if %0)
216  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
217  * @padding: reserved for future, not used, has to be zeroed
218  *
219  * This data structure is used to specify MTD device UBI has to attach and the
220  * parameters it has to use. The number which should be assigned to the new UBI
221  * device is passed in @ubi_num. UBI may automatically assign the number if
222  * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
223  * @ubi_num.
224  *
225  * Most applications should pass %0 in @vid_hdr_offset to make UBI use default
226  * offset of the VID header within physical eraseblocks. The default offset is
227  * the next min. I/O unit after the EC header. For example, it will be offset
228  * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
229  * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
230  *
231  * But in rare cases, if this optimizes things, the VID header may be placed to
232  * a different offset. For example, the boot-loader might do things faster if
233  * the VID header sits at the end of the first 2KiB NAND page with 4 sub-pages.
234  * As the boot-loader would not normally need to read EC headers (unless it
235  * needs UBI in RW mode), it might be faster to calculate ECC. This is weird
236  * example, but it real-life example. So, in this example, @vid_hdr_offer would
237  * be 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
238  * aligned, which is OK, as UBI is clever enough to realize this is 4th
239  * sub-page of the first page and add needed padding.
240  *
241  * The @max_beb_per1024 is the maximum amount of bad PEBs UBI expects on the
242  * UBI device per 1024 eraseblocks.  This value is often given in an other form
243  * in the NAND datasheet (min NVB i.e. minimal number of valid blocks). The
244  * maximum expected bad eraseblocks per 1024 is then:
245  *    1024 * (1 - MinNVB / MaxNVB)
246  * Which gives 20 for most NAND devices.  This limit is used in order to derive
247  * amount of eraseblock UBI reserves for handling new bad blocks. If the device
248  * has more bad eraseblocks than this limit, UBI does not reserve any physical
249  * eraseblocks for new bad eraseblocks, but attempts to use available
250  * eraseblocks (if any). The accepted range is 0-768. If 0 is given, the
251  * default kernel value of %CONFIG_MTD_UBI_BEB_LIMIT will be used.
252  */
253 struct ubi_attach_req {
254 	__s32 ubi_num;
255 	__s32 mtd_num;
256 	__s32 vid_hdr_offset;
257 	__s16 max_beb_per1024;
258 	__s8 padding[10];
259 };
260 
261 /**
262  * struct ubi_mkvol_req - volume description data structure used in
263  *                        volume creation requests.
264  * @vol_id: volume number
265  * @alignment: volume alignment
266  * @bytes: volume size in bytes
267  * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
268  * @padding1: reserved for future, not used, has to be zeroed
269  * @name_len: volume name length
270  * @padding2: reserved for future, not used, has to be zeroed
271  * @name: volume name
272  *
273  * This structure is used by user-space programs when creating new volumes. The
274  * @used_bytes field is only necessary when creating static volumes.
275  *
276  * The @alignment field specifies the required alignment of the volume logical
277  * eraseblock. This means, that the size of logical eraseblocks will be aligned
278  * to this number, i.e.,
279  *	(UBI device logical eraseblock size) mod (@alignment) = 0.
280  *
281  * To put it differently, the logical eraseblock of this volume may be slightly
282  * shortened in order to make it properly aligned. The alignment has to be
283  * multiple of the flash minimal input/output unit, or %1 to utilize the entire
284  * available space of logical eraseblocks.
285  *
286  * The @alignment field may be useful, for example, when one wants to maintain
287  * a block device on top of an UBI volume. In this case, it is desirable to fit
288  * an integer number of blocks in logical eraseblocks of this UBI volume. With
289  * alignment it is possible to update this volume using plane UBI volume image
290  * BLOBs, without caring about how to properly align them.
291  */
292 struct ubi_mkvol_req {
293 	__s32 vol_id;
294 	__s32 alignment;
295 	__s64 bytes;
296 	__s8 vol_type;
297 	__s8 padding1;
298 	__s16 name_len;
299 	__s8 padding2[4];
300 	char name[UBI_MAX_VOLUME_NAME + 1];
301 } __packed;
302 
303 /**
304  * struct ubi_rsvol_req - a data structure used in volume re-size requests.
305  * @vol_id: ID of the volume to re-size
306  * @bytes: new size of the volume in bytes
307  *
308  * Re-sizing is possible for both dynamic and static volumes. But while dynamic
309  * volumes may be re-sized arbitrarily, static volumes cannot be made to be
310  * smaller than the number of bytes they bear. To arbitrarily shrink a static
311  * volume, it must be wiped out first (by means of volume update operation with
312  * zero number of bytes).
313  */
314 struct ubi_rsvol_req {
315 	__s64 bytes;
316 	__s32 vol_id;
317 } __packed;
318 
319 /**
320  * struct ubi_rnvol_req - volumes re-name request.
321  * @count: count of volumes to re-name
322  * @padding1:  reserved for future, not used, has to be zeroed
323  * @vol_id: ID of the volume to re-name
324  * @name_len: name length
325  * @padding2:  reserved for future, not used, has to be zeroed
326  * @name: new volume name
327  *
328  * UBI allows to re-name up to %32 volumes at one go. The count of volumes to
329  * re-name is specified in the @count field. The ID of the volumes to re-name
330  * and the new names are specified in the @vol_id and @name fields.
331  *
332  * The UBI volume re-name operation is atomic, which means that should power cut
333  * happen, the volumes will have either old name or new name. So the possible
334  * use-cases of this command is atomic upgrade. Indeed, to upgrade, say, volumes
335  * A and B one may create temporary volumes %A1 and %B1 with the new contents,
336  * then atomically re-name A1->A and B1->B, in which case old %A and %B will
337  * be removed.
338  *
339  * If it is not desirable to remove old A and B, the re-name request has to
340  * contain 4 entries: A1->A, A->A1, B1->B, B->B1, in which case old A1 and B1
341  * become A and B, and old A and B will become A1 and B1.
342  *
343  * It is also OK to request: A1->A, A1->X, B1->B, B->Y, in which case old A1
344  * and B1 become A and B, and old A and B become X and Y.
345  *
346  * In other words, in case of re-naming into an existing volume name, the
347  * existing volume is removed, unless it is re-named as well at the same
348  * re-name request.
349  */
350 struct ubi_rnvol_req {
351 	__s32 count;
352 	__s8 padding1[12];
353 	struct {
354 		__s32 vol_id;
355 		__s16 name_len;
356 		__s8  padding2[2];
357 		char    name[UBI_MAX_VOLUME_NAME + 1];
358 	} ents[UBI_MAX_RNVOL];
359 } __packed;
360 
361 /**
362  * struct ubi_leb_change_req - a data structure used in atomic LEB change
363  *                             requests.
364  * @lnum: logical eraseblock number to change
365  * @bytes: how many bytes will be written to the logical eraseblock
366  * @dtype: pass "3" for better compatibility with old kernels
367  * @padding: reserved for future, not used, has to be zeroed
368  *
369  * The @dtype field used to inform UBI about what kind of data will be written
370  * to the LEB: long term (value 1), short term (value 2), unknown (value 3).
371  * UBI tried to pick a PEB with lower erase counter for short term data and a
372  * PEB with higher erase counter for long term data. But this was not really
373  * used because users usually do not know this and could easily mislead UBI. We
374  * removed this feature in May 2012. UBI currently just ignores the @dtype
375  * field. But for better compatibility with older kernels it is recommended to
376  * set @dtype to 3 (unknown).
377  */
378 struct ubi_leb_change_req {
379 	__s32 lnum;
380 	__s32 bytes;
381 	__s8  dtype; /* obsolete, do not use! */
382 	__s8  padding[7];
383 } __packed;
384 
385 /**
386  * struct ubi_map_req - a data structure used in map LEB requests.
387  * @dtype: pass "3" for better compatibility with old kernels
388  * @lnum: logical eraseblock number to unmap
389  * @padding: reserved for future, not used, has to be zeroed
390  */
391 struct ubi_map_req {
392 	__s32 lnum;
393 	__s8  dtype; /* obsolete, do not use! */
394 	__s8  padding[3];
395 } __packed;
396 
397 
398 /**
399  * struct ubi_set_vol_prop_req - a data structure used to set an UBI volume
400  *                               property.
401  * @property: property to set (%UBI_VOL_PROP_DIRECT_WRITE)
402  * @padding: reserved for future, not used, has to be zeroed
403  * @value: value to set
404  */
405 struct ubi_set_vol_prop_req {
406 	__u8  property;
407 	__u8  padding[7];
408 	__u64 value;
409 }  __packed;
410 
411 #endif /* __UBI_USER_H__ */
412