xref: /openbmc/u-boot/include/linux/mtd/ubi.h (revision 461be2f96e4b87e5065208c6659a47dd0ad9e9f8)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 #ifndef __LINUX_UBI_H__
10 #define __LINUX_UBI_H__
11 
12 #include <linux/types.h>
13 #define __UBOOT__
14 #ifndef __UBOOT__
15 #include <linux/ioctl.h>
16 #include <mtd/ubi-user.h>
17 #endif
18 
19 /* All voumes/LEBs */
20 #define UBI_ALL -1
21 
22 /*
23  * enum ubi_open_mode - UBI volume open mode constants.
24  *
25  * UBI_READONLY: read-only mode
26  * UBI_READWRITE: read-write mode
27  * UBI_EXCLUSIVE: exclusive mode
28  */
29 enum {
30 	UBI_READONLY = 1,
31 	UBI_READWRITE,
32 	UBI_EXCLUSIVE
33 };
34 
35 /**
36  * struct ubi_volume_info - UBI volume description data structure.
37  * @vol_id: volume ID
38  * @ubi_num: UBI device number this volume belongs to
39  * @size: how many physical eraseblocks are reserved for this volume
40  * @used_bytes: how many bytes of data this volume contains
41  * @used_ebs: how many physical eraseblocks of this volume actually contain any
42  *            data
43  * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
44  * @corrupted: non-zero if the volume is corrupted (static volumes only)
45  * @upd_marker: non-zero if the volume has update marker set
46  * @alignment: volume alignment
47  * @usable_leb_size: how many bytes are available in logical eraseblocks of
48  *                   this volume
49  * @name_len: volume name length
50  * @name: volume name
51  * @cdev: UBI volume character device major and minor numbers
52  *
53  * The @corrupted flag is only relevant to static volumes and is always zero
54  * for dynamic ones. This is because UBI does not care about dynamic volume
55  * data protection and only cares about protecting static volume data.
56  *
57  * The @upd_marker flag is set if the volume update operation was interrupted.
58  * Before touching the volume data during the update operation, UBI first sets
59  * the update marker flag for this volume. If the volume update operation was
60  * further interrupted, the update marker indicates this. If the update marker
61  * is set, the contents of the volume is certainly damaged and a new volume
62  * update operation has to be started.
63  *
64  * To put it differently, @corrupted and @upd_marker fields have different
65  * semantics:
66  *     o the @corrupted flag means that this static volume is corrupted for some
67  *       reasons, but not because an interrupted volume update
68  *     o the @upd_marker field means that the volume is damaged because of an
69  *       interrupted update operation.
70  *
71  * I.e., the @corrupted flag is never set if the @upd_marker flag is set.
72  *
73  * The @used_bytes and @used_ebs fields are only really needed for static
74  * volumes and contain the number of bytes stored in this static volume and how
75  * many eraseblock this data occupies. In case of dynamic volumes, the
76  * @used_bytes field is equivalent to @size*@usable_leb_size, and the @used_ebs
77  * field is equivalent to @size.
78  *
79  * In general, logical eraseblock size is a property of the UBI device, not
80  * of the UBI volume. Indeed, the logical eraseblock size depends on the
81  * physical eraseblock size and on how much bytes UBI headers consume. But
82  * because of the volume alignment (@alignment), the usable size of logical
83  * eraseblocks if a volume may be less. The following equation is true:
84  *	@usable_leb_size = LEB size - (LEB size mod @alignment),
85  * where LEB size is the logical eraseblock size defined by the UBI device.
86  *
87  * The alignment is multiple to the minimal flash input/output unit size or %1
88  * if all the available space is used.
89  *
90  * To put this differently, alignment may be considered is a way to change
91  * volume logical eraseblock sizes.
92  */
93 struct ubi_volume_info {
94 	int ubi_num;
95 	int vol_id;
96 	int size;
97 	long long used_bytes;
98 	int used_ebs;
99 	int vol_type;
100 	int corrupted;
101 	int upd_marker;
102 	int alignment;
103 	int usable_leb_size;
104 	int name_len;
105 	const char *name;
106 	dev_t cdev;
107 };
108 
109 /**
110  * struct ubi_device_info - UBI device description data structure.
111  * @ubi_num: ubi device number
112  * @leb_size: logical eraseblock size on this UBI device
113  * @leb_start: starting offset of logical eraseblocks within physical
114  *             eraseblocks
115  * @min_io_size: minimal I/O unit size
116  * @max_write_size: maximum amount of bytes the underlying flash can write at a
117  *                  time (MTD write buffer size)
118  * @ro_mode: if this device is in read-only mode
119  * @cdev: UBI character device major and minor numbers
120  *
121  * Note, @leb_size is the logical eraseblock size offered by the UBI device.
122  * Volumes of this UBI device may have smaller logical eraseblock size if their
123  * alignment is not equivalent to %1.
124  *
125  * The @max_write_size field describes flash write maximum write unit. For
126  * example, NOR flash allows for changing individual bytes, so @min_io_size is
127  * %1. However, it does not mean than NOR flash has to write data byte-by-byte.
128  * Instead, CFI NOR flashes have a write-buffer of, e.g., 64 bytes, and when
129  * writing large chunks of data, they write 64-bytes at a time. Obviously, this
130  * improves write throughput.
131  *
132  * Also, the MTD device may have N interleaved (striped) flash chips
133  * underneath, in which case @min_io_size can be physical min. I/O size of
134  * single flash chip, while @max_write_size can be N * @min_io_size.
135  *
136  * The @max_write_size field is always greater or equivalent to @min_io_size.
137  * E.g., some NOR flashes may have (@min_io_size = 1, @max_write_size = 64). In
138  * contrast, NAND flashes usually have @min_io_size = @max_write_size = NAND
139  * page size.
140  */
141 struct ubi_device_info {
142 	int ubi_num;
143 	int leb_size;
144 	int leb_start;
145 	int min_io_size;
146 	int max_write_size;
147 	int ro_mode;
148 #ifndef __UBOOT__
149 	dev_t cdev;
150 #endif
151 };
152 
153 /*
154  * Volume notification types.
155  * @UBI_VOLUME_ADDED: a volume has been added (an UBI device was attached or a
156  *                    volume was created)
157  * @UBI_VOLUME_REMOVED: a volume has been removed (an UBI device was detached
158  *			or a volume was removed)
159  * @UBI_VOLUME_RESIZED: a volume has been re-sized
160  * @UBI_VOLUME_RENAMED: a volume has been re-named
161  * @UBI_VOLUME_UPDATED: data has been written to a volume
162  *
163  * These constants define which type of event has happened when a volume
164  * notification function is invoked.
165  */
166 enum {
167 	UBI_VOLUME_ADDED,
168 	UBI_VOLUME_REMOVED,
169 	UBI_VOLUME_RESIZED,
170 	UBI_VOLUME_RENAMED,
171 	UBI_VOLUME_UPDATED,
172 };
173 
174 /*
175  * struct ubi_notification - UBI notification description structure.
176  * @di: UBI device description object
177  * @vi: UBI volume description object
178  *
179  * UBI notifiers are called with a pointer to an object of this type. The
180  * object describes the notification. Namely, it provides a description of the
181  * UBI device and UBI volume the notification informs about.
182  */
183 struct ubi_notification {
184 	struct ubi_device_info di;
185 	struct ubi_volume_info vi;
186 };
187 
188 /* UBI descriptor given to users when they open UBI volumes */
189 struct ubi_volume_desc;
190 
191 int ubi_get_device_info(int ubi_num, struct ubi_device_info *di);
192 void ubi_get_volume_info(struct ubi_volume_desc *desc,
193 			 struct ubi_volume_info *vi);
194 struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode);
195 struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
196 					   int mode);
197 struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode);
198 
199 #ifndef __UBOOT__
200 typedef	int (*notifier_fn_t)(void *nb,
201 			unsigned long action, void *data);
202 
203 struct notifier_block {
204 	notifier_fn_t notifier_call;
205 	struct notifier_block *next;
206 	void *next;
207 	int priority;
208 };
209 
210 int ubi_register_volume_notifier(struct notifier_block *nb,
211 				 int ignore_existing);
212 int ubi_unregister_volume_notifier(struct notifier_block *nb);
213 #endif
214 
215 void ubi_close_volume(struct ubi_volume_desc *desc);
216 int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
217 		 int len, int check);
218 int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
219 		  int offset, int len);
220 int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
221 		   int len);
222 int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum);
223 int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum);
224 int ubi_leb_map(struct ubi_volume_desc *desc, int lnum);
225 int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum);
226 int ubi_sync(int ubi_num);
227 int ubi_flush(int ubi_num, int vol_id, int lnum);
228 
229 /*
230  * This function is the same as the 'ubi_leb_read()' function, but it does not
231  * provide the checking capability.
232  */
233 static inline int ubi_read(struct ubi_volume_desc *desc, int lnum, char *buf,
234 			   int offset, int len)
235 {
236 	return ubi_leb_read(desc, lnum, buf, offset, len, 0);
237 }
238 #endif /* !__LINUX_UBI_H__ */
239