xref: /openbmc/u-boot/include/dm/device.h (revision b9863b6de22b48dd863d4385f5a5656ba84138a3)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/uclass-id.h>
15 #include <linker_lists.h>
16 #include <linux/list.h>
17 
18 struct driver_info;
19 
20 /* Driver is active (probed). Cleared when it is removed */
21 #define DM_FLAG_ACTIVATED	(1 << 0)
22 
23 /* DM is responsible for allocating and freeing platdata */
24 #define DM_FLAG_ALLOC_PDATA	(1 << 1)
25 
26 /* DM should init this device prior to relocation */
27 #define DM_FLAG_PRE_RELOC	(1 << 2)
28 
29 /**
30  * struct udevice - An instance of a driver
31  *
32  * This holds information about a device, which is a driver bound to a
33  * particular port or peripheral (essentially a driver instance).
34  *
35  * A device will come into existence through a 'bind' call, either due to
36  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
37  * in the device tree (in which case of_offset is >= 0). In the latter case
38  * we translate the device tree information into platdata in a function
39  * implemented by the driver ofdata_to_platdata method (called just before the
40  * probe method if the device has a device tree node.
41  *
42  * All three of platdata, priv and uclass_priv can be allocated by the
43  * driver, or you can use the auto_alloc_size members of struct driver and
44  * struct uclass_driver to have driver model do this automatically.
45  *
46  * @driver: The driver used by this device
47  * @name: Name of device, typically the FDT node name
48  * @platdata: Configuration data for this device
49  * @of_offset: Device tree node offset for this device (- for none)
50  * @parent: Parent of this device, or NULL for the top level device
51  * @priv: Private data for this device
52  * @uclass: Pointer to uclass for this device
53  * @uclass_priv: The uclass's private data for this device
54  * @parent_priv: The parent's private data for this device
55  * @uclass_node: Used by uclass to link its devices
56  * @child_head: List of children of this device
57  * @sibling_node: Next device in list of all devices
58  * @flags: Flags for this device DM_FLAG_...
59  * @req_seq: Requested sequence number for this device (-1 = any)
60  * @seq: Allocated sequence number for this device (-1 = none). This is set up
61  * when the device is probed and will be unique within the device's uclass.
62  */
63 struct udevice {
64 	struct driver *driver;
65 	const char *name;
66 	void *platdata;
67 	int of_offset;
68 	struct udevice *parent;
69 	void *priv;
70 	struct uclass *uclass;
71 	void *uclass_priv;
72 	void *parent_priv;
73 	struct list_head uclass_node;
74 	struct list_head child_head;
75 	struct list_head sibling_node;
76 	uint32_t flags;
77 	int req_seq;
78 	int seq;
79 };
80 
81 /* Maximum sequence number supported */
82 #define DM_MAX_SEQ	999
83 
84 /* Returns the operations for a device */
85 #define device_get_ops(dev)	(dev->driver->ops)
86 
87 /* Returns non-zero if the device is active (probed and not removed) */
88 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
89 
90 /**
91  * struct udevice_id - Lists the compatible strings supported by a driver
92  * @compatible: Compatible string
93  * @data: Data for this compatible string
94  */
95 struct udevice_id {
96 	const char *compatible;
97 	ulong data;
98 };
99 
100 #ifdef CONFIG_OF_CONTROL
101 #define of_match_ptr(_ptr)	(_ptr)
102 #else
103 #define of_match_ptr(_ptr)	NULL
104 #endif /* CONFIG_OF_CONTROL */
105 
106 /**
107  * struct driver - A driver for a feature or peripheral
108  *
109  * This holds methods for setting up a new device, and also removing it.
110  * The device needs information to set itself up - this is provided either
111  * by platdata or a device tree node (which we find by looking up
112  * matching compatible strings with of_match).
113  *
114  * Drivers all belong to a uclass, representing a class of devices of the
115  * same type. Common elements of the drivers can be implemented in the uclass,
116  * or the uclass can provide a consistent interface to the drivers within
117  * it.
118  *
119  * @name: Device name
120  * @id: Identiies the uclass we belong to
121  * @of_match: List of compatible strings to match, and any identifying data
122  * for each.
123  * @bind: Called to bind a device to its driver
124  * @probe: Called to probe a device, i.e. activate it
125  * @remove: Called to remove a device, i.e. de-activate it
126  * @unbind: Called to unbind a device from its driver
127  * @ofdata_to_platdata: Called before probe to decode device tree data
128  * @child_pre_probe: Called before a child device is probed. The device has
129  * memory allocated but it has not yet been probed.
130  * @child_post_remove: Called after a child device is removed. The device
131  * has memory allocated but its device_remove() method has been called.
132  * @priv_auto_alloc_size: If non-zero this is the size of the private data
133  * to be allocated in the device's ->priv pointer. If zero, then the driver
134  * is responsible for allocating any data required.
135  * @platdata_auto_alloc_size: If non-zero this is the size of the
136  * platform data to be allocated in the device's ->platdata pointer.
137  * This is typically only useful for device-tree-aware drivers (those with
138  * an of_match), since drivers which use platdata will have the data
139  * provided in the U_BOOT_DEVICE() instantiation.
140  * @per_child_auto_alloc_size: Each device can hold private data owned by
141  * its parent. If required this will be automatically allocated if this
142  * value is non-zero.
143  * TODO(sjg@chromium.org): I'm considering dropping this, and just having
144  * device_probe_child() pass it in. So far the use case for allocating it
145  * is SPI, but I found that unsatisfactory. Since it is here I will leave it
146  * until things are clearer.
147  * @ops: Driver-specific operations. This is typically a list of function
148  * pointers defined by the driver, to implement driver functions required by
149  * the uclass.
150  * @flags: driver flags - see DM_FLAGS_...
151  */
152 struct driver {
153 	char *name;
154 	enum uclass_id id;
155 	const struct udevice_id *of_match;
156 	int (*bind)(struct udevice *dev);
157 	int (*probe)(struct udevice *dev);
158 	int (*remove)(struct udevice *dev);
159 	int (*unbind)(struct udevice *dev);
160 	int (*ofdata_to_platdata)(struct udevice *dev);
161 	int (*child_pre_probe)(struct udevice *dev);
162 	int (*child_post_remove)(struct udevice *dev);
163 	int priv_auto_alloc_size;
164 	int platdata_auto_alloc_size;
165 	int per_child_auto_alloc_size;
166 	const void *ops;	/* driver-specific operations */
167 	uint32_t flags;
168 };
169 
170 /* Declare a new U-Boot driver */
171 #define U_BOOT_DRIVER(__name)						\
172 	ll_entry_declare(struct driver, __name, driver)
173 
174 /**
175  * dev_get_platdata() - Get the platform data for a device
176  *
177  * This checks that dev is not NULL, but no other checks for now
178  *
179  * @dev		Device to check
180  * @return platform data, or NULL if none
181  */
182 void *dev_get_platdata(struct udevice *dev);
183 
184 /**
185  * dev_get_parentdata() - Get the parent data for a device
186  *
187  * The parent data is data stored in the device but owned by the parent.
188  * For example, a USB device may have parent data which contains information
189  * about how to talk to the device over USB.
190  *
191  * This checks that dev is not NULL, but no other checks for now
192  *
193  * @dev		Device to check
194  * @return parent data, or NULL if none
195  */
196 void *dev_get_parentdata(struct udevice *dev);
197 
198 /**
199  * dev_get_priv() - Get the private data for a device
200  *
201  * This checks that dev is not NULL, but no other checks for now
202  *
203  * @dev		Device to check
204  * @return private data, or NULL if none
205  */
206 void *dev_get_priv(struct udevice *dev);
207 
208 /**
209  * device_get_child() - Get the child of a device by index
210  *
211  * Returns the numbered child, 0 being the first. This does not use
212  * sequence numbers, only the natural order.
213  *
214  * @dev:	Parent device to check
215  * @index:	Child index
216  * @devp:	Returns pointer to device
217  */
218 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
219 
220 /**
221  * device_find_child_by_seq() - Find a child device based on a sequence
222  *
223  * This searches for a device with the given seq or req_seq.
224  *
225  * For seq, if an active device has this sequence it will be returned.
226  * If there is no such device then this will return -ENODEV.
227  *
228  * For req_seq, if a device (whether activated or not) has this req_seq
229  * value, that device will be returned. This is a strong indication that
230  * the device will receive that sequence when activated.
231  *
232  * @parent: Parent device
233  * @seq_or_req_seq: Sequence number to find (0=first)
234  * @find_req_seq: true to find req_seq, false to find seq
235  * @devp: Returns pointer to device (there is only one per for each seq).
236  * Set to NULL if none is found
237  * @return 0 if OK, -ve on error
238  */
239 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
240 			     bool find_req_seq, struct udevice **devp);
241 
242 /**
243  * device_get_child_by_seq() - Get a child device based on a sequence
244  *
245  * If an active device has this sequence it will be returned. If there is no
246  * such device then this will check for a device that is requesting this
247  * sequence.
248  *
249  * The device is probed to activate it ready for use.
250  *
251  * @parent: Parent device
252  * @seq: Sequence number to find (0=first)
253  * @devp: Returns pointer to device (there is only one per for each seq)
254  * Set to NULL if none is found
255  * @return 0 if OK, -ve on error
256  */
257 int device_get_child_by_seq(struct udevice *parent, int seq,
258 			    struct udevice **devp);
259 
260 /**
261  * device_find_child_by_of_offset() - Find a child device based on FDT offset
262  *
263  * Locates a child device by its device tree offset.
264  *
265  * @parent: Parent device
266  * @of_offset: Device tree offset to find
267  * @devp: Returns pointer to device if found, otherwise this is set to NULL
268  * @return 0 if OK, -ve on error
269  */
270 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
271 				   struct udevice **devp);
272 
273 /**
274  * device_get_child_by_of_offset() - Get a child device based on FDT offset
275  *
276  * Locates a child device by its device tree offset.
277  *
278  * The device is probed to activate it ready for use.
279  *
280  * @parent: Parent device
281  * @of_offset: Device tree offset to find
282  * @devp: Returns pointer to device if found, otherwise this is set to NULL
283  * @return 0 if OK, -ve on error
284  */
285 int device_get_child_by_of_offset(struct udevice *parent, int seq,
286 				  struct udevice **devp);
287 
288 /**
289  * device_find_first_child() - Find the first child of a device
290  *
291  * @parent: Parent device to search
292  * @devp: Returns first child device, or NULL if none
293  * @return 0
294  */
295 int device_find_first_child(struct udevice *parent, struct udevice **devp);
296 
297 /**
298  * device_find_first_child() - Find the first child of a device
299  *
300  * @devp: Pointer to previous child device on entry. Returns pointer to next
301  *		child device, or NULL if none
302  * @return 0
303  */
304 int device_find_next_child(struct udevice **devp);
305 
306 #endif
307