xref: /openbmc/u-boot/fs/yaffs2/yaffs_guts.c (revision 3765b3e7bd0f8e46914d417f29cbcb0c72b1acf7)
1 /*
2  * YAFFS: Yet Another Flash File System. A NAND-flash specific file system.
3  *
4  * Copyright (C) 2002-2011 Aleph One Ltd.
5  *   for Toby Churchill Ltd and Brightstar Engineering
6  *
7  * Created by Charles Manning <charles@aleph1.co.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include "yportenv.h"
15 #include "yaffs_trace.h"
16 
17 #include "yaffs_guts.h"
18 #include "yaffs_getblockinfo.h"
19 #include "yaffs_tagscompat.h"
20 #include "yaffs_nand.h"
21 #include "yaffs_yaffs1.h"
22 #include "yaffs_yaffs2.h"
23 #include "yaffs_bitmap.h"
24 #include "yaffs_verify.h"
25 #include "yaffs_nand.h"
26 #include "yaffs_packedtags2.h"
27 #include "yaffs_nameval.h"
28 #include "yaffs_allocator.h"
29 #include "yaffs_attribs.h"
30 #include "yaffs_summary.h"
31 
32 /* Note YAFFS_GC_GOOD_ENOUGH must be <= YAFFS_GC_PASSIVE_THRESHOLD */
33 #define YAFFS_GC_GOOD_ENOUGH 2
34 #define YAFFS_GC_PASSIVE_THRESHOLD 4
35 
36 #include "yaffs_ecc.h"
37 
38 /* Forward declarations */
39 
40 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
41 			     const u8 *buffer, int n_bytes, int use_reserve);
42 
43 
44 
45 /* Function to calculate chunk and offset */
46 
47 void yaffs_addr_to_chunk(struct yaffs_dev *dev, loff_t addr,
48 				int *chunk_out, u32 *offset_out)
49 {
50 	int chunk;
51 	u32 offset;
52 
53 	chunk = (u32) (addr >> dev->chunk_shift);
54 
55 	if (dev->chunk_div == 1) {
56 		/* easy power of 2 case */
57 		offset = (u32) (addr & dev->chunk_mask);
58 	} else {
59 		/* Non power-of-2 case */
60 
61 		loff_t chunk_base;
62 
63 		chunk /= dev->chunk_div;
64 
65 		chunk_base = ((loff_t) chunk) * dev->data_bytes_per_chunk;
66 		offset = (u32) (addr - chunk_base);
67 	}
68 
69 	*chunk_out = chunk;
70 	*offset_out = offset;
71 }
72 
73 /* Function to return the number of shifts for a power of 2 greater than or
74  * equal to the given number
75  * Note we don't try to cater for all possible numbers and this does not have to
76  * be hellishly efficient.
77  */
78 
79 static inline u32 calc_shifts_ceiling(u32 x)
80 {
81 	int extra_bits;
82 	int shifts;
83 
84 	shifts = extra_bits = 0;
85 
86 	while (x > 1) {
87 		if (x & 1)
88 			extra_bits++;
89 		x >>= 1;
90 		shifts++;
91 	}
92 
93 	if (extra_bits)
94 		shifts++;
95 
96 	return shifts;
97 }
98 
99 /* Function to return the number of shifts to get a 1 in bit 0
100  */
101 
102 static inline u32 calc_shifts(u32 x)
103 {
104 	u32 shifts;
105 
106 	shifts = 0;
107 
108 	if (!x)
109 		return 0;
110 
111 	while (!(x & 1)) {
112 		x >>= 1;
113 		shifts++;
114 	}
115 
116 	return shifts;
117 }
118 
119 /*
120  * Temporary buffer manipulations.
121  */
122 
123 static int yaffs_init_tmp_buffers(struct yaffs_dev *dev)
124 {
125 	int i;
126 	u8 *buf = (u8 *) 1;
127 
128 	memset(dev->temp_buffer, 0, sizeof(dev->temp_buffer));
129 
130 	for (i = 0; buf && i < YAFFS_N_TEMP_BUFFERS; i++) {
131 		dev->temp_buffer[i].in_use = 0;
132 		buf = kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
133 		dev->temp_buffer[i].buffer = buf;
134 	}
135 
136 	return buf ? YAFFS_OK : YAFFS_FAIL;
137 }
138 
139 u8 *yaffs_get_temp_buffer(struct yaffs_dev * dev)
140 {
141 	int i;
142 
143 	dev->temp_in_use++;
144 	if (dev->temp_in_use > dev->max_temp)
145 		dev->max_temp = dev->temp_in_use;
146 
147 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
148 		if (dev->temp_buffer[i].in_use == 0) {
149 			dev->temp_buffer[i].in_use = 1;
150 			return dev->temp_buffer[i].buffer;
151 		}
152 	}
153 
154 	yaffs_trace(YAFFS_TRACE_BUFFERS, "Out of temp buffers");
155 	/*
156 	 * If we got here then we have to allocate an unmanaged one
157 	 * This is not good.
158 	 */
159 
160 	dev->unmanaged_buffer_allocs++;
161 	return kmalloc(dev->data_bytes_per_chunk, GFP_NOFS);
162 
163 }
164 
165 void yaffs_release_temp_buffer(struct yaffs_dev *dev, u8 *buffer)
166 {
167 	int i;
168 
169 	dev->temp_in_use--;
170 
171 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
172 		if (dev->temp_buffer[i].buffer == buffer) {
173 			dev->temp_buffer[i].in_use = 0;
174 			return;
175 		}
176 	}
177 
178 	if (buffer) {
179 		/* assume it is an unmanaged one. */
180 		yaffs_trace(YAFFS_TRACE_BUFFERS,
181 			"Releasing unmanaged temp buffer");
182 		kfree(buffer);
183 		dev->unmanaged_buffer_deallocs++;
184 	}
185 
186 }
187 
188 /*
189  * Determine if we have a managed buffer.
190  */
191 int yaffs_is_managed_tmp_buffer(struct yaffs_dev *dev, const u8 *buffer)
192 {
193 	int i;
194 
195 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
196 		if (dev->temp_buffer[i].buffer == buffer)
197 			return 1;
198 	}
199 
200 	for (i = 0; i < dev->param.n_caches; i++) {
201 		if (dev->cache[i].data == buffer)
202 			return 1;
203 	}
204 
205 	if (buffer == dev->checkpt_buffer)
206 		return 1;
207 
208 	yaffs_trace(YAFFS_TRACE_ALWAYS,
209 	  "yaffs: unmaged buffer detected.");
210 	return 0;
211 }
212 
213 /*
214  * Functions for robustisizing TODO
215  *
216  */
217 
218 static void yaffs_handle_chunk_wr_ok(struct yaffs_dev *dev, int nand_chunk,
219 				     const u8 *data,
220 				     const struct yaffs_ext_tags *tags)
221 {
222 	dev = dev;
223 	nand_chunk = nand_chunk;
224 	data = data;
225 	tags = tags;
226 }
227 
228 static void yaffs_handle_chunk_update(struct yaffs_dev *dev, int nand_chunk,
229 				      const struct yaffs_ext_tags *tags)
230 {
231 	dev = dev;
232 	nand_chunk = nand_chunk;
233 	tags = tags;
234 }
235 
236 void yaffs_handle_chunk_error(struct yaffs_dev *dev,
237 			      struct yaffs_block_info *bi)
238 {
239 	if (!bi->gc_prioritise) {
240 		bi->gc_prioritise = 1;
241 		dev->has_pending_prioritised_gc = 1;
242 		bi->chunk_error_strikes++;
243 
244 		if (bi->chunk_error_strikes > 3) {
245 			bi->needs_retiring = 1;	/* Too many stikes, so retire */
246 			yaffs_trace(YAFFS_TRACE_ALWAYS,
247 				"yaffs: Block struck out");
248 
249 		}
250 	}
251 }
252 
253 static void yaffs_handle_chunk_wr_error(struct yaffs_dev *dev, int nand_chunk,
254 					int erased_ok)
255 {
256 	int flash_block = nand_chunk / dev->param.chunks_per_block;
257 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
258 
259 	yaffs_handle_chunk_error(dev, bi);
260 
261 	if (erased_ok) {
262 		/* Was an actual write failure,
263 		 * so mark the block for retirement.*/
264 		bi->needs_retiring = 1;
265 		yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
266 		  "**>> Block %d needs retiring", flash_block);
267 	}
268 
269 	/* Delete the chunk */
270 	yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
271 	yaffs_skip_rest_of_block(dev);
272 }
273 
274 /*
275  * Verification code
276  */
277 
278 /*
279  *  Simple hash function. Needs to have a reasonable spread
280  */
281 
282 static inline int yaffs_hash_fn(int n)
283 {
284 	if (n < 0)
285 		n = -n;
286 	return n % YAFFS_NOBJECT_BUCKETS;
287 }
288 
289 /*
290  * Access functions to useful fake objects.
291  * Note that root might have a presence in NAND if permissions are set.
292  */
293 
294 struct yaffs_obj *yaffs_root(struct yaffs_dev *dev)
295 {
296 	return dev->root_dir;
297 }
298 
299 struct yaffs_obj *yaffs_lost_n_found(struct yaffs_dev *dev)
300 {
301 	return dev->lost_n_found;
302 }
303 
304 /*
305  *  Erased NAND checking functions
306  */
307 
308 int yaffs_check_ff(u8 *buffer, int n_bytes)
309 {
310 	/* Horrible, slow implementation */
311 	while (n_bytes--) {
312 		if (*buffer != 0xff)
313 			return 0;
314 		buffer++;
315 	}
316 	return 1;
317 }
318 
319 static int yaffs_check_chunk_erased(struct yaffs_dev *dev, int nand_chunk)
320 {
321 	int retval = YAFFS_OK;
322 	u8 *data = yaffs_get_temp_buffer(dev);
323 	struct yaffs_ext_tags tags;
324 
325 	yaffs_rd_chunk_tags_nand(dev, nand_chunk, data, &tags);
326 
327 	if (tags.ecc_result > YAFFS_ECC_RESULT_NO_ERROR)
328 		retval = YAFFS_FAIL;
329 
330 	if (!yaffs_check_ff(data, dev->data_bytes_per_chunk) ||
331 		tags.chunk_used) {
332 		yaffs_trace(YAFFS_TRACE_NANDACCESS,
333 			"Chunk %d not erased", nand_chunk);
334 		retval = YAFFS_FAIL;
335 	}
336 
337 	yaffs_release_temp_buffer(dev, data);
338 
339 	return retval;
340 
341 }
342 
343 static int yaffs_verify_chunk_written(struct yaffs_dev *dev,
344 				      int nand_chunk,
345 				      const u8 *data,
346 				      struct yaffs_ext_tags *tags)
347 {
348 	int retval = YAFFS_OK;
349 	struct yaffs_ext_tags temp_tags;
350 	u8 *buffer = yaffs_get_temp_buffer(dev);
351 
352 	yaffs_rd_chunk_tags_nand(dev, nand_chunk, buffer, &temp_tags);
353 	if (memcmp(buffer, data, dev->data_bytes_per_chunk) ||
354 	    temp_tags.obj_id != tags->obj_id ||
355 	    temp_tags.chunk_id != tags->chunk_id ||
356 	    temp_tags.n_bytes != tags->n_bytes)
357 		retval = YAFFS_FAIL;
358 
359 	yaffs_release_temp_buffer(dev, buffer);
360 
361 	return retval;
362 }
363 
364 
365 int yaffs_check_alloc_available(struct yaffs_dev *dev, int n_chunks)
366 {
367 	int reserved_chunks;
368 	int reserved_blocks = dev->param.n_reserved_blocks;
369 	int checkpt_blocks;
370 
371 	checkpt_blocks = yaffs_calc_checkpt_blocks_required(dev);
372 
373 	reserved_chunks =
374 	    (reserved_blocks + checkpt_blocks) * dev->param.chunks_per_block;
375 
376 	return (dev->n_free_chunks > (reserved_chunks + n_chunks));
377 }
378 
379 static int yaffs_find_alloc_block(struct yaffs_dev *dev)
380 {
381 	int i;
382 	struct yaffs_block_info *bi;
383 
384 	if (dev->n_erased_blocks < 1) {
385 		/* Hoosterman we've got a problem.
386 		 * Can't get space to gc
387 		 */
388 		yaffs_trace(YAFFS_TRACE_ERROR,
389 		  "yaffs tragedy: no more erased blocks");
390 
391 		return -1;
392 	}
393 
394 	/* Find an empty block. */
395 
396 	for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) {
397 		dev->alloc_block_finder++;
398 		if (dev->alloc_block_finder < dev->internal_start_block
399 		    || dev->alloc_block_finder > dev->internal_end_block) {
400 			dev->alloc_block_finder = dev->internal_start_block;
401 		}
402 
403 		bi = yaffs_get_block_info(dev, dev->alloc_block_finder);
404 
405 		if (bi->block_state == YAFFS_BLOCK_STATE_EMPTY) {
406 			bi->block_state = YAFFS_BLOCK_STATE_ALLOCATING;
407 			dev->seq_number++;
408 			bi->seq_number = dev->seq_number;
409 			dev->n_erased_blocks--;
410 			yaffs_trace(YAFFS_TRACE_ALLOCATE,
411 			  "Allocated block %d, seq  %d, %d left" ,
412 			   dev->alloc_block_finder, dev->seq_number,
413 			   dev->n_erased_blocks);
414 			return dev->alloc_block_finder;
415 		}
416 	}
417 
418 	yaffs_trace(YAFFS_TRACE_ALWAYS,
419 		"yaffs tragedy: no more erased blocks, but there should have been %d",
420 		dev->n_erased_blocks);
421 
422 	return -1;
423 }
424 
425 static int yaffs_alloc_chunk(struct yaffs_dev *dev, int use_reserver,
426 			     struct yaffs_block_info **block_ptr)
427 {
428 	int ret_val;
429 	struct yaffs_block_info *bi;
430 
431 	if (dev->alloc_block < 0) {
432 		/* Get next block to allocate off */
433 		dev->alloc_block = yaffs_find_alloc_block(dev);
434 		dev->alloc_page = 0;
435 	}
436 
437 	if (!use_reserver && !yaffs_check_alloc_available(dev, 1)) {
438 		/* No space unless we're allowed to use the reserve. */
439 		return -1;
440 	}
441 
442 	if (dev->n_erased_blocks < dev->param.n_reserved_blocks
443 	    && dev->alloc_page == 0)
444 		yaffs_trace(YAFFS_TRACE_ALLOCATE, "Allocating reserve");
445 
446 	/* Next page please.... */
447 	if (dev->alloc_block >= 0) {
448 		bi = yaffs_get_block_info(dev, dev->alloc_block);
449 
450 		ret_val = (dev->alloc_block * dev->param.chunks_per_block) +
451 		    dev->alloc_page;
452 		bi->pages_in_use++;
453 		yaffs_set_chunk_bit(dev, dev->alloc_block, dev->alloc_page);
454 
455 		dev->alloc_page++;
456 
457 		dev->n_free_chunks--;
458 
459 		/* If the block is full set the state to full */
460 		if (dev->alloc_page >= dev->param.chunks_per_block) {
461 			bi->block_state = YAFFS_BLOCK_STATE_FULL;
462 			dev->alloc_block = -1;
463 		}
464 
465 		if (block_ptr)
466 			*block_ptr = bi;
467 
468 		return ret_val;
469 	}
470 
471 	yaffs_trace(YAFFS_TRACE_ERROR,
472 		"!!!!!!!!! Allocator out !!!!!!!!!!!!!!!!!");
473 
474 	return -1;
475 }
476 
477 static int yaffs_get_erased_chunks(struct yaffs_dev *dev)
478 {
479 	int n;
480 
481 	n = dev->n_erased_blocks * dev->param.chunks_per_block;
482 
483 	if (dev->alloc_block > 0)
484 		n += (dev->param.chunks_per_block - dev->alloc_page);
485 
486 	return n;
487 
488 }
489 
490 /*
491  * yaffs_skip_rest_of_block() skips over the rest of the allocation block
492  * if we don't want to write to it.
493  */
494 void yaffs_skip_rest_of_block(struct yaffs_dev *dev)
495 {
496 	struct yaffs_block_info *bi;
497 
498 	if (dev->alloc_block > 0) {
499 		bi = yaffs_get_block_info(dev, dev->alloc_block);
500 		if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING) {
501 			bi->block_state = YAFFS_BLOCK_STATE_FULL;
502 			dev->alloc_block = -1;
503 		}
504 	}
505 }
506 
507 static int yaffs_write_new_chunk(struct yaffs_dev *dev,
508 				 const u8 *data,
509 				 struct yaffs_ext_tags *tags, int use_reserver)
510 {
511 	int attempts = 0;
512 	int write_ok = 0;
513 	int chunk;
514 
515 	yaffs2_checkpt_invalidate(dev);
516 
517 	do {
518 		struct yaffs_block_info *bi = 0;
519 		int erased_ok = 0;
520 
521 		chunk = yaffs_alloc_chunk(dev, use_reserver, &bi);
522 		if (chunk < 0) {
523 			/* no space */
524 			break;
525 		}
526 
527 		/* First check this chunk is erased, if it needs
528 		 * checking.  The checking policy (unless forced
529 		 * always on) is as follows:
530 		 *
531 		 * Check the first page we try to write in a block.
532 		 * If the check passes then we don't need to check any
533 		 * more.        If the check fails, we check again...
534 		 * If the block has been erased, we don't need to check.
535 		 *
536 		 * However, if the block has been prioritised for gc,
537 		 * then we think there might be something odd about
538 		 * this block and stop using it.
539 		 *
540 		 * Rationale: We should only ever see chunks that have
541 		 * not been erased if there was a partially written
542 		 * chunk due to power loss.  This checking policy should
543 		 * catch that case with very few checks and thus save a
544 		 * lot of checks that are most likely not needed.
545 		 *
546 		 * Mods to the above
547 		 * If an erase check fails or the write fails we skip the
548 		 * rest of the block.
549 		 */
550 
551 		/* let's give it a try */
552 		attempts++;
553 
554 		if (dev->param.always_check_erased)
555 			bi->skip_erased_check = 0;
556 
557 		if (!bi->skip_erased_check) {
558 			erased_ok = yaffs_check_chunk_erased(dev, chunk);
559 			if (erased_ok != YAFFS_OK) {
560 				yaffs_trace(YAFFS_TRACE_ERROR,
561 				  "**>> yaffs chunk %d was not erased",
562 				  chunk);
563 
564 				/* If not erased, delete this one,
565 				 * skip rest of block and
566 				 * try another chunk */
567 				yaffs_chunk_del(dev, chunk, 1, __LINE__);
568 				yaffs_skip_rest_of_block(dev);
569 				continue;
570 			}
571 		}
572 
573 		write_ok = yaffs_wr_chunk_tags_nand(dev, chunk, data, tags);
574 
575 		if (!bi->skip_erased_check)
576 			write_ok =
577 			    yaffs_verify_chunk_written(dev, chunk, data, tags);
578 
579 		if (write_ok != YAFFS_OK) {
580 			/* Clean up aborted write, skip to next block and
581 			 * try another chunk */
582 			yaffs_handle_chunk_wr_error(dev, chunk, erased_ok);
583 			continue;
584 		}
585 
586 		bi->skip_erased_check = 1;
587 
588 		/* Copy the data into the robustification buffer */
589 		yaffs_handle_chunk_wr_ok(dev, chunk, data, tags);
590 
591 	} while (write_ok != YAFFS_OK &&
592 		 (yaffs_wr_attempts <= 0 || attempts <= yaffs_wr_attempts));
593 
594 	if (!write_ok)
595 		chunk = -1;
596 
597 	if (attempts > 1) {
598 		yaffs_trace(YAFFS_TRACE_ERROR,
599 			"**>> yaffs write required %d attempts",
600 			attempts);
601 		dev->n_retried_writes += (attempts - 1);
602 	}
603 
604 	return chunk;
605 }
606 
607 /*
608  * Block retiring for handling a broken block.
609  */
610 
611 static void yaffs_retire_block(struct yaffs_dev *dev, int flash_block)
612 {
613 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
614 
615 	yaffs2_checkpt_invalidate(dev);
616 
617 	yaffs2_clear_oldest_dirty_seq(dev, bi);
618 
619 	if (yaffs_mark_bad(dev, flash_block) != YAFFS_OK) {
620 		if (yaffs_erase_block(dev, flash_block) != YAFFS_OK) {
621 			yaffs_trace(YAFFS_TRACE_ALWAYS,
622 				"yaffs: Failed to mark bad and erase block %d",
623 				flash_block);
624 		} else {
625 			struct yaffs_ext_tags tags;
626 			int chunk_id =
627 			    flash_block * dev->param.chunks_per_block;
628 
629 			u8 *buffer = yaffs_get_temp_buffer(dev);
630 
631 			memset(buffer, 0xff, dev->data_bytes_per_chunk);
632 			memset(&tags, 0, sizeof(tags));
633 			tags.seq_number = YAFFS_SEQUENCE_BAD_BLOCK;
634 			if (dev->param.write_chunk_tags_fn(dev, chunk_id -
635 							   dev->chunk_offset,
636 							   buffer,
637 							   &tags) != YAFFS_OK)
638 				yaffs_trace(YAFFS_TRACE_ALWAYS,
639 					"yaffs: Failed to write bad block marker to block %d",
640 					flash_block);
641 
642 			yaffs_release_temp_buffer(dev, buffer);
643 		}
644 	}
645 
646 	bi->block_state = YAFFS_BLOCK_STATE_DEAD;
647 	bi->gc_prioritise = 0;
648 	bi->needs_retiring = 0;
649 
650 	dev->n_retired_blocks++;
651 }
652 
653 /*---------------- Name handling functions ------------*/
654 
655 static u16 yaffs_calc_name_sum(const YCHAR *name)
656 {
657 	u16 sum = 0;
658 	u16 i = 1;
659 
660 	if (!name)
661 		return 0;
662 
663 	while ((*name) && i < (YAFFS_MAX_NAME_LENGTH / 2)) {
664 
665 		/* 0x1f mask is case insensitive */
666 		sum += ((*name) & 0x1f) * i;
667 		i++;
668 		name++;
669 	}
670 	return sum;
671 }
672 
673 void yaffs_set_obj_name(struct yaffs_obj *obj, const YCHAR * name)
674 {
675 	memset(obj->short_name, 0, sizeof(obj->short_name));
676 	if (name &&
677 		yaffs_strnlen(name, YAFFS_SHORT_NAME_LENGTH + 1) <=
678 		YAFFS_SHORT_NAME_LENGTH)
679 		yaffs_strcpy(obj->short_name, name);
680 	else
681 		obj->short_name[0] = _Y('\0');
682 	obj->sum = yaffs_calc_name_sum(name);
683 }
684 
685 void yaffs_set_obj_name_from_oh(struct yaffs_obj *obj,
686 				const struct yaffs_obj_hdr *oh)
687 {
688 #ifdef CONFIG_YAFFS_AUTO_UNICODE
689 	YCHAR tmp_name[YAFFS_MAX_NAME_LENGTH + 1];
690 	memset(tmp_name, 0, sizeof(tmp_name));
691 	yaffs_load_name_from_oh(obj->my_dev, tmp_name, oh->name,
692 				YAFFS_MAX_NAME_LENGTH + 1);
693 	yaffs_set_obj_name(obj, tmp_name);
694 #else
695 	yaffs_set_obj_name(obj, oh->name);
696 #endif
697 }
698 
699 loff_t yaffs_max_file_size(struct yaffs_dev *dev)
700 {
701 	return ((loff_t) YAFFS_MAX_CHUNK_ID) * dev->data_bytes_per_chunk;
702 }
703 
704 /*-------------------- TNODES -------------------
705 
706  * List of spare tnodes
707  * The list is hooked together using the first pointer
708  * in the tnode.
709  */
710 
711 struct yaffs_tnode *yaffs_get_tnode(struct yaffs_dev *dev)
712 {
713 	struct yaffs_tnode *tn = yaffs_alloc_raw_tnode(dev);
714 
715 	if (tn) {
716 		memset(tn, 0, dev->tnode_size);
717 		dev->n_tnodes++;
718 	}
719 
720 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
721 
722 	return tn;
723 }
724 
725 /* FreeTnode frees up a tnode and puts it back on the free list */
726 static void yaffs_free_tnode(struct yaffs_dev *dev, struct yaffs_tnode *tn)
727 {
728 	yaffs_free_raw_tnode(dev, tn);
729 	dev->n_tnodes--;
730 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
731 }
732 
733 static void yaffs_deinit_tnodes_and_objs(struct yaffs_dev *dev)
734 {
735 	yaffs_deinit_raw_tnodes_and_objs(dev);
736 	dev->n_obj = 0;
737 	dev->n_tnodes = 0;
738 }
739 
740 void yaffs_load_tnode_0(struct yaffs_dev *dev, struct yaffs_tnode *tn,
741 			unsigned pos, unsigned val)
742 {
743 	u32 *map = (u32 *) tn;
744 	u32 bit_in_map;
745 	u32 bit_in_word;
746 	u32 word_in_map;
747 	u32 mask;
748 
749 	pos &= YAFFS_TNODES_LEVEL0_MASK;
750 	val >>= dev->chunk_grp_bits;
751 
752 	bit_in_map = pos * dev->tnode_width;
753 	word_in_map = bit_in_map / 32;
754 	bit_in_word = bit_in_map & (32 - 1);
755 
756 	mask = dev->tnode_mask << bit_in_word;
757 
758 	map[word_in_map] &= ~mask;
759 	map[word_in_map] |= (mask & (val << bit_in_word));
760 
761 	if (dev->tnode_width > (32 - bit_in_word)) {
762 		bit_in_word = (32 - bit_in_word);
763 		word_in_map++;
764 		mask =
765 		    dev->tnode_mask >> bit_in_word;
766 		map[word_in_map] &= ~mask;
767 		map[word_in_map] |= (mask & (val >> bit_in_word));
768 	}
769 }
770 
771 u32 yaffs_get_group_base(struct yaffs_dev *dev, struct yaffs_tnode *tn,
772 			 unsigned pos)
773 {
774 	u32 *map = (u32 *) tn;
775 	u32 bit_in_map;
776 	u32 bit_in_word;
777 	u32 word_in_map;
778 	u32 val;
779 
780 	pos &= YAFFS_TNODES_LEVEL0_MASK;
781 
782 	bit_in_map = pos * dev->tnode_width;
783 	word_in_map = bit_in_map / 32;
784 	bit_in_word = bit_in_map & (32 - 1);
785 
786 	val = map[word_in_map] >> bit_in_word;
787 
788 	if (dev->tnode_width > (32 - bit_in_word)) {
789 		bit_in_word = (32 - bit_in_word);
790 		word_in_map++;
791 		val |= (map[word_in_map] << bit_in_word);
792 	}
793 
794 	val &= dev->tnode_mask;
795 	val <<= dev->chunk_grp_bits;
796 
797 	return val;
798 }
799 
800 /* ------------------- End of individual tnode manipulation -----------------*/
801 
802 /* ---------Functions to manipulate the look-up tree (made up of tnodes) ------
803  * The look up tree is represented by the top tnode and the number of top_level
804  * in the tree. 0 means only the level 0 tnode is in the tree.
805  */
806 
807 /* FindLevel0Tnode finds the level 0 tnode, if one exists. */
808 struct yaffs_tnode *yaffs_find_tnode_0(struct yaffs_dev *dev,
809 				       struct yaffs_file_var *file_struct,
810 				       u32 chunk_id)
811 {
812 	struct yaffs_tnode *tn = file_struct->top;
813 	u32 i;
814 	int required_depth;
815 	int level = file_struct->top_level;
816 
817 	dev = dev;
818 
819 	/* Check sane level and chunk Id */
820 	if (level < 0 || level > YAFFS_TNODES_MAX_LEVEL)
821 		return NULL;
822 
823 	if (chunk_id > YAFFS_MAX_CHUNK_ID)
824 		return NULL;
825 
826 	/* First check we're tall enough (ie enough top_level) */
827 
828 	i = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
829 	required_depth = 0;
830 	while (i) {
831 		i >>= YAFFS_TNODES_INTERNAL_BITS;
832 		required_depth++;
833 	}
834 
835 	if (required_depth > file_struct->top_level)
836 		return NULL;	/* Not tall enough, so we can't find it */
837 
838 	/* Traverse down to level 0 */
839 	while (level > 0 && tn) {
840 		tn = tn->internal[(chunk_id >>
841 				   (YAFFS_TNODES_LEVEL0_BITS +
842 				    (level - 1) *
843 				    YAFFS_TNODES_INTERNAL_BITS)) &
844 				  YAFFS_TNODES_INTERNAL_MASK];
845 		level--;
846 	}
847 
848 	return tn;
849 }
850 
851 /* add_find_tnode_0 finds the level 0 tnode if it exists,
852  * otherwise first expands the tree.
853  * This happens in two steps:
854  *  1. If the tree isn't tall enough, then make it taller.
855  *  2. Scan down the tree towards the level 0 tnode adding tnodes if required.
856  *
857  * Used when modifying the tree.
858  *
859  *  If the tn argument is NULL, then a fresh tnode will be added otherwise the
860  *  specified tn will be plugged into the ttree.
861  */
862 
863 struct yaffs_tnode *yaffs_add_find_tnode_0(struct yaffs_dev *dev,
864 					   struct yaffs_file_var *file_struct,
865 					   u32 chunk_id,
866 					   struct yaffs_tnode *passed_tn)
867 {
868 	int required_depth;
869 	int i;
870 	int l;
871 	struct yaffs_tnode *tn;
872 	u32 x;
873 
874 	/* Check sane level and page Id */
875 	if (file_struct->top_level < 0 ||
876 	    file_struct->top_level > YAFFS_TNODES_MAX_LEVEL)
877 		return NULL;
878 
879 	if (chunk_id > YAFFS_MAX_CHUNK_ID)
880 		return NULL;
881 
882 	/* First check we're tall enough (ie enough top_level) */
883 
884 	x = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
885 	required_depth = 0;
886 	while (x) {
887 		x >>= YAFFS_TNODES_INTERNAL_BITS;
888 		required_depth++;
889 	}
890 
891 	if (required_depth > file_struct->top_level) {
892 		/* Not tall enough, gotta make the tree taller */
893 		for (i = file_struct->top_level; i < required_depth; i++) {
894 
895 			tn = yaffs_get_tnode(dev);
896 
897 			if (tn) {
898 				tn->internal[0] = file_struct->top;
899 				file_struct->top = tn;
900 				file_struct->top_level++;
901 			} else {
902 				yaffs_trace(YAFFS_TRACE_ERROR,
903 					"yaffs: no more tnodes");
904 				return NULL;
905 			}
906 		}
907 	}
908 
909 	/* Traverse down to level 0, adding anything we need */
910 
911 	l = file_struct->top_level;
912 	tn = file_struct->top;
913 
914 	if (l > 0) {
915 		while (l > 0 && tn) {
916 			x = (chunk_id >>
917 			     (YAFFS_TNODES_LEVEL0_BITS +
918 			      (l - 1) * YAFFS_TNODES_INTERNAL_BITS)) &
919 			    YAFFS_TNODES_INTERNAL_MASK;
920 
921 			if ((l > 1) && !tn->internal[x]) {
922 				/* Add missing non-level-zero tnode */
923 				tn->internal[x] = yaffs_get_tnode(dev);
924 				if (!tn->internal[x])
925 					return NULL;
926 			} else if (l == 1) {
927 				/* Looking from level 1 at level 0 */
928 				if (passed_tn) {
929 					/* If we already have one, release it */
930 					if (tn->internal[x])
931 						yaffs_free_tnode(dev,
932 							tn->internal[x]);
933 					tn->internal[x] = passed_tn;
934 
935 				} else if (!tn->internal[x]) {
936 					/* Don't have one, none passed in */
937 					tn->internal[x] = yaffs_get_tnode(dev);
938 					if (!tn->internal[x])
939 						return NULL;
940 				}
941 			}
942 
943 			tn = tn->internal[x];
944 			l--;
945 		}
946 	} else {
947 		/* top is level 0 */
948 		if (passed_tn) {
949 			memcpy(tn, passed_tn,
950 			       (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8);
951 			yaffs_free_tnode(dev, passed_tn);
952 		}
953 	}
954 
955 	return tn;
956 }
957 
958 static int yaffs_tags_match(const struct yaffs_ext_tags *tags, int obj_id,
959 			    int chunk_obj)
960 {
961 	return (tags->chunk_id == chunk_obj &&
962 		tags->obj_id == obj_id &&
963 		!tags->is_deleted) ? 1 : 0;
964 
965 }
966 
967 static int yaffs_find_chunk_in_group(struct yaffs_dev *dev, int the_chunk,
968 					struct yaffs_ext_tags *tags, int obj_id,
969 					int inode_chunk)
970 {
971 	int j;
972 
973 	for (j = 0; the_chunk && j < dev->chunk_grp_size; j++) {
974 		if (yaffs_check_chunk_bit
975 		    (dev, the_chunk / dev->param.chunks_per_block,
976 		     the_chunk % dev->param.chunks_per_block)) {
977 
978 			if (dev->chunk_grp_size == 1)
979 				return the_chunk;
980 			else {
981 				yaffs_rd_chunk_tags_nand(dev, the_chunk, NULL,
982 							 tags);
983 				if (yaffs_tags_match(tags,
984 							obj_id, inode_chunk)) {
985 					/* found it; */
986 					return the_chunk;
987 				}
988 			}
989 		}
990 		the_chunk++;
991 	}
992 	return -1;
993 }
994 
995 static int yaffs_find_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
996 				    struct yaffs_ext_tags *tags)
997 {
998 	/*Get the Tnode, then get the level 0 offset chunk offset */
999 	struct yaffs_tnode *tn;
1000 	int the_chunk = -1;
1001 	struct yaffs_ext_tags local_tags;
1002 	int ret_val = -1;
1003 	struct yaffs_dev *dev = in->my_dev;
1004 
1005 	if (!tags) {
1006 		/* Passed a NULL, so use our own tags space */
1007 		tags = &local_tags;
1008 	}
1009 
1010 	tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
1011 
1012 	if (!tn)
1013 		return ret_val;
1014 
1015 	the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
1016 
1017 	ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
1018 					      inode_chunk);
1019 	return ret_val;
1020 }
1021 
1022 static int yaffs_find_del_file_chunk(struct yaffs_obj *in, int inode_chunk,
1023 				     struct yaffs_ext_tags *tags)
1024 {
1025 	/* Get the Tnode, then get the level 0 offset chunk offset */
1026 	struct yaffs_tnode *tn;
1027 	int the_chunk = -1;
1028 	struct yaffs_ext_tags local_tags;
1029 	struct yaffs_dev *dev = in->my_dev;
1030 	int ret_val = -1;
1031 
1032 	if (!tags) {
1033 		/* Passed a NULL, so use our own tags space */
1034 		tags = &local_tags;
1035 	}
1036 
1037 	tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
1038 
1039 	if (!tn)
1040 		return ret_val;
1041 
1042 	the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
1043 
1044 	ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
1045 					      inode_chunk);
1046 
1047 	/* Delete the entry in the filestructure (if found) */
1048 	if (ret_val != -1)
1049 		yaffs_load_tnode_0(dev, tn, inode_chunk, 0);
1050 
1051 	return ret_val;
1052 }
1053 
1054 int yaffs_put_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
1055 			    int nand_chunk, int in_scan)
1056 {
1057 	/* NB in_scan is zero unless scanning.
1058 	 * For forward scanning, in_scan is > 0;
1059 	 * for backward scanning in_scan is < 0
1060 	 *
1061 	 * nand_chunk = 0 is a dummy insert to make sure the tnodes are there.
1062 	 */
1063 
1064 	struct yaffs_tnode *tn;
1065 	struct yaffs_dev *dev = in->my_dev;
1066 	int existing_cunk;
1067 	struct yaffs_ext_tags existing_tags;
1068 	struct yaffs_ext_tags new_tags;
1069 	unsigned existing_serial, new_serial;
1070 
1071 	if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) {
1072 		/* Just ignore an attempt at putting a chunk into a non-file
1073 		 * during scanning.
1074 		 * If it is not during Scanning then something went wrong!
1075 		 */
1076 		if (!in_scan) {
1077 			yaffs_trace(YAFFS_TRACE_ERROR,
1078 				"yaffs tragedy:attempt to put data chunk into a non-file"
1079 				);
1080 			BUG();
1081 		}
1082 
1083 		yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
1084 		return YAFFS_OK;
1085 	}
1086 
1087 	tn = yaffs_add_find_tnode_0(dev,
1088 				    &in->variant.file_variant,
1089 				    inode_chunk, NULL);
1090 	if (!tn)
1091 		return YAFFS_FAIL;
1092 
1093 	if (!nand_chunk)
1094 		/* Dummy insert, bail now */
1095 		return YAFFS_OK;
1096 
1097 	existing_cunk = yaffs_get_group_base(dev, tn, inode_chunk);
1098 
1099 	if (in_scan != 0) {
1100 		/* If we're scanning then we need to test for duplicates
1101 		 * NB This does not need to be efficient since it should only
1102 		 * happen when the power fails during a write, then only one
1103 		 * chunk should ever be affected.
1104 		 *
1105 		 * Correction for YAFFS2: This could happen quite a lot and we
1106 		 * need to think about efficiency! TODO
1107 		 * Update: For backward scanning we don't need to re-read tags
1108 		 * so this is quite cheap.
1109 		 */
1110 
1111 		if (existing_cunk > 0) {
1112 			/* NB Right now existing chunk will not be real
1113 			 * chunk_id if the chunk group size > 1
1114 			 * thus we have to do a FindChunkInFile to get the
1115 			 * real chunk id.
1116 			 *
1117 			 * We have a duplicate now we need to decide which
1118 			 * one to use:
1119 			 *
1120 			 * Backwards scanning YAFFS2: The old one is what
1121 			 * we use, dump the new one.
1122 			 * YAFFS1: Get both sets of tags and compare serial
1123 			 * numbers.
1124 			 */
1125 
1126 			if (in_scan > 0) {
1127 				/* Only do this for forward scanning */
1128 				yaffs_rd_chunk_tags_nand(dev,
1129 							 nand_chunk,
1130 							 NULL, &new_tags);
1131 
1132 				/* Do a proper find */
1133 				existing_cunk =
1134 				    yaffs_find_chunk_in_file(in, inode_chunk,
1135 							     &existing_tags);
1136 			}
1137 
1138 			if (existing_cunk <= 0) {
1139 				/*Hoosterman - how did this happen? */
1140 
1141 				yaffs_trace(YAFFS_TRACE_ERROR,
1142 					"yaffs tragedy: existing chunk < 0 in scan"
1143 					);
1144 
1145 			}
1146 
1147 			/* NB The deleted flags should be false, otherwise
1148 			 * the chunks will not be loaded during a scan
1149 			 */
1150 
1151 			if (in_scan > 0) {
1152 				new_serial = new_tags.serial_number;
1153 				existing_serial = existing_tags.serial_number;
1154 			}
1155 
1156 			if ((in_scan > 0) &&
1157 			    (existing_cunk <= 0 ||
1158 			     ((existing_serial + 1) & 3) == new_serial)) {
1159 				/* Forward scanning.
1160 				 * Use new
1161 				 * Delete the old one and drop through to
1162 				 * update the tnode
1163 				 */
1164 				yaffs_chunk_del(dev, existing_cunk, 1,
1165 						__LINE__);
1166 			} else {
1167 				/* Backward scanning or we want to use the
1168 				 * existing one
1169 				 * Delete the new one and return early so that
1170 				 * the tnode isn't changed
1171 				 */
1172 				yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
1173 				return YAFFS_OK;
1174 			}
1175 		}
1176 
1177 	}
1178 
1179 	if (existing_cunk == 0)
1180 		in->n_data_chunks++;
1181 
1182 	yaffs_load_tnode_0(dev, tn, inode_chunk, nand_chunk);
1183 
1184 	return YAFFS_OK;
1185 }
1186 
1187 static void yaffs_soft_del_chunk(struct yaffs_dev *dev, int chunk)
1188 {
1189 	struct yaffs_block_info *the_block;
1190 	unsigned block_no;
1191 
1192 	yaffs_trace(YAFFS_TRACE_DELETION, "soft delete chunk %d", chunk);
1193 
1194 	block_no = chunk / dev->param.chunks_per_block;
1195 	the_block = yaffs_get_block_info(dev, block_no);
1196 	if (the_block) {
1197 		the_block->soft_del_pages++;
1198 		dev->n_free_chunks++;
1199 		yaffs2_update_oldest_dirty_seq(dev, block_no, the_block);
1200 	}
1201 }
1202 
1203 /* SoftDeleteWorker scans backwards through the tnode tree and soft deletes all
1204  * the chunks in the file.
1205  * All soft deleting does is increment the block's softdelete count and pulls
1206  * the chunk out of the tnode.
1207  * Thus, essentially this is the same as DeleteWorker except that the chunks
1208  * are soft deleted.
1209  */
1210 
1211 static int yaffs_soft_del_worker(struct yaffs_obj *in, struct yaffs_tnode *tn,
1212 				 u32 level, int chunk_offset)
1213 {
1214 	int i;
1215 	int the_chunk;
1216 	int all_done = 1;
1217 	struct yaffs_dev *dev = in->my_dev;
1218 
1219 	if (!tn)
1220 		return 1;
1221 
1222 	if (level > 0) {
1223 		for (i = YAFFS_NTNODES_INTERNAL - 1;
1224 			all_done && i >= 0;
1225 			i--) {
1226 			if (tn->internal[i]) {
1227 				all_done =
1228 				    yaffs_soft_del_worker(in,
1229 					tn->internal[i],
1230 					level - 1,
1231 					(chunk_offset <<
1232 					YAFFS_TNODES_INTERNAL_BITS)
1233 					+ i);
1234 				if (all_done) {
1235 					yaffs_free_tnode(dev,
1236 						tn->internal[i]);
1237 					tn->internal[i] = NULL;
1238 				} else {
1239 					/* Can this happen? */
1240 				}
1241 			}
1242 		}
1243 		return (all_done) ? 1 : 0;
1244 	}
1245 
1246 	/* level 0 */
1247 	 for (i = YAFFS_NTNODES_LEVEL0 - 1; i >= 0; i--) {
1248 		the_chunk = yaffs_get_group_base(dev, tn, i);
1249 		if (the_chunk) {
1250 			yaffs_soft_del_chunk(dev, the_chunk);
1251 			yaffs_load_tnode_0(dev, tn, i, 0);
1252 		}
1253 	}
1254 	return 1;
1255 }
1256 
1257 static void yaffs_remove_obj_from_dir(struct yaffs_obj *obj)
1258 {
1259 	struct yaffs_dev *dev = obj->my_dev;
1260 	struct yaffs_obj *parent;
1261 
1262 	yaffs_verify_obj_in_dir(obj);
1263 	parent = obj->parent;
1264 
1265 	yaffs_verify_dir(parent);
1266 
1267 	if (dev && dev->param.remove_obj_fn)
1268 		dev->param.remove_obj_fn(obj);
1269 
1270 	list_del_init(&obj->siblings);
1271 	obj->parent = NULL;
1272 
1273 	yaffs_verify_dir(parent);
1274 }
1275 
1276 void yaffs_add_obj_to_dir(struct yaffs_obj *directory, struct yaffs_obj *obj)
1277 {
1278 	if (!directory) {
1279 		yaffs_trace(YAFFS_TRACE_ALWAYS,
1280 			"tragedy: Trying to add an object to a null pointer directory"
1281 			);
1282 		BUG();
1283 		return;
1284 	}
1285 	if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
1286 		yaffs_trace(YAFFS_TRACE_ALWAYS,
1287 			"tragedy: Trying to add an object to a non-directory"
1288 			);
1289 		BUG();
1290 	}
1291 
1292 	if (obj->siblings.prev == NULL) {
1293 		/* Not initialised */
1294 		BUG();
1295 	}
1296 
1297 	yaffs_verify_dir(directory);
1298 
1299 	yaffs_remove_obj_from_dir(obj);
1300 
1301 	/* Now add it */
1302 	list_add(&obj->siblings, &directory->variant.dir_variant.children);
1303 	obj->parent = directory;
1304 
1305 	if (directory == obj->my_dev->unlinked_dir
1306 	    || directory == obj->my_dev->del_dir) {
1307 		obj->unlinked = 1;
1308 		obj->my_dev->n_unlinked_files++;
1309 		obj->rename_allowed = 0;
1310 	}
1311 
1312 	yaffs_verify_dir(directory);
1313 	yaffs_verify_obj_in_dir(obj);
1314 }
1315 
1316 static int yaffs_change_obj_name(struct yaffs_obj *obj,
1317 				 struct yaffs_obj *new_dir,
1318 				 const YCHAR *new_name, int force, int shadows)
1319 {
1320 	int unlink_op;
1321 	int del_op;
1322 	struct yaffs_obj *existing_target;
1323 
1324 	if (new_dir == NULL)
1325 		new_dir = obj->parent;	/* use the old directory */
1326 
1327 	if (new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
1328 		yaffs_trace(YAFFS_TRACE_ALWAYS,
1329 			"tragedy: yaffs_change_obj_name: new_dir is not a directory"
1330 			);
1331 		BUG();
1332 	}
1333 
1334 	unlink_op = (new_dir == obj->my_dev->unlinked_dir);
1335 	del_op = (new_dir == obj->my_dev->del_dir);
1336 
1337 	existing_target = yaffs_find_by_name(new_dir, new_name);
1338 
1339 	/* If the object is a file going into the unlinked directory,
1340 	 *   then it is OK to just stuff it in since duplicate names are OK.
1341 	 *   else only proceed if the new name does not exist and we're putting
1342 	 *   it into a directory.
1343 	 */
1344 	if (!(unlink_op || del_op || force ||
1345 	      shadows > 0 || !existing_target) ||
1346 	      new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
1347 		return YAFFS_FAIL;
1348 
1349 	yaffs_set_obj_name(obj, new_name);
1350 	obj->dirty = 1;
1351 	yaffs_add_obj_to_dir(new_dir, obj);
1352 
1353 	if (unlink_op)
1354 		obj->unlinked = 1;
1355 
1356 	/* If it is a deletion then we mark it as a shrink for gc  */
1357 	if (yaffs_update_oh(obj, new_name, 0, del_op, shadows, NULL) >= 0)
1358 		return YAFFS_OK;
1359 
1360 	return YAFFS_FAIL;
1361 }
1362 
1363 /*------------------------ Short Operations Cache ------------------------------
1364  *   In many situations where there is no high level buffering  a lot of
1365  *   reads might be short sequential reads, and a lot of writes may be short
1366  *   sequential writes. eg. scanning/writing a jpeg file.
1367  *   In these cases, a short read/write cache can provide a huge perfomance
1368  *   benefit with dumb-as-a-rock code.
1369  *   In Linux, the page cache provides read buffering and the short op cache
1370  *   provides write buffering.
1371  *
1372  *   There are a small number (~10) of cache chunks per device so that we don't
1373  *   need a very intelligent search.
1374  */
1375 
1376 static int yaffs_obj_cache_dirty(struct yaffs_obj *obj)
1377 {
1378 	struct yaffs_dev *dev = obj->my_dev;
1379 	int i;
1380 	struct yaffs_cache *cache;
1381 	int n_caches = obj->my_dev->param.n_caches;
1382 
1383 	for (i = 0; i < n_caches; i++) {
1384 		cache = &dev->cache[i];
1385 		if (cache->object == obj && cache->dirty)
1386 			return 1;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static void yaffs_flush_file_cache(struct yaffs_obj *obj)
1393 {
1394 	struct yaffs_dev *dev = obj->my_dev;
1395 	int lowest = -99;	/* Stop compiler whining. */
1396 	int i;
1397 	struct yaffs_cache *cache;
1398 	int chunk_written = 0;
1399 	int n_caches = obj->my_dev->param.n_caches;
1400 
1401 	if (n_caches < 1)
1402 		return;
1403 	do {
1404 		cache = NULL;
1405 
1406 		/* Find the lowest dirty chunk for this object */
1407 		for (i = 0; i < n_caches; i++) {
1408 			if (dev->cache[i].object == obj &&
1409 			    dev->cache[i].dirty) {
1410 				if (!cache ||
1411 				    dev->cache[i].chunk_id < lowest) {
1412 					cache = &dev->cache[i];
1413 					lowest = cache->chunk_id;
1414 				}
1415 			}
1416 		}
1417 
1418 		if (cache && !cache->locked) {
1419 			/* Write it out and free it up */
1420 			chunk_written =
1421 			    yaffs_wr_data_obj(cache->object,
1422 					      cache->chunk_id,
1423 					      cache->data,
1424 					      cache->n_bytes, 1);
1425 			cache->dirty = 0;
1426 			cache->object = NULL;
1427 		}
1428 	} while (cache && chunk_written > 0);
1429 
1430 	if (cache)
1431 		/* Hoosterman, disk full while writing cache out. */
1432 		yaffs_trace(YAFFS_TRACE_ERROR,
1433 			"yaffs tragedy: no space during cache write");
1434 }
1435 
1436 /*yaffs_flush_whole_cache(dev)
1437  *
1438  *
1439  */
1440 
1441 void yaffs_flush_whole_cache(struct yaffs_dev *dev)
1442 {
1443 	struct yaffs_obj *obj;
1444 	int n_caches = dev->param.n_caches;
1445 	int i;
1446 
1447 	/* Find a dirty object in the cache and flush it...
1448 	 * until there are no further dirty objects.
1449 	 */
1450 	do {
1451 		obj = NULL;
1452 		for (i = 0; i < n_caches && !obj; i++) {
1453 			if (dev->cache[i].object && dev->cache[i].dirty)
1454 				obj = dev->cache[i].object;
1455 		}
1456 		if (obj)
1457 			yaffs_flush_file_cache(obj);
1458 	} while (obj);
1459 
1460 }
1461 
1462 /* Grab us a cache chunk for use.
1463  * First look for an empty one.
1464  * Then look for the least recently used non-dirty one.
1465  * Then look for the least recently used dirty one...., flush and look again.
1466  */
1467 static struct yaffs_cache *yaffs_grab_chunk_worker(struct yaffs_dev *dev)
1468 {
1469 	int i;
1470 
1471 	if (dev->param.n_caches > 0) {
1472 		for (i = 0; i < dev->param.n_caches; i++) {
1473 			if (!dev->cache[i].object)
1474 				return &dev->cache[i];
1475 		}
1476 	}
1477 	return NULL;
1478 }
1479 
1480 static struct yaffs_cache *yaffs_grab_chunk_cache(struct yaffs_dev *dev)
1481 {
1482 	struct yaffs_cache *cache;
1483 	struct yaffs_obj *the_obj;
1484 	int usage;
1485 	int i;
1486 
1487 	if (dev->param.n_caches < 1)
1488 		return NULL;
1489 
1490 	/* Try find a non-dirty one... */
1491 
1492 	cache = yaffs_grab_chunk_worker(dev);
1493 
1494 	if (!cache) {
1495 		/* They were all dirty, find the LRU object and flush
1496 		 * its cache, then  find again.
1497 		 * NB what's here is not very accurate,
1498 		 * we actually flush the object with the LRU chunk.
1499 		 */
1500 
1501 		/* With locking we can't assume we can use entry zero,
1502 		 * Set the_obj to a valid pointer for Coverity. */
1503 		the_obj = dev->cache[0].object;
1504 		usage = -1;
1505 		cache = NULL;
1506 
1507 		for (i = 0; i < dev->param.n_caches; i++) {
1508 			if (dev->cache[i].object &&
1509 			    !dev->cache[i].locked &&
1510 			    (dev->cache[i].last_use < usage ||
1511 			    !cache)) {
1512 				usage = dev->cache[i].last_use;
1513 				the_obj = dev->cache[i].object;
1514 				cache = &dev->cache[i];
1515 			}
1516 		}
1517 
1518 		if (!cache || cache->dirty) {
1519 			/* Flush and try again */
1520 			yaffs_flush_file_cache(the_obj);
1521 			cache = yaffs_grab_chunk_worker(dev);
1522 		}
1523 	}
1524 	return cache;
1525 }
1526 
1527 /* Find a cached chunk */
1528 static struct yaffs_cache *yaffs_find_chunk_cache(const struct yaffs_obj *obj,
1529 						  int chunk_id)
1530 {
1531 	struct yaffs_dev *dev = obj->my_dev;
1532 	int i;
1533 
1534 	if (dev->param.n_caches < 1)
1535 		return NULL;
1536 
1537 	for (i = 0; i < dev->param.n_caches; i++) {
1538 		if (dev->cache[i].object == obj &&
1539 		    dev->cache[i].chunk_id == chunk_id) {
1540 			dev->cache_hits++;
1541 
1542 			return &dev->cache[i];
1543 		}
1544 	}
1545 	return NULL;
1546 }
1547 
1548 /* Mark the chunk for the least recently used algorithym */
1549 static void yaffs_use_cache(struct yaffs_dev *dev, struct yaffs_cache *cache,
1550 			    int is_write)
1551 {
1552 	int i;
1553 
1554 	if (dev->param.n_caches < 1)
1555 		return;
1556 
1557 	if (dev->cache_last_use < 0 ||
1558 		dev->cache_last_use > 100000000) {
1559 		/* Reset the cache usages */
1560 		for (i = 1; i < dev->param.n_caches; i++)
1561 			dev->cache[i].last_use = 0;
1562 
1563 		dev->cache_last_use = 0;
1564 	}
1565 	dev->cache_last_use++;
1566 	cache->last_use = dev->cache_last_use;
1567 
1568 	if (is_write)
1569 		cache->dirty = 1;
1570 }
1571 
1572 /* Invalidate a single cache page.
1573  * Do this when a whole page gets written,
1574  * ie the short cache for this page is no longer valid.
1575  */
1576 static void yaffs_invalidate_chunk_cache(struct yaffs_obj *object, int chunk_id)
1577 {
1578 	struct yaffs_cache *cache;
1579 
1580 	if (object->my_dev->param.n_caches > 0) {
1581 		cache = yaffs_find_chunk_cache(object, chunk_id);
1582 
1583 		if (cache)
1584 			cache->object = NULL;
1585 	}
1586 }
1587 
1588 /* Invalidate all the cache pages associated with this object
1589  * Do this whenever ther file is deleted or resized.
1590  */
1591 static void yaffs_invalidate_whole_cache(struct yaffs_obj *in)
1592 {
1593 	int i;
1594 	struct yaffs_dev *dev = in->my_dev;
1595 
1596 	if (dev->param.n_caches > 0) {
1597 		/* Invalidate it. */
1598 		for (i = 0; i < dev->param.n_caches; i++) {
1599 			if (dev->cache[i].object == in)
1600 				dev->cache[i].object = NULL;
1601 		}
1602 	}
1603 }
1604 
1605 static void yaffs_unhash_obj(struct yaffs_obj *obj)
1606 {
1607 	int bucket;
1608 	struct yaffs_dev *dev = obj->my_dev;
1609 
1610 	/* If it is still linked into the bucket list, free from the list */
1611 	if (!list_empty(&obj->hash_link)) {
1612 		list_del_init(&obj->hash_link);
1613 		bucket = yaffs_hash_fn(obj->obj_id);
1614 		dev->obj_bucket[bucket].count--;
1615 	}
1616 }
1617 
1618 /*  FreeObject frees up a Object and puts it back on the free list */
1619 static void yaffs_free_obj(struct yaffs_obj *obj)
1620 {
1621 	struct yaffs_dev *dev;
1622 
1623 	if (!obj) {
1624 		BUG();
1625 		return;
1626 	}
1627 	dev = obj->my_dev;
1628 	yaffs_trace(YAFFS_TRACE_OS, "FreeObject %p inode %p",
1629 		obj, obj->my_inode);
1630 	if (obj->parent)
1631 		BUG();
1632 	if (!list_empty(&obj->siblings))
1633 		BUG();
1634 
1635 	if (obj->my_inode) {
1636 		/* We're still hooked up to a cached inode.
1637 		 * Don't delete now, but mark for later deletion
1638 		 */
1639 		obj->defered_free = 1;
1640 		return;
1641 	}
1642 
1643 	yaffs_unhash_obj(obj);
1644 
1645 	yaffs_free_raw_obj(dev, obj);
1646 	dev->n_obj--;
1647 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
1648 }
1649 
1650 void yaffs_handle_defered_free(struct yaffs_obj *obj)
1651 {
1652 	if (obj->defered_free)
1653 		yaffs_free_obj(obj);
1654 }
1655 
1656 static int yaffs_generic_obj_del(struct yaffs_obj *in)
1657 {
1658 	/* Iinvalidate the file's data in the cache, without flushing. */
1659 	yaffs_invalidate_whole_cache(in);
1660 
1661 	if (in->my_dev->param.is_yaffs2 && in->parent != in->my_dev->del_dir) {
1662 		/* Move to unlinked directory so we have a deletion record */
1663 		yaffs_change_obj_name(in, in->my_dev->del_dir, _Y("deleted"), 0,
1664 				      0);
1665 	}
1666 
1667 	yaffs_remove_obj_from_dir(in);
1668 	yaffs_chunk_del(in->my_dev, in->hdr_chunk, 1, __LINE__);
1669 	in->hdr_chunk = 0;
1670 
1671 	yaffs_free_obj(in);
1672 	return YAFFS_OK;
1673 
1674 }
1675 
1676 static void yaffs_soft_del_file(struct yaffs_obj *obj)
1677 {
1678 	if (!obj->deleted ||
1679 	    obj->variant_type != YAFFS_OBJECT_TYPE_FILE ||
1680 	    obj->soft_del)
1681 		return;
1682 
1683 	if (obj->n_data_chunks <= 0) {
1684 		/* Empty file with no duplicate object headers,
1685 		 * just delete it immediately */
1686 		yaffs_free_tnode(obj->my_dev, obj->variant.file_variant.top);
1687 		obj->variant.file_variant.top = NULL;
1688 		yaffs_trace(YAFFS_TRACE_TRACING,
1689 			"yaffs: Deleting empty file %d",
1690 			obj->obj_id);
1691 		yaffs_generic_obj_del(obj);
1692 	} else {
1693 		yaffs_soft_del_worker(obj,
1694 				      obj->variant.file_variant.top,
1695 				      obj->variant.
1696 				      file_variant.top_level, 0);
1697 		obj->soft_del = 1;
1698 	}
1699 }
1700 
1701 /* Pruning removes any part of the file structure tree that is beyond the
1702  * bounds of the file (ie that does not point to chunks).
1703  *
1704  * A file should only get pruned when its size is reduced.
1705  *
1706  * Before pruning, the chunks must be pulled from the tree and the
1707  * level 0 tnode entries must be zeroed out.
1708  * Could also use this for file deletion, but that's probably better handled
1709  * by a special case.
1710  *
1711  * This function is recursive. For levels > 0 the function is called again on
1712  * any sub-tree. For level == 0 we just check if the sub-tree has data.
1713  * If there is no data in a subtree then it is pruned.
1714  */
1715 
1716 static struct yaffs_tnode *yaffs_prune_worker(struct yaffs_dev *dev,
1717 					      struct yaffs_tnode *tn, u32 level,
1718 					      int del0)
1719 {
1720 	int i;
1721 	int has_data;
1722 
1723 	if (!tn)
1724 		return tn;
1725 
1726 	has_data = 0;
1727 
1728 	if (level > 0) {
1729 		for (i = 0; i < YAFFS_NTNODES_INTERNAL; i++) {
1730 			if (tn->internal[i]) {
1731 				tn->internal[i] =
1732 				    yaffs_prune_worker(dev,
1733 						tn->internal[i],
1734 						level - 1,
1735 						(i == 0) ? del0 : 1);
1736 			}
1737 
1738 			if (tn->internal[i])
1739 				has_data++;
1740 		}
1741 	} else {
1742 		int tnode_size_u32 = dev->tnode_size / sizeof(u32);
1743 		u32 *map = (u32 *) tn;
1744 
1745 		for (i = 0; !has_data && i < tnode_size_u32; i++) {
1746 			if (map[i])
1747 				has_data++;
1748 		}
1749 	}
1750 
1751 	if (has_data == 0 && del0) {
1752 		/* Free and return NULL */
1753 		yaffs_free_tnode(dev, tn);
1754 		tn = NULL;
1755 	}
1756 	return tn;
1757 }
1758 
1759 static int yaffs_prune_tree(struct yaffs_dev *dev,
1760 			    struct yaffs_file_var *file_struct)
1761 {
1762 	int i;
1763 	int has_data;
1764 	int done = 0;
1765 	struct yaffs_tnode *tn;
1766 
1767 	if (file_struct->top_level < 1)
1768 		return YAFFS_OK;
1769 
1770 	file_struct->top =
1771 	   yaffs_prune_worker(dev, file_struct->top, file_struct->top_level, 0);
1772 
1773 	/* Now we have a tree with all the non-zero branches NULL but
1774 	 * the height is the same as it was.
1775 	 * Let's see if we can trim internal tnodes to shorten the tree.
1776 	 * We can do this if only the 0th element in the tnode is in use
1777 	 * (ie all the non-zero are NULL)
1778 	 */
1779 
1780 	while (file_struct->top_level && !done) {
1781 		tn = file_struct->top;
1782 
1783 		has_data = 0;
1784 		for (i = 1; i < YAFFS_NTNODES_INTERNAL; i++) {
1785 			if (tn->internal[i])
1786 				has_data++;
1787 		}
1788 
1789 		if (!has_data) {
1790 			file_struct->top = tn->internal[0];
1791 			file_struct->top_level--;
1792 			yaffs_free_tnode(dev, tn);
1793 		} else {
1794 			done = 1;
1795 		}
1796 	}
1797 
1798 	return YAFFS_OK;
1799 }
1800 
1801 /*-------------------- End of File Structure functions.-------------------*/
1802 
1803 /* alloc_empty_obj gets us a clean Object.*/
1804 static struct yaffs_obj *yaffs_alloc_empty_obj(struct yaffs_dev *dev)
1805 {
1806 	struct yaffs_obj *obj = yaffs_alloc_raw_obj(dev);
1807 
1808 	if (!obj)
1809 		return obj;
1810 
1811 	dev->n_obj++;
1812 
1813 	/* Now sweeten it up... */
1814 
1815 	memset(obj, 0, sizeof(struct yaffs_obj));
1816 	obj->being_created = 1;
1817 
1818 	obj->my_dev = dev;
1819 	obj->hdr_chunk = 0;
1820 	obj->variant_type = YAFFS_OBJECT_TYPE_UNKNOWN;
1821 	INIT_LIST_HEAD(&(obj->hard_links));
1822 	INIT_LIST_HEAD(&(obj->hash_link));
1823 	INIT_LIST_HEAD(&obj->siblings);
1824 
1825 	/* Now make the directory sane */
1826 	if (dev->root_dir) {
1827 		obj->parent = dev->root_dir;
1828 		list_add(&(obj->siblings),
1829 			 &dev->root_dir->variant.dir_variant.children);
1830 	}
1831 
1832 	/* Add it to the lost and found directory.
1833 	 * NB Can't put root or lost-n-found in lost-n-found so
1834 	 * check if lost-n-found exists first
1835 	 */
1836 	if (dev->lost_n_found)
1837 		yaffs_add_obj_to_dir(dev->lost_n_found, obj);
1838 
1839 	obj->being_created = 0;
1840 
1841 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
1842 
1843 	return obj;
1844 }
1845 
1846 static int yaffs_find_nice_bucket(struct yaffs_dev *dev)
1847 {
1848 	int i;
1849 	int l = 999;
1850 	int lowest = 999999;
1851 
1852 	/* Search for the shortest list or one that
1853 	 * isn't too long.
1854 	 */
1855 
1856 	for (i = 0; i < 10 && lowest > 4; i++) {
1857 		dev->bucket_finder++;
1858 		dev->bucket_finder %= YAFFS_NOBJECT_BUCKETS;
1859 		if (dev->obj_bucket[dev->bucket_finder].count < lowest) {
1860 			lowest = dev->obj_bucket[dev->bucket_finder].count;
1861 			l = dev->bucket_finder;
1862 		}
1863 	}
1864 
1865 	return l;
1866 }
1867 
1868 static int yaffs_new_obj_id(struct yaffs_dev *dev)
1869 {
1870 	int bucket = yaffs_find_nice_bucket(dev);
1871 	int found = 0;
1872 	struct list_head *i;
1873 	u32 n = (u32) bucket;
1874 
1875 	/* Now find an object value that has not already been taken
1876 	 * by scanning the list.
1877 	 */
1878 
1879 	while (!found) {
1880 		found = 1;
1881 		n += YAFFS_NOBJECT_BUCKETS;
1882 		if (1 || dev->obj_bucket[bucket].count > 0) {
1883 			list_for_each(i, &dev->obj_bucket[bucket].list) {
1884 				/* If there is already one in the list */
1885 				if (i && list_entry(i, struct yaffs_obj,
1886 						    hash_link)->obj_id == n) {
1887 					found = 0;
1888 				}
1889 			}
1890 		}
1891 	}
1892 	return n;
1893 }
1894 
1895 static void yaffs_hash_obj(struct yaffs_obj *in)
1896 {
1897 	int bucket = yaffs_hash_fn(in->obj_id);
1898 	struct yaffs_dev *dev = in->my_dev;
1899 
1900 	list_add(&in->hash_link, &dev->obj_bucket[bucket].list);
1901 	dev->obj_bucket[bucket].count++;
1902 }
1903 
1904 struct yaffs_obj *yaffs_find_by_number(struct yaffs_dev *dev, u32 number)
1905 {
1906 	int bucket = yaffs_hash_fn(number);
1907 	struct list_head *i;
1908 	struct yaffs_obj *in;
1909 
1910 	list_for_each(i, &dev->obj_bucket[bucket].list) {
1911 		/* Look if it is in the list */
1912 		in = list_entry(i, struct yaffs_obj, hash_link);
1913 		if (in->obj_id == number) {
1914 			/* Don't show if it is defered free */
1915 			if (in->defered_free)
1916 				return NULL;
1917 			return in;
1918 		}
1919 	}
1920 
1921 	return NULL;
1922 }
1923 
1924 struct yaffs_obj *yaffs_new_obj(struct yaffs_dev *dev, int number,
1925 				enum yaffs_obj_type type)
1926 {
1927 	struct yaffs_obj *the_obj = NULL;
1928 	struct yaffs_tnode *tn = NULL;
1929 
1930 	if (number < 0)
1931 		number = yaffs_new_obj_id(dev);
1932 
1933 	if (type == YAFFS_OBJECT_TYPE_FILE) {
1934 		tn = yaffs_get_tnode(dev);
1935 		if (!tn)
1936 			return NULL;
1937 	}
1938 
1939 	the_obj = yaffs_alloc_empty_obj(dev);
1940 	if (!the_obj) {
1941 		if (tn)
1942 			yaffs_free_tnode(dev, tn);
1943 		return NULL;
1944 	}
1945 
1946 	the_obj->fake = 0;
1947 	the_obj->rename_allowed = 1;
1948 	the_obj->unlink_allowed = 1;
1949 	the_obj->obj_id = number;
1950 	yaffs_hash_obj(the_obj);
1951 	the_obj->variant_type = type;
1952 	yaffs_load_current_time(the_obj, 1, 1);
1953 
1954 	switch (type) {
1955 	case YAFFS_OBJECT_TYPE_FILE:
1956 		the_obj->variant.file_variant.file_size = 0;
1957 		the_obj->variant.file_variant.scanned_size = 0;
1958 		the_obj->variant.file_variant.shrink_size =
1959 						yaffs_max_file_size(dev);
1960 		the_obj->variant.file_variant.top_level = 0;
1961 		the_obj->variant.file_variant.top = tn;
1962 		break;
1963 	case YAFFS_OBJECT_TYPE_DIRECTORY:
1964 		INIT_LIST_HEAD(&the_obj->variant.dir_variant.children);
1965 		INIT_LIST_HEAD(&the_obj->variant.dir_variant.dirty);
1966 		break;
1967 	case YAFFS_OBJECT_TYPE_SYMLINK:
1968 	case YAFFS_OBJECT_TYPE_HARDLINK:
1969 	case YAFFS_OBJECT_TYPE_SPECIAL:
1970 		/* No action required */
1971 		break;
1972 	case YAFFS_OBJECT_TYPE_UNKNOWN:
1973 		/* todo this should not happen */
1974 		break;
1975 	}
1976 	return the_obj;
1977 }
1978 
1979 static struct yaffs_obj *yaffs_create_fake_dir(struct yaffs_dev *dev,
1980 					       int number, u32 mode)
1981 {
1982 
1983 	struct yaffs_obj *obj =
1984 	    yaffs_new_obj(dev, number, YAFFS_OBJECT_TYPE_DIRECTORY);
1985 
1986 	if (!obj)
1987 		return NULL;
1988 
1989 	obj->fake = 1;	/* it is fake so it might not use NAND */
1990 	obj->rename_allowed = 0;
1991 	obj->unlink_allowed = 0;
1992 	obj->deleted = 0;
1993 	obj->unlinked = 0;
1994 	obj->yst_mode = mode;
1995 	obj->my_dev = dev;
1996 	obj->hdr_chunk = 0;	/* Not a valid chunk. */
1997 	return obj;
1998 
1999 }
2000 
2001 
2002 static void yaffs_init_tnodes_and_objs(struct yaffs_dev *dev)
2003 {
2004 	int i;
2005 
2006 	dev->n_obj = 0;
2007 	dev->n_tnodes = 0;
2008 	yaffs_init_raw_tnodes_and_objs(dev);
2009 
2010 	for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
2011 		INIT_LIST_HEAD(&dev->obj_bucket[i].list);
2012 		dev->obj_bucket[i].count = 0;
2013 	}
2014 }
2015 
2016 struct yaffs_obj *yaffs_find_or_create_by_number(struct yaffs_dev *dev,
2017 						 int number,
2018 						 enum yaffs_obj_type type)
2019 {
2020 	struct yaffs_obj *the_obj = NULL;
2021 
2022 	if (number > 0)
2023 		the_obj = yaffs_find_by_number(dev, number);
2024 
2025 	if (!the_obj)
2026 		the_obj = yaffs_new_obj(dev, number, type);
2027 
2028 	return the_obj;
2029 
2030 }
2031 
2032 YCHAR *yaffs_clone_str(const YCHAR *str)
2033 {
2034 	YCHAR *new_str = NULL;
2035 	int len;
2036 
2037 	if (!str)
2038 		str = _Y("");
2039 
2040 	len = yaffs_strnlen(str, YAFFS_MAX_ALIAS_LENGTH);
2041 	new_str = kmalloc((len + 1) * sizeof(YCHAR), GFP_NOFS);
2042 	if (new_str) {
2043 		yaffs_strncpy(new_str, str, len);
2044 		new_str[len] = 0;
2045 	}
2046 	return new_str;
2047 
2048 }
2049 /*
2050  *yaffs_update_parent() handles fixing a directories mtime and ctime when a new
2051  * link (ie. name) is created or deleted in the directory.
2052  *
2053  * ie.
2054  *   create dir/a : update dir's mtime/ctime
2055  *   rm dir/a:   update dir's mtime/ctime
2056  *   modify dir/a: don't update dir's mtimme/ctime
2057  *
2058  * This can be handled immediately or defered. Defering helps reduce the number
2059  * of updates when many files in a directory are changed within a brief period.
2060  *
2061  * If the directory updating is defered then yaffs_update_dirty_dirs must be
2062  * called periodically.
2063  */
2064 
2065 static void yaffs_update_parent(struct yaffs_obj *obj)
2066 {
2067 	struct yaffs_dev *dev;
2068 
2069 	if (!obj)
2070 		return;
2071 	dev = obj->my_dev;
2072 	obj->dirty = 1;
2073 	yaffs_load_current_time(obj, 0, 1);
2074 	if (dev->param.defered_dir_update) {
2075 		struct list_head *link = &obj->variant.dir_variant.dirty;
2076 
2077 		if (list_empty(link)) {
2078 			list_add(link, &dev->dirty_dirs);
2079 			yaffs_trace(YAFFS_TRACE_BACKGROUND,
2080 			  "Added object %d to dirty directories",
2081 			   obj->obj_id);
2082 		}
2083 
2084 	} else {
2085 		yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
2086 	}
2087 }
2088 
2089 void yaffs_update_dirty_dirs(struct yaffs_dev *dev)
2090 {
2091 	struct list_head *link;
2092 	struct yaffs_obj *obj;
2093 	struct yaffs_dir_var *d_s;
2094 	union yaffs_obj_var *o_v;
2095 
2096 	yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update dirty directories");
2097 
2098 	while (!list_empty(&dev->dirty_dirs)) {
2099 		link = dev->dirty_dirs.next;
2100 		list_del_init(link);
2101 
2102 		d_s = list_entry(link, struct yaffs_dir_var, dirty);
2103 		o_v = list_entry(d_s, union yaffs_obj_var, dir_variant);
2104 		obj = list_entry(o_v, struct yaffs_obj, variant);
2105 
2106 		yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update directory %d",
2107 			obj->obj_id);
2108 
2109 		if (obj->dirty)
2110 			yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
2111 	}
2112 }
2113 
2114 /*
2115  * Mknod (create) a new object.
2116  * equiv_obj only has meaning for a hard link;
2117  * alias_str only has meaning for a symlink.
2118  * rdev only has meaning for devices (a subset of special objects)
2119  */
2120 
2121 static struct yaffs_obj *yaffs_create_obj(enum yaffs_obj_type type,
2122 					  struct yaffs_obj *parent,
2123 					  const YCHAR *name,
2124 					  u32 mode,
2125 					  u32 uid,
2126 					  u32 gid,
2127 					  struct yaffs_obj *equiv_obj,
2128 					  const YCHAR *alias_str, u32 rdev)
2129 {
2130 	struct yaffs_obj *in;
2131 	YCHAR *str = NULL;
2132 	struct yaffs_dev *dev = parent->my_dev;
2133 
2134 	/* Check if the entry exists.
2135 	 * If it does then fail the call since we don't want a dup. */
2136 	if (yaffs_find_by_name(parent, name))
2137 		return NULL;
2138 
2139 	if (type == YAFFS_OBJECT_TYPE_SYMLINK) {
2140 		str = yaffs_clone_str(alias_str);
2141 		if (!str)
2142 			return NULL;
2143 	}
2144 
2145 	in = yaffs_new_obj(dev, -1, type);
2146 
2147 	if (!in) {
2148 		kfree(str);
2149 		return NULL;
2150 	}
2151 
2152 	in->hdr_chunk = 0;
2153 	in->valid = 1;
2154 	in->variant_type = type;
2155 
2156 	in->yst_mode = mode;
2157 
2158 	yaffs_attribs_init(in, gid, uid, rdev);
2159 
2160 	in->n_data_chunks = 0;
2161 
2162 	yaffs_set_obj_name(in, name);
2163 	in->dirty = 1;
2164 
2165 	yaffs_add_obj_to_dir(parent, in);
2166 
2167 	in->my_dev = parent->my_dev;
2168 
2169 	switch (type) {
2170 	case YAFFS_OBJECT_TYPE_SYMLINK:
2171 		in->variant.symlink_variant.alias = str;
2172 		break;
2173 	case YAFFS_OBJECT_TYPE_HARDLINK:
2174 		in->variant.hardlink_variant.equiv_obj = equiv_obj;
2175 		in->variant.hardlink_variant.equiv_id = equiv_obj->obj_id;
2176 		list_add(&in->hard_links, &equiv_obj->hard_links);
2177 		break;
2178 	case YAFFS_OBJECT_TYPE_FILE:
2179 	case YAFFS_OBJECT_TYPE_DIRECTORY:
2180 	case YAFFS_OBJECT_TYPE_SPECIAL:
2181 	case YAFFS_OBJECT_TYPE_UNKNOWN:
2182 		/* do nothing */
2183 		break;
2184 	}
2185 
2186 	if (yaffs_update_oh(in, name, 0, 0, 0, NULL) < 0) {
2187 		/* Could not create the object header, fail */
2188 		yaffs_del_obj(in);
2189 		in = NULL;
2190 	}
2191 
2192 	if (in)
2193 		yaffs_update_parent(parent);
2194 
2195 	return in;
2196 }
2197 
2198 struct yaffs_obj *yaffs_create_file(struct yaffs_obj *parent,
2199 				    const YCHAR *name, u32 mode, u32 uid,
2200 				    u32 gid)
2201 {
2202 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_FILE, parent, name, mode,
2203 				uid, gid, NULL, NULL, 0);
2204 }
2205 
2206 struct yaffs_obj *yaffs_create_dir(struct yaffs_obj *parent, const YCHAR *name,
2207 				   u32 mode, u32 uid, u32 gid)
2208 {
2209 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_DIRECTORY, parent, name,
2210 				mode, uid, gid, NULL, NULL, 0);
2211 }
2212 
2213 struct yaffs_obj *yaffs_create_special(struct yaffs_obj *parent,
2214 				       const YCHAR *name, u32 mode, u32 uid,
2215 				       u32 gid, u32 rdev)
2216 {
2217 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_SPECIAL, parent, name, mode,
2218 				uid, gid, NULL, NULL, rdev);
2219 }
2220 
2221 struct yaffs_obj *yaffs_create_symlink(struct yaffs_obj *parent,
2222 				       const YCHAR *name, u32 mode, u32 uid,
2223 				       u32 gid, const YCHAR *alias)
2224 {
2225 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_SYMLINK, parent, name, mode,
2226 				uid, gid, NULL, alias, 0);
2227 }
2228 
2229 /* yaffs_link_obj returns the object id of the equivalent object.*/
2230 struct yaffs_obj *yaffs_link_obj(struct yaffs_obj *parent, const YCHAR * name,
2231 				 struct yaffs_obj *equiv_obj)
2232 {
2233 	/* Get the real object in case we were fed a hard link obj */
2234 	equiv_obj = yaffs_get_equivalent_obj(equiv_obj);
2235 
2236 	if (yaffs_create_obj(YAFFS_OBJECT_TYPE_HARDLINK,
2237 			parent, name, 0, 0, 0,
2238 			equiv_obj, NULL, 0))
2239 		return equiv_obj;
2240 
2241 	return NULL;
2242 
2243 }
2244 
2245 
2246 
2247 /*---------------------- Block Management and Page Allocation -------------*/
2248 
2249 static void yaffs_deinit_blocks(struct yaffs_dev *dev)
2250 {
2251 	if (dev->block_info_alt && dev->block_info)
2252 		vfree(dev->block_info);
2253 	else
2254 		kfree(dev->block_info);
2255 
2256 	dev->block_info_alt = 0;
2257 
2258 	dev->block_info = NULL;
2259 
2260 	if (dev->chunk_bits_alt && dev->chunk_bits)
2261 		vfree(dev->chunk_bits);
2262 	else
2263 		kfree(dev->chunk_bits);
2264 	dev->chunk_bits_alt = 0;
2265 	dev->chunk_bits = NULL;
2266 }
2267 
2268 static int yaffs_init_blocks(struct yaffs_dev *dev)
2269 {
2270 	int n_blocks = dev->internal_end_block - dev->internal_start_block + 1;
2271 
2272 	dev->block_info = NULL;
2273 	dev->chunk_bits = NULL;
2274 	dev->alloc_block = -1;	/* force it to get a new one */
2275 
2276 	/* If the first allocation strategy fails, thry the alternate one */
2277 	dev->block_info =
2278 		kmalloc(n_blocks * sizeof(struct yaffs_block_info), GFP_NOFS);
2279 	if (!dev->block_info) {
2280 		dev->block_info =
2281 		    vmalloc(n_blocks * sizeof(struct yaffs_block_info));
2282 		dev->block_info_alt = 1;
2283 	} else {
2284 		dev->block_info_alt = 0;
2285 	}
2286 
2287 	if (!dev->block_info)
2288 		goto alloc_error;
2289 
2290 	/* Set up dynamic blockinfo stuff. Round up bytes. */
2291 	dev->chunk_bit_stride = (dev->param.chunks_per_block + 7) / 8;
2292 	dev->chunk_bits =
2293 		kmalloc(dev->chunk_bit_stride * n_blocks, GFP_NOFS);
2294 	if (!dev->chunk_bits) {
2295 		dev->chunk_bits =
2296 		    vmalloc(dev->chunk_bit_stride * n_blocks);
2297 		dev->chunk_bits_alt = 1;
2298 	} else {
2299 		dev->chunk_bits_alt = 0;
2300 	}
2301 	if (!dev->chunk_bits)
2302 		goto alloc_error;
2303 
2304 
2305 	memset(dev->block_info, 0, n_blocks * sizeof(struct yaffs_block_info));
2306 	memset(dev->chunk_bits, 0, dev->chunk_bit_stride * n_blocks);
2307 	return YAFFS_OK;
2308 
2309 alloc_error:
2310 	yaffs_deinit_blocks(dev);
2311 	return YAFFS_FAIL;
2312 }
2313 
2314 
2315 void yaffs_block_became_dirty(struct yaffs_dev *dev, int block_no)
2316 {
2317 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, block_no);
2318 	int erased_ok = 0;
2319 	int i;
2320 
2321 	/* If the block is still healthy erase it and mark as clean.
2322 	 * If the block has had a data failure, then retire it.
2323 	 */
2324 
2325 	yaffs_trace(YAFFS_TRACE_GC | YAFFS_TRACE_ERASE,
2326 		"yaffs_block_became_dirty block %d state %d %s",
2327 		block_no, bi->block_state,
2328 		(bi->needs_retiring) ? "needs retiring" : "");
2329 
2330 	yaffs2_clear_oldest_dirty_seq(dev, bi);
2331 
2332 	bi->block_state = YAFFS_BLOCK_STATE_DIRTY;
2333 
2334 	/* If this is the block being garbage collected then stop gc'ing */
2335 	if (block_no == dev->gc_block)
2336 		dev->gc_block = 0;
2337 
2338 	/* If this block is currently the best candidate for gc
2339 	 * then drop as a candidate */
2340 	if (block_no == dev->gc_dirtiest) {
2341 		dev->gc_dirtiest = 0;
2342 		dev->gc_pages_in_use = 0;
2343 	}
2344 
2345 	if (!bi->needs_retiring) {
2346 		yaffs2_checkpt_invalidate(dev);
2347 		erased_ok = yaffs_erase_block(dev, block_no);
2348 		if (!erased_ok) {
2349 			dev->n_erase_failures++;
2350 			yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
2351 			  "**>> Erasure failed %d", block_no);
2352 		}
2353 	}
2354 
2355 	/* Verify erasure if needed */
2356 	if (erased_ok &&
2357 	    ((yaffs_trace_mask & YAFFS_TRACE_ERASE) ||
2358 	     !yaffs_skip_verification(dev))) {
2359 		for (i = 0; i < dev->param.chunks_per_block; i++) {
2360 			if (!yaffs_check_chunk_erased(dev,
2361 				block_no * dev->param.chunks_per_block + i)) {
2362 				yaffs_trace(YAFFS_TRACE_ERROR,
2363 					">>Block %d erasure supposedly OK, but chunk %d not erased",
2364 					block_no, i);
2365 			}
2366 		}
2367 	}
2368 
2369 	if (!erased_ok) {
2370 		/* We lost a block of free space */
2371 		dev->n_free_chunks -= dev->param.chunks_per_block;
2372 		yaffs_retire_block(dev, block_no);
2373 		yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
2374 			"**>> Block %d retired", block_no);
2375 		return;
2376 	}
2377 
2378 	/* Clean it up... */
2379 	bi->block_state = YAFFS_BLOCK_STATE_EMPTY;
2380 	bi->seq_number = 0;
2381 	dev->n_erased_blocks++;
2382 	bi->pages_in_use = 0;
2383 	bi->soft_del_pages = 0;
2384 	bi->has_shrink_hdr = 0;
2385 	bi->skip_erased_check = 1;	/* Clean, so no need to check */
2386 	bi->gc_prioritise = 0;
2387 	bi->has_summary = 0;
2388 
2389 	yaffs_clear_chunk_bits(dev, block_no);
2390 
2391 	yaffs_trace(YAFFS_TRACE_ERASE, "Erased block %d", block_no);
2392 }
2393 
2394 static inline int yaffs_gc_process_chunk(struct yaffs_dev *dev,
2395 					struct yaffs_block_info *bi,
2396 					int old_chunk, u8 *buffer)
2397 {
2398 	int new_chunk;
2399 	int mark_flash = 1;
2400 	struct yaffs_ext_tags tags;
2401 	struct yaffs_obj *object;
2402 	int matching_chunk;
2403 	int ret_val = YAFFS_OK;
2404 
2405 	memset(&tags, 0, sizeof(tags));
2406 	yaffs_rd_chunk_tags_nand(dev, old_chunk,
2407 				 buffer, &tags);
2408 	object = yaffs_find_by_number(dev, tags.obj_id);
2409 
2410 	yaffs_trace(YAFFS_TRACE_GC_DETAIL,
2411 		"Collecting chunk in block %d, %d %d %d ",
2412 		dev->gc_chunk, tags.obj_id,
2413 		tags.chunk_id, tags.n_bytes);
2414 
2415 	if (object && !yaffs_skip_verification(dev)) {
2416 		if (tags.chunk_id == 0)
2417 			matching_chunk =
2418 			    object->hdr_chunk;
2419 		else if (object->soft_del)
2420 			/* Defeat the test */
2421 			matching_chunk = old_chunk;
2422 		else
2423 			matching_chunk =
2424 			    yaffs_find_chunk_in_file
2425 			    (object, tags.chunk_id,
2426 			     NULL);
2427 
2428 		if (old_chunk != matching_chunk)
2429 			yaffs_trace(YAFFS_TRACE_ERROR,
2430 				"gc: page in gc mismatch: %d %d %d %d",
2431 				old_chunk,
2432 				matching_chunk,
2433 				tags.obj_id,
2434 				tags.chunk_id);
2435 	}
2436 
2437 	if (!object) {
2438 		yaffs_trace(YAFFS_TRACE_ERROR,
2439 			"page %d in gc has no object: %d %d %d ",
2440 			old_chunk,
2441 			tags.obj_id, tags.chunk_id,
2442 			tags.n_bytes);
2443 	}
2444 
2445 	if (object &&
2446 	    object->deleted &&
2447 	    object->soft_del && tags.chunk_id != 0) {
2448 		/* Data chunk in a soft deleted file,
2449 		 * throw it away.
2450 		 * It's a soft deleted data chunk,
2451 		 * No need to copy this, just forget
2452 		 * about it and fix up the object.
2453 		 */
2454 
2455 		/* Free chunks already includes
2456 		 * softdeleted chunks, how ever this
2457 		 * chunk is going to soon be really
2458 		 * deleted which will increment free
2459 		 * chunks. We have to decrement free
2460 		 * chunks so this works out properly.
2461 		 */
2462 		dev->n_free_chunks--;
2463 		bi->soft_del_pages--;
2464 
2465 		object->n_data_chunks--;
2466 		if (object->n_data_chunks <= 0) {
2467 			/* remeber to clean up obj */
2468 			dev->gc_cleanup_list[dev->n_clean_ups] = tags.obj_id;
2469 			dev->n_clean_ups++;
2470 		}
2471 		mark_flash = 0;
2472 	} else if (object) {
2473 		/* It's either a data chunk in a live
2474 		 * file or an ObjectHeader, so we're
2475 		 * interested in it.
2476 		 * NB Need to keep the ObjectHeaders of
2477 		 * deleted files until the whole file
2478 		 * has been deleted off
2479 		 */
2480 		tags.serial_number++;
2481 		dev->n_gc_copies++;
2482 
2483 		if (tags.chunk_id == 0) {
2484 			/* It is an object Id,
2485 			 * We need to nuke the
2486 			 * shrinkheader flags since its
2487 			 * work is done.
2488 			 * Also need to clean up
2489 			 * shadowing.
2490 			 */
2491 			struct yaffs_obj_hdr *oh;
2492 			oh = (struct yaffs_obj_hdr *) buffer;
2493 
2494 			oh->is_shrink = 0;
2495 			tags.extra_is_shrink = 0;
2496 			oh->shadows_obj = 0;
2497 			oh->inband_shadowed_obj_id = 0;
2498 			tags.extra_shadows = 0;
2499 
2500 			/* Update file size */
2501 			if (object->variant_type == YAFFS_OBJECT_TYPE_FILE) {
2502 				yaffs_oh_size_load(oh,
2503 				    object->variant.file_variant.file_size);
2504 				tags.extra_file_size =
2505 				    object->variant.file_variant.file_size;
2506 			}
2507 
2508 			yaffs_verify_oh(object, oh, &tags, 1);
2509 			new_chunk =
2510 			    yaffs_write_new_chunk(dev, (u8 *) oh, &tags, 1);
2511 		} else {
2512 			new_chunk =
2513 			    yaffs_write_new_chunk(dev, buffer, &tags, 1);
2514 		}
2515 
2516 		if (new_chunk < 0) {
2517 			ret_val = YAFFS_FAIL;
2518 		} else {
2519 
2520 			/* Now fix up the Tnodes etc. */
2521 
2522 			if (tags.chunk_id == 0) {
2523 				/* It's a header */
2524 				object->hdr_chunk = new_chunk;
2525 				object->serial = tags.serial_number;
2526 			} else {
2527 				/* It's a data chunk */
2528 				yaffs_put_chunk_in_file(object, tags.chunk_id,
2529 							new_chunk, 0);
2530 			}
2531 		}
2532 	}
2533 	if (ret_val == YAFFS_OK)
2534 		yaffs_chunk_del(dev, old_chunk, mark_flash, __LINE__);
2535 	return ret_val;
2536 }
2537 
2538 static int yaffs_gc_block(struct yaffs_dev *dev, int block, int whole_block)
2539 {
2540 	int old_chunk;
2541 	int ret_val = YAFFS_OK;
2542 	int i;
2543 	int is_checkpt_block;
2544 	int max_copies;
2545 	int chunks_before = yaffs_get_erased_chunks(dev);
2546 	int chunks_after;
2547 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, block);
2548 
2549 	is_checkpt_block = (bi->block_state == YAFFS_BLOCK_STATE_CHECKPOINT);
2550 
2551 	yaffs_trace(YAFFS_TRACE_TRACING,
2552 		"Collecting block %d, in use %d, shrink %d, whole_block %d",
2553 		block, bi->pages_in_use, bi->has_shrink_hdr,
2554 		whole_block);
2555 
2556 	/*yaffs_verify_free_chunks(dev); */
2557 
2558 	if (bi->block_state == YAFFS_BLOCK_STATE_FULL)
2559 		bi->block_state = YAFFS_BLOCK_STATE_COLLECTING;
2560 
2561 	bi->has_shrink_hdr = 0;	/* clear the flag so that the block can erase */
2562 
2563 	dev->gc_disable = 1;
2564 
2565 	yaffs_summary_gc(dev, block);
2566 
2567 	if (is_checkpt_block || !yaffs_still_some_chunks(dev, block)) {
2568 		yaffs_trace(YAFFS_TRACE_TRACING,
2569 			"Collecting block %d that has no chunks in use",
2570 			block);
2571 		yaffs_block_became_dirty(dev, block);
2572 	} else {
2573 
2574 		u8 *buffer = yaffs_get_temp_buffer(dev);
2575 
2576 		yaffs_verify_blk(dev, bi, block);
2577 
2578 		max_copies = (whole_block) ? dev->param.chunks_per_block : 5;
2579 		old_chunk = block * dev->param.chunks_per_block + dev->gc_chunk;
2580 
2581 		for (/* init already done */ ;
2582 		     ret_val == YAFFS_OK &&
2583 		     dev->gc_chunk < dev->param.chunks_per_block &&
2584 		     (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) &&
2585 		     max_copies > 0;
2586 		     dev->gc_chunk++, old_chunk++) {
2587 			if (yaffs_check_chunk_bit(dev, block, dev->gc_chunk)) {
2588 				/* Page is in use and might need to be copied */
2589 				max_copies--;
2590 				ret_val = yaffs_gc_process_chunk(dev, bi,
2591 							old_chunk, buffer);
2592 			}
2593 		}
2594 		yaffs_release_temp_buffer(dev, buffer);
2595 	}
2596 
2597 	yaffs_verify_collected_blk(dev, bi, block);
2598 
2599 	if (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
2600 		/*
2601 		 * The gc did not complete. Set block state back to FULL
2602 		 * because checkpointing does not restore gc.
2603 		 */
2604 		bi->block_state = YAFFS_BLOCK_STATE_FULL;
2605 	} else {
2606 		/* The gc completed. */
2607 		/* Do any required cleanups */
2608 		for (i = 0; i < dev->n_clean_ups; i++) {
2609 			/* Time to delete the file too */
2610 			struct yaffs_obj *object =
2611 			    yaffs_find_by_number(dev, dev->gc_cleanup_list[i]);
2612 			if (object) {
2613 				yaffs_free_tnode(dev,
2614 					  object->variant.file_variant.top);
2615 				object->variant.file_variant.top = NULL;
2616 				yaffs_trace(YAFFS_TRACE_GC,
2617 					"yaffs: About to finally delete object %d",
2618 					object->obj_id);
2619 				yaffs_generic_obj_del(object);
2620 				object->my_dev->n_deleted_files--;
2621 			}
2622 
2623 		}
2624 		chunks_after = yaffs_get_erased_chunks(dev);
2625 		if (chunks_before >= chunks_after)
2626 			yaffs_trace(YAFFS_TRACE_GC,
2627 				"gc did not increase free chunks before %d after %d",
2628 				chunks_before, chunks_after);
2629 		dev->gc_block = 0;
2630 		dev->gc_chunk = 0;
2631 		dev->n_clean_ups = 0;
2632 	}
2633 
2634 	dev->gc_disable = 0;
2635 
2636 	return ret_val;
2637 }
2638 
2639 /*
2640  * find_gc_block() selects the dirtiest block (or close enough)
2641  * for garbage collection.
2642  */
2643 
2644 static unsigned yaffs_find_gc_block(struct yaffs_dev *dev,
2645 				    int aggressive, int background)
2646 {
2647 	int i;
2648 	int iterations;
2649 	unsigned selected = 0;
2650 	int prioritised = 0;
2651 	int prioritised_exist = 0;
2652 	struct yaffs_block_info *bi;
2653 	int threshold;
2654 
2655 	/* First let's see if we need to grab a prioritised block */
2656 	if (dev->has_pending_prioritised_gc && !aggressive) {
2657 		dev->gc_dirtiest = 0;
2658 		bi = dev->block_info;
2659 		for (i = dev->internal_start_block;
2660 		     i <= dev->internal_end_block && !selected; i++) {
2661 
2662 			if (bi->gc_prioritise) {
2663 				prioritised_exist = 1;
2664 				if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
2665 				    yaffs_block_ok_for_gc(dev, bi)) {
2666 					selected = i;
2667 					prioritised = 1;
2668 				}
2669 			}
2670 			bi++;
2671 		}
2672 
2673 		/*
2674 		 * If there is a prioritised block and none was selected then
2675 		 * this happened because there is at least one old dirty block
2676 		 * gumming up the works. Let's gc the oldest dirty block.
2677 		 */
2678 
2679 		if (prioritised_exist &&
2680 		    !selected && dev->oldest_dirty_block > 0)
2681 			selected = dev->oldest_dirty_block;
2682 
2683 		if (!prioritised_exist)	/* None found, so we can clear this */
2684 			dev->has_pending_prioritised_gc = 0;
2685 	}
2686 
2687 	/* If we're doing aggressive GC then we are happy to take a less-dirty
2688 	 * block, and search harder.
2689 	 * else (leasurely gc), then we only bother to do this if the
2690 	 * block has only a few pages in use.
2691 	 */
2692 
2693 	if (!selected) {
2694 		int pages_used;
2695 		int n_blocks =
2696 		    dev->internal_end_block - dev->internal_start_block + 1;
2697 		if (aggressive) {
2698 			threshold = dev->param.chunks_per_block;
2699 			iterations = n_blocks;
2700 		} else {
2701 			int max_threshold;
2702 
2703 			if (background)
2704 				max_threshold = dev->param.chunks_per_block / 2;
2705 			else
2706 				max_threshold = dev->param.chunks_per_block / 8;
2707 
2708 			if (max_threshold < YAFFS_GC_PASSIVE_THRESHOLD)
2709 				max_threshold = YAFFS_GC_PASSIVE_THRESHOLD;
2710 
2711 			threshold = background ? (dev->gc_not_done + 2) * 2 : 0;
2712 			if (threshold < YAFFS_GC_PASSIVE_THRESHOLD)
2713 				threshold = YAFFS_GC_PASSIVE_THRESHOLD;
2714 			if (threshold > max_threshold)
2715 				threshold = max_threshold;
2716 
2717 			iterations = n_blocks / 16 + 1;
2718 			if (iterations > 100)
2719 				iterations = 100;
2720 		}
2721 
2722 		for (i = 0;
2723 		     i < iterations &&
2724 		     (dev->gc_dirtiest < 1 ||
2725 		      dev->gc_pages_in_use > YAFFS_GC_GOOD_ENOUGH);
2726 		     i++) {
2727 			dev->gc_block_finder++;
2728 			if (dev->gc_block_finder < dev->internal_start_block ||
2729 			    dev->gc_block_finder > dev->internal_end_block)
2730 				dev->gc_block_finder =
2731 				    dev->internal_start_block;
2732 
2733 			bi = yaffs_get_block_info(dev, dev->gc_block_finder);
2734 
2735 			pages_used = bi->pages_in_use - bi->soft_del_pages;
2736 
2737 			if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
2738 			    pages_used < dev->param.chunks_per_block &&
2739 			    (dev->gc_dirtiest < 1 ||
2740 			     pages_used < dev->gc_pages_in_use) &&
2741 			    yaffs_block_ok_for_gc(dev, bi)) {
2742 				dev->gc_dirtiest = dev->gc_block_finder;
2743 				dev->gc_pages_in_use = pages_used;
2744 			}
2745 		}
2746 
2747 		if (dev->gc_dirtiest > 0 && dev->gc_pages_in_use <= threshold)
2748 			selected = dev->gc_dirtiest;
2749 	}
2750 
2751 	/*
2752 	 * If nothing has been selected for a while, try the oldest dirty
2753 	 * because that's gumming up the works.
2754 	 */
2755 
2756 	if (!selected && dev->param.is_yaffs2 &&
2757 	    dev->gc_not_done >= (background ? 10 : 20)) {
2758 		yaffs2_find_oldest_dirty_seq(dev);
2759 		if (dev->oldest_dirty_block > 0) {
2760 			selected = dev->oldest_dirty_block;
2761 			dev->gc_dirtiest = selected;
2762 			dev->oldest_dirty_gc_count++;
2763 			bi = yaffs_get_block_info(dev, selected);
2764 			dev->gc_pages_in_use =
2765 			    bi->pages_in_use - bi->soft_del_pages;
2766 		} else {
2767 			dev->gc_not_done = 0;
2768 		}
2769 	}
2770 
2771 	if (selected) {
2772 		yaffs_trace(YAFFS_TRACE_GC,
2773 			"GC Selected block %d with %d free, prioritised:%d",
2774 			selected,
2775 			dev->param.chunks_per_block - dev->gc_pages_in_use,
2776 			prioritised);
2777 
2778 		dev->n_gc_blocks++;
2779 		if (background)
2780 			dev->bg_gcs++;
2781 
2782 		dev->gc_dirtiest = 0;
2783 		dev->gc_pages_in_use = 0;
2784 		dev->gc_not_done = 0;
2785 		if (dev->refresh_skip > 0)
2786 			dev->refresh_skip--;
2787 	} else {
2788 		dev->gc_not_done++;
2789 		yaffs_trace(YAFFS_TRACE_GC,
2790 			"GC none: finder %d skip %d threshold %d dirtiest %d using %d oldest %d%s",
2791 			dev->gc_block_finder, dev->gc_not_done, threshold,
2792 			dev->gc_dirtiest, dev->gc_pages_in_use,
2793 			dev->oldest_dirty_block, background ? " bg" : "");
2794 	}
2795 
2796 	return selected;
2797 }
2798 
2799 /* New garbage collector
2800  * If we're very low on erased blocks then we do aggressive garbage collection
2801  * otherwise we do "leasurely" garbage collection.
2802  * Aggressive gc looks further (whole array) and will accept less dirty blocks.
2803  * Passive gc only inspects smaller areas and only accepts more dirty blocks.
2804  *
2805  * The idea is to help clear out space in a more spread-out manner.
2806  * Dunno if it really does anything useful.
2807  */
2808 static int yaffs_check_gc(struct yaffs_dev *dev, int background)
2809 {
2810 	int aggressive = 0;
2811 	int gc_ok = YAFFS_OK;
2812 	int max_tries = 0;
2813 	int min_erased;
2814 	int erased_chunks;
2815 	int checkpt_block_adjust;
2816 
2817 	if (dev->param.gc_control && (dev->param.gc_control(dev) & 1) == 0)
2818 		return YAFFS_OK;
2819 
2820 	if (dev->gc_disable)
2821 		/* Bail out so we don't get recursive gc */
2822 		return YAFFS_OK;
2823 
2824 	/* This loop should pass the first time.
2825 	 * Only loops here if the collection does not increase space.
2826 	 */
2827 
2828 	do {
2829 		max_tries++;
2830 
2831 		checkpt_block_adjust = yaffs_calc_checkpt_blocks_required(dev);
2832 
2833 		min_erased =
2834 		    dev->param.n_reserved_blocks + checkpt_block_adjust + 1;
2835 		erased_chunks =
2836 		    dev->n_erased_blocks * dev->param.chunks_per_block;
2837 
2838 		/* If we need a block soon then do aggressive gc. */
2839 		if (dev->n_erased_blocks < min_erased)
2840 			aggressive = 1;
2841 		else {
2842 			if (!background
2843 			    && erased_chunks > (dev->n_free_chunks / 4))
2844 				break;
2845 
2846 			if (dev->gc_skip > 20)
2847 				dev->gc_skip = 20;
2848 			if (erased_chunks < dev->n_free_chunks / 2 ||
2849 			    dev->gc_skip < 1 || background)
2850 				aggressive = 0;
2851 			else {
2852 				dev->gc_skip--;
2853 				break;
2854 			}
2855 		}
2856 
2857 		dev->gc_skip = 5;
2858 
2859 		/* If we don't already have a block being gc'd then see if we
2860 		 * should start another */
2861 
2862 		if (dev->gc_block < 1 && !aggressive) {
2863 			dev->gc_block = yaffs2_find_refresh_block(dev);
2864 			dev->gc_chunk = 0;
2865 			dev->n_clean_ups = 0;
2866 		}
2867 		if (dev->gc_block < 1) {
2868 			dev->gc_block =
2869 			    yaffs_find_gc_block(dev, aggressive, background);
2870 			dev->gc_chunk = 0;
2871 			dev->n_clean_ups = 0;
2872 		}
2873 
2874 		if (dev->gc_block > 0) {
2875 			dev->all_gcs++;
2876 			if (!aggressive)
2877 				dev->passive_gc_count++;
2878 
2879 			yaffs_trace(YAFFS_TRACE_GC,
2880 				"yaffs: GC n_erased_blocks %d aggressive %d",
2881 				dev->n_erased_blocks, aggressive);
2882 
2883 			gc_ok = yaffs_gc_block(dev, dev->gc_block, aggressive);
2884 		}
2885 
2886 		if (dev->n_erased_blocks < (dev->param.n_reserved_blocks) &&
2887 		    dev->gc_block > 0) {
2888 			yaffs_trace(YAFFS_TRACE_GC,
2889 				"yaffs: GC !!!no reclaim!!! n_erased_blocks %d after try %d block %d",
2890 				dev->n_erased_blocks, max_tries,
2891 				dev->gc_block);
2892 		}
2893 	} while ((dev->n_erased_blocks < dev->param.n_reserved_blocks) &&
2894 		 (dev->gc_block > 0) && (max_tries < 2));
2895 
2896 	return aggressive ? gc_ok : YAFFS_OK;
2897 }
2898 
2899 /*
2900  * yaffs_bg_gc()
2901  * Garbage collects. Intended to be called from a background thread.
2902  * Returns non-zero if at least half the free chunks are erased.
2903  */
2904 int yaffs_bg_gc(struct yaffs_dev *dev, unsigned urgency)
2905 {
2906 	int erased_chunks = dev->n_erased_blocks * dev->param.chunks_per_block;
2907 
2908 	yaffs_trace(YAFFS_TRACE_BACKGROUND, "Background gc %u", urgency);
2909 
2910 	yaffs_check_gc(dev, 1);
2911 	return erased_chunks > dev->n_free_chunks / 2;
2912 }
2913 
2914 /*-------------------- Data file manipulation -----------------*/
2915 
2916 static int yaffs_rd_data_obj(struct yaffs_obj *in, int inode_chunk, u8 * buffer)
2917 {
2918 	int nand_chunk = yaffs_find_chunk_in_file(in, inode_chunk, NULL);
2919 
2920 	if (nand_chunk >= 0)
2921 		return yaffs_rd_chunk_tags_nand(in->my_dev, nand_chunk,
2922 						buffer, NULL);
2923 	else {
2924 		yaffs_trace(YAFFS_TRACE_NANDACCESS,
2925 			"Chunk %d not found zero instead",
2926 			nand_chunk);
2927 		/* get sane (zero) data if you read a hole */
2928 		memset(buffer, 0, in->my_dev->data_bytes_per_chunk);
2929 		return 0;
2930 	}
2931 
2932 }
2933 
2934 void yaffs_chunk_del(struct yaffs_dev *dev, int chunk_id, int mark_flash,
2935 		     int lyn)
2936 {
2937 	int block;
2938 	int page;
2939 	struct yaffs_ext_tags tags;
2940 	struct yaffs_block_info *bi;
2941 
2942 	if (chunk_id <= 0)
2943 		return;
2944 
2945 	dev->n_deletions++;
2946 	block = chunk_id / dev->param.chunks_per_block;
2947 	page = chunk_id % dev->param.chunks_per_block;
2948 
2949 	if (!yaffs_check_chunk_bit(dev, block, page))
2950 		yaffs_trace(YAFFS_TRACE_VERIFY,
2951 			"Deleting invalid chunk %d", chunk_id);
2952 
2953 	bi = yaffs_get_block_info(dev, block);
2954 
2955 	yaffs2_update_oldest_dirty_seq(dev, block, bi);
2956 
2957 	yaffs_trace(YAFFS_TRACE_DELETION,
2958 		"line %d delete of chunk %d",
2959 		lyn, chunk_id);
2960 
2961 	if (!dev->param.is_yaffs2 && mark_flash &&
2962 	    bi->block_state != YAFFS_BLOCK_STATE_COLLECTING) {
2963 
2964 		memset(&tags, 0, sizeof(tags));
2965 		tags.is_deleted = 1;
2966 		yaffs_wr_chunk_tags_nand(dev, chunk_id, NULL, &tags);
2967 		yaffs_handle_chunk_update(dev, chunk_id, &tags);
2968 	} else {
2969 		dev->n_unmarked_deletions++;
2970 	}
2971 
2972 	/* Pull out of the management area.
2973 	 * If the whole block became dirty, this will kick off an erasure.
2974 	 */
2975 	if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING ||
2976 	    bi->block_state == YAFFS_BLOCK_STATE_FULL ||
2977 	    bi->block_state == YAFFS_BLOCK_STATE_NEEDS_SCAN ||
2978 	    bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
2979 		dev->n_free_chunks++;
2980 		yaffs_clear_chunk_bit(dev, block, page);
2981 		bi->pages_in_use--;
2982 
2983 		if (bi->pages_in_use == 0 &&
2984 		    !bi->has_shrink_hdr &&
2985 		    bi->block_state != YAFFS_BLOCK_STATE_ALLOCATING &&
2986 		    bi->block_state != YAFFS_BLOCK_STATE_NEEDS_SCAN) {
2987 			yaffs_block_became_dirty(dev, block);
2988 		}
2989 	}
2990 }
2991 
2992 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
2993 			     const u8 *buffer, int n_bytes, int use_reserve)
2994 {
2995 	/* Find old chunk Need to do this to get serial number
2996 	 * Write new one and patch into tree.
2997 	 * Invalidate old tags.
2998 	 */
2999 
3000 	int prev_chunk_id;
3001 	struct yaffs_ext_tags prev_tags;
3002 	int new_chunk_id;
3003 	struct yaffs_ext_tags new_tags;
3004 	struct yaffs_dev *dev = in->my_dev;
3005 
3006 	yaffs_check_gc(dev, 0);
3007 
3008 	/* Get the previous chunk at this location in the file if it exists.
3009 	 * If it does not exist then put a zero into the tree. This creates
3010 	 * the tnode now, rather than later when it is harder to clean up.
3011 	 */
3012 	prev_chunk_id = yaffs_find_chunk_in_file(in, inode_chunk, &prev_tags);
3013 	if (prev_chunk_id < 1 &&
3014 	    !yaffs_put_chunk_in_file(in, inode_chunk, 0, 0))
3015 		return 0;
3016 
3017 	/* Set up new tags */
3018 	memset(&new_tags, 0, sizeof(new_tags));
3019 
3020 	new_tags.chunk_id = inode_chunk;
3021 	new_tags.obj_id = in->obj_id;
3022 	new_tags.serial_number =
3023 	    (prev_chunk_id > 0) ? prev_tags.serial_number + 1 : 1;
3024 	new_tags.n_bytes = n_bytes;
3025 
3026 	if (n_bytes < 1 || n_bytes > dev->param.total_bytes_per_chunk) {
3027 		yaffs_trace(YAFFS_TRACE_ERROR,
3028 		  "Writing %d bytes to chunk!!!!!!!!!",
3029 		   n_bytes);
3030 		BUG();
3031 	}
3032 
3033 	new_chunk_id =
3034 	    yaffs_write_new_chunk(dev, buffer, &new_tags, use_reserve);
3035 
3036 	if (new_chunk_id > 0) {
3037 		yaffs_put_chunk_in_file(in, inode_chunk, new_chunk_id, 0);
3038 
3039 		if (prev_chunk_id > 0)
3040 			yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
3041 
3042 		yaffs_verify_file_sane(in);
3043 	}
3044 	return new_chunk_id;
3045 
3046 }
3047 
3048 
3049 
3050 static int yaffs_do_xattrib_mod(struct yaffs_obj *obj, int set,
3051 				const YCHAR *name, const void *value, int size,
3052 				int flags)
3053 {
3054 	struct yaffs_xattr_mod xmod;
3055 	int result;
3056 
3057 	xmod.set = set;
3058 	xmod.name = name;
3059 	xmod.data = value;
3060 	xmod.size = size;
3061 	xmod.flags = flags;
3062 	xmod.result = -ENOSPC;
3063 
3064 	result = yaffs_update_oh(obj, NULL, 0, 0, 0, &xmod);
3065 
3066 	if (result > 0)
3067 		return xmod.result;
3068 	else
3069 		return -ENOSPC;
3070 }
3071 
3072 static int yaffs_apply_xattrib_mod(struct yaffs_obj *obj, char *buffer,
3073 				   struct yaffs_xattr_mod *xmod)
3074 {
3075 	int retval = 0;
3076 	int x_offs = sizeof(struct yaffs_obj_hdr);
3077 	struct yaffs_dev *dev = obj->my_dev;
3078 	int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
3079 	char *x_buffer = buffer + x_offs;
3080 
3081 	if (xmod->set)
3082 		retval =
3083 		    nval_set(x_buffer, x_size, xmod->name, xmod->data,
3084 			     xmod->size, xmod->flags);
3085 	else
3086 		retval = nval_del(x_buffer, x_size, xmod->name);
3087 
3088 	obj->has_xattr = nval_hasvalues(x_buffer, x_size);
3089 	obj->xattr_known = 1;
3090 	xmod->result = retval;
3091 
3092 	return retval;
3093 }
3094 
3095 static int yaffs_do_xattrib_fetch(struct yaffs_obj *obj, const YCHAR *name,
3096 				  void *value, int size)
3097 {
3098 	char *buffer = NULL;
3099 	int result;
3100 	struct yaffs_ext_tags tags;
3101 	struct yaffs_dev *dev = obj->my_dev;
3102 	int x_offs = sizeof(struct yaffs_obj_hdr);
3103 	int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
3104 	char *x_buffer;
3105 	int retval = 0;
3106 
3107 	if (obj->hdr_chunk < 1)
3108 		return -ENODATA;
3109 
3110 	/* If we know that the object has no xattribs then don't do all the
3111 	 * reading and parsing.
3112 	 */
3113 	if (obj->xattr_known && !obj->has_xattr) {
3114 		if (name)
3115 			return -ENODATA;
3116 		else
3117 			return 0;
3118 	}
3119 
3120 	buffer = (char *)yaffs_get_temp_buffer(dev);
3121 	if (!buffer)
3122 		return -ENOMEM;
3123 
3124 	result =
3125 	    yaffs_rd_chunk_tags_nand(dev, obj->hdr_chunk, (u8 *) buffer, &tags);
3126 
3127 	if (result != YAFFS_OK)
3128 		retval = -ENOENT;
3129 	else {
3130 		x_buffer = buffer + x_offs;
3131 
3132 		if (!obj->xattr_known) {
3133 			obj->has_xattr = nval_hasvalues(x_buffer, x_size);
3134 			obj->xattr_known = 1;
3135 		}
3136 
3137 		if (name)
3138 			retval = nval_get(x_buffer, x_size, name, value, size);
3139 		else
3140 			retval = nval_list(x_buffer, x_size, value, size);
3141 	}
3142 	yaffs_release_temp_buffer(dev, (u8 *) buffer);
3143 	return retval;
3144 }
3145 
3146 int yaffs_set_xattrib(struct yaffs_obj *obj, const YCHAR * name,
3147 		      const void *value, int size, int flags)
3148 {
3149 	return yaffs_do_xattrib_mod(obj, 1, name, value, size, flags);
3150 }
3151 
3152 int yaffs_remove_xattrib(struct yaffs_obj *obj, const YCHAR * name)
3153 {
3154 	return yaffs_do_xattrib_mod(obj, 0, name, NULL, 0, 0);
3155 }
3156 
3157 int yaffs_get_xattrib(struct yaffs_obj *obj, const YCHAR * name, void *value,
3158 		      int size)
3159 {
3160 	return yaffs_do_xattrib_fetch(obj, name, value, size);
3161 }
3162 
3163 int yaffs_list_xattrib(struct yaffs_obj *obj, char *buffer, int size)
3164 {
3165 	return yaffs_do_xattrib_fetch(obj, NULL, buffer, size);
3166 }
3167 
3168 static void yaffs_check_obj_details_loaded(struct yaffs_obj *in)
3169 {
3170 	u8 *buf;
3171 	struct yaffs_obj_hdr *oh;
3172 	struct yaffs_dev *dev;
3173 	struct yaffs_ext_tags tags;
3174 
3175 	if (!in || !in->lazy_loaded || in->hdr_chunk < 1)
3176 		return;
3177 
3178 	dev = in->my_dev;
3179 	in->lazy_loaded = 0;
3180 	buf = yaffs_get_temp_buffer(dev);
3181 
3182 	yaffs_rd_chunk_tags_nand(dev, in->hdr_chunk, buf, &tags);
3183 	oh = (struct yaffs_obj_hdr *)buf;
3184 
3185 	in->yst_mode = oh->yst_mode;
3186 	yaffs_load_attribs(in, oh);
3187 	yaffs_set_obj_name_from_oh(in, oh);
3188 
3189 	if (in->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
3190 		in->variant.symlink_variant.alias =
3191 		    yaffs_clone_str(oh->alias);
3192 	}
3193 	yaffs_release_temp_buffer(dev, buf);
3194 }
3195 
3196 static void yaffs_load_name_from_oh(struct yaffs_dev *dev, YCHAR *name,
3197 				    const YCHAR *oh_name, int buff_size)
3198 {
3199 #ifdef CONFIG_YAFFS_AUTO_UNICODE
3200 	if (dev->param.auto_unicode) {
3201 		if (*oh_name) {
3202 			/* It is an ASCII name, do an ASCII to
3203 			 * unicode conversion */
3204 			const char *ascii_oh_name = (const char *)oh_name;
3205 			int n = buff_size - 1;
3206 			while (n > 0 && *ascii_oh_name) {
3207 				*name = *ascii_oh_name;
3208 				name++;
3209 				ascii_oh_name++;
3210 				n--;
3211 			}
3212 		} else {
3213 			yaffs_strncpy(name, oh_name + 1, buff_size - 1);
3214 		}
3215 	} else {
3216 #else
3217 	dev = dev;
3218 	{
3219 #endif
3220 		yaffs_strncpy(name, oh_name, buff_size - 1);
3221 	}
3222 }
3223 
3224 static void yaffs_load_oh_from_name(struct yaffs_dev *dev, YCHAR *oh_name,
3225 				    const YCHAR *name)
3226 {
3227 #ifdef CONFIG_YAFFS_AUTO_UNICODE
3228 
3229 	int is_ascii;
3230 	YCHAR *w;
3231 
3232 	if (dev->param.auto_unicode) {
3233 
3234 		is_ascii = 1;
3235 		w = name;
3236 
3237 		/* Figure out if the name will fit in ascii character set */
3238 		while (is_ascii && *w) {
3239 			if ((*w) & 0xff00)
3240 				is_ascii = 0;
3241 			w++;
3242 		}
3243 
3244 		if (is_ascii) {
3245 			/* It is an ASCII name, so convert unicode to ascii */
3246 			char *ascii_oh_name = (char *)oh_name;
3247 			int n = YAFFS_MAX_NAME_LENGTH - 1;
3248 			while (n > 0 && *name) {
3249 				*ascii_oh_name = *name;
3250 				name++;
3251 				ascii_oh_name++;
3252 				n--;
3253 			}
3254 		} else {
3255 			/* Unicode name, so save starting at the second YCHAR */
3256 			*oh_name = 0;
3257 			yaffs_strncpy(oh_name + 1, name, YAFFS_MAX_NAME_LENGTH - 2);
3258 		}
3259 	} else {
3260 #else
3261 	dev = dev;
3262 	{
3263 #endif
3264 		yaffs_strncpy(oh_name, name, YAFFS_MAX_NAME_LENGTH - 1);
3265 	}
3266 }
3267 
3268 /* UpdateObjectHeader updates the header on NAND for an object.
3269  * If name is not NULL, then that new name is used.
3270  */
3271 int yaffs_update_oh(struct yaffs_obj *in, const YCHAR *name, int force,
3272 		    int is_shrink, int shadows, struct yaffs_xattr_mod *xmod)
3273 {
3274 
3275 	struct yaffs_block_info *bi;
3276 	struct yaffs_dev *dev = in->my_dev;
3277 	int prev_chunk_id;
3278 	int ret_val = 0;
3279 	int new_chunk_id;
3280 	struct yaffs_ext_tags new_tags;
3281 	struct yaffs_ext_tags old_tags;
3282 	const YCHAR *alias = NULL;
3283 	u8 *buffer = NULL;
3284 	YCHAR old_name[YAFFS_MAX_NAME_LENGTH + 1];
3285 	struct yaffs_obj_hdr *oh = NULL;
3286 	loff_t file_size = 0;
3287 
3288 	yaffs_strcpy(old_name, _Y("silly old name"));
3289 
3290 	if (in->fake && in != dev->root_dir && !force && !xmod)
3291 		return ret_val;
3292 
3293 	yaffs_check_gc(dev, 0);
3294 	yaffs_check_obj_details_loaded(in);
3295 
3296 	buffer = yaffs_get_temp_buffer(in->my_dev);
3297 	oh = (struct yaffs_obj_hdr *)buffer;
3298 
3299 	prev_chunk_id = in->hdr_chunk;
3300 
3301 	if (prev_chunk_id > 0) {
3302 		yaffs_rd_chunk_tags_nand(dev, prev_chunk_id,
3303 					  buffer, &old_tags);
3304 
3305 		yaffs_verify_oh(in, oh, &old_tags, 0);
3306 		memcpy(old_name, oh->name, sizeof(oh->name));
3307 		memset(buffer, 0xff, sizeof(struct yaffs_obj_hdr));
3308 	} else {
3309 		memset(buffer, 0xff, dev->data_bytes_per_chunk);
3310 	}
3311 
3312 	oh->type = in->variant_type;
3313 	oh->yst_mode = in->yst_mode;
3314 	oh->shadows_obj = oh->inband_shadowed_obj_id = shadows;
3315 
3316 	yaffs_load_attribs_oh(oh, in);
3317 
3318 	if (in->parent)
3319 		oh->parent_obj_id = in->parent->obj_id;
3320 	else
3321 		oh->parent_obj_id = 0;
3322 
3323 	if (name && *name) {
3324 		memset(oh->name, 0, sizeof(oh->name));
3325 		yaffs_load_oh_from_name(dev, oh->name, name);
3326 	} else if (prev_chunk_id > 0) {
3327 		memcpy(oh->name, old_name, sizeof(oh->name));
3328 	} else {
3329 		memset(oh->name, 0, sizeof(oh->name));
3330 	}
3331 
3332 	oh->is_shrink = is_shrink;
3333 
3334 	switch (in->variant_type) {
3335 	case YAFFS_OBJECT_TYPE_UNKNOWN:
3336 		/* Should not happen */
3337 		break;
3338 	case YAFFS_OBJECT_TYPE_FILE:
3339 		if (oh->parent_obj_id != YAFFS_OBJECTID_DELETED &&
3340 		    oh->parent_obj_id != YAFFS_OBJECTID_UNLINKED)
3341 			file_size = in->variant.file_variant.file_size;
3342 		yaffs_oh_size_load(oh, file_size);
3343 		break;
3344 	case YAFFS_OBJECT_TYPE_HARDLINK:
3345 		oh->equiv_id = in->variant.hardlink_variant.equiv_id;
3346 		break;
3347 	case YAFFS_OBJECT_TYPE_SPECIAL:
3348 		/* Do nothing */
3349 		break;
3350 	case YAFFS_OBJECT_TYPE_DIRECTORY:
3351 		/* Do nothing */
3352 		break;
3353 	case YAFFS_OBJECT_TYPE_SYMLINK:
3354 		alias = in->variant.symlink_variant.alias;
3355 		if (!alias)
3356 			alias = _Y("no alias");
3357 		yaffs_strncpy(oh->alias, alias, YAFFS_MAX_ALIAS_LENGTH);
3358 		oh->alias[YAFFS_MAX_ALIAS_LENGTH] = 0;
3359 		break;
3360 	}
3361 
3362 	/* process any xattrib modifications */
3363 	if (xmod)
3364 		yaffs_apply_xattrib_mod(in, (char *)buffer, xmod);
3365 
3366 	/* Tags */
3367 	memset(&new_tags, 0, sizeof(new_tags));
3368 	in->serial++;
3369 	new_tags.chunk_id = 0;
3370 	new_tags.obj_id = in->obj_id;
3371 	new_tags.serial_number = in->serial;
3372 
3373 	/* Add extra info for file header */
3374 	new_tags.extra_available = 1;
3375 	new_tags.extra_parent_id = oh->parent_obj_id;
3376 	new_tags.extra_file_size = file_size;
3377 	new_tags.extra_is_shrink = oh->is_shrink;
3378 	new_tags.extra_equiv_id = oh->equiv_id;
3379 	new_tags.extra_shadows = (oh->shadows_obj > 0) ? 1 : 0;
3380 	new_tags.extra_obj_type = in->variant_type;
3381 	yaffs_verify_oh(in, oh, &new_tags, 1);
3382 
3383 	/* Create new chunk in NAND */
3384 	new_chunk_id =
3385 	    yaffs_write_new_chunk(dev, buffer, &new_tags,
3386 				  (prev_chunk_id > 0) ? 1 : 0);
3387 
3388 	if (buffer)
3389 		yaffs_release_temp_buffer(dev, buffer);
3390 
3391 	if (new_chunk_id < 0)
3392 		return new_chunk_id;
3393 
3394 	in->hdr_chunk = new_chunk_id;
3395 
3396 	if (prev_chunk_id > 0)
3397 		yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
3398 
3399 	if (!yaffs_obj_cache_dirty(in))
3400 		in->dirty = 0;
3401 
3402 	/* If this was a shrink, then mark the block
3403 	 * that the chunk lives on */
3404 	if (is_shrink) {
3405 		bi = yaffs_get_block_info(in->my_dev,
3406 					  new_chunk_id /
3407 					  in->my_dev->param.chunks_per_block);
3408 		bi->has_shrink_hdr = 1;
3409 	}
3410 
3411 
3412 	return new_chunk_id;
3413 }
3414 
3415 /*--------------------- File read/write ------------------------
3416  * Read and write have very similar structures.
3417  * In general the read/write has three parts to it
3418  * An incomplete chunk to start with (if the read/write is not chunk-aligned)
3419  * Some complete chunks
3420  * An incomplete chunk to end off with
3421  *
3422  * Curve-balls: the first chunk might also be the last chunk.
3423  */
3424 
3425 int yaffs_file_rd(struct yaffs_obj *in, u8 * buffer, loff_t offset, int n_bytes)
3426 {
3427 	int chunk;
3428 	u32 start;
3429 	int n_copy;
3430 	int n = n_bytes;
3431 	int n_done = 0;
3432 	struct yaffs_cache *cache;
3433 	struct yaffs_dev *dev;
3434 
3435 	dev = in->my_dev;
3436 
3437 	while (n > 0) {
3438 		yaffs_addr_to_chunk(dev, offset, &chunk, &start);
3439 		chunk++;
3440 
3441 		/* OK now check for the curveball where the start and end are in
3442 		 * the same chunk.
3443 		 */
3444 		if ((start + n) < dev->data_bytes_per_chunk)
3445 			n_copy = n;
3446 		else
3447 			n_copy = dev->data_bytes_per_chunk - start;
3448 
3449 		cache = yaffs_find_chunk_cache(in, chunk);
3450 
3451 		/* If the chunk is already in the cache or it is less than
3452 		 * a whole chunk or we're using inband tags then use the cache
3453 		 * (if there is caching) else bypass the cache.
3454 		 */
3455 		if (cache || n_copy != dev->data_bytes_per_chunk ||
3456 		    dev->param.inband_tags) {
3457 			if (dev->param.n_caches > 0) {
3458 
3459 				/* If we can't find the data in the cache,
3460 				 * then load it up. */
3461 
3462 				if (!cache) {
3463 					cache =
3464 					    yaffs_grab_chunk_cache(in->my_dev);
3465 					cache->object = in;
3466 					cache->chunk_id = chunk;
3467 					cache->dirty = 0;
3468 					cache->locked = 0;
3469 					yaffs_rd_data_obj(in, chunk,
3470 							  cache->data);
3471 					cache->n_bytes = 0;
3472 				}
3473 
3474 				yaffs_use_cache(dev, cache, 0);
3475 
3476 				cache->locked = 1;
3477 
3478 				memcpy(buffer, &cache->data[start], n_copy);
3479 
3480 				cache->locked = 0;
3481 			} else {
3482 				/* Read into the local buffer then copy.. */
3483 
3484 				u8 *local_buffer =
3485 				    yaffs_get_temp_buffer(dev);
3486 				yaffs_rd_data_obj(in, chunk, local_buffer);
3487 
3488 				memcpy(buffer, &local_buffer[start], n_copy);
3489 
3490 				yaffs_release_temp_buffer(dev, local_buffer);
3491 			}
3492 		} else {
3493 			/* A full chunk. Read directly into the buffer. */
3494 			yaffs_rd_data_obj(in, chunk, buffer);
3495 		}
3496 		n -= n_copy;
3497 		offset += n_copy;
3498 		buffer += n_copy;
3499 		n_done += n_copy;
3500 	}
3501 	return n_done;
3502 }
3503 
3504 int yaffs_do_file_wr(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
3505 		     int n_bytes, int write_through)
3506 {
3507 
3508 	int chunk;
3509 	u32 start;
3510 	int n_copy;
3511 	int n = n_bytes;
3512 	int n_done = 0;
3513 	int n_writeback;
3514 	loff_t start_write = offset;
3515 	int chunk_written = 0;
3516 	u32 n_bytes_read;
3517 	loff_t chunk_start;
3518 	struct yaffs_dev *dev;
3519 
3520 	dev = in->my_dev;
3521 
3522 	while (n > 0 && chunk_written >= 0) {
3523 		yaffs_addr_to_chunk(dev, offset, &chunk, &start);
3524 
3525 		if (((loff_t)chunk) *
3526 		    dev->data_bytes_per_chunk + start != offset ||
3527 		    start >= dev->data_bytes_per_chunk) {
3528 			yaffs_trace(YAFFS_TRACE_ERROR,
3529 				"AddrToChunk of offset %lld gives chunk %d start %d",
3530 				offset, chunk, start);
3531 		}
3532 		chunk++;	/* File pos to chunk in file offset */
3533 
3534 		/* OK now check for the curveball where the start and end are in
3535 		 * the same chunk.
3536 		 */
3537 
3538 		if ((start + n) < dev->data_bytes_per_chunk) {
3539 			n_copy = n;
3540 
3541 			/* Now calculate how many bytes to write back....
3542 			 * If we're overwriting and not writing to then end of
3543 			 * file then we need to write back as much as was there
3544 			 * before.
3545 			 */
3546 
3547 			chunk_start = (((loff_t)(chunk - 1)) *
3548 					dev->data_bytes_per_chunk);
3549 
3550 			if (chunk_start > in->variant.file_variant.file_size)
3551 				n_bytes_read = 0;	/* Past end of file */
3552 			else
3553 				n_bytes_read =
3554 				    in->variant.file_variant.file_size -
3555 				    chunk_start;
3556 
3557 			if (n_bytes_read > dev->data_bytes_per_chunk)
3558 				n_bytes_read = dev->data_bytes_per_chunk;
3559 
3560 			n_writeback =
3561 			    (n_bytes_read >
3562 			     (start + n)) ? n_bytes_read : (start + n);
3563 
3564 			if (n_writeback < 0 ||
3565 			    n_writeback > dev->data_bytes_per_chunk)
3566 				BUG();
3567 
3568 		} else {
3569 			n_copy = dev->data_bytes_per_chunk - start;
3570 			n_writeback = dev->data_bytes_per_chunk;
3571 		}
3572 
3573 		if (n_copy != dev->data_bytes_per_chunk ||
3574 		    dev->param.inband_tags) {
3575 			/* An incomplete start or end chunk (or maybe both
3576 			 * start and end chunk), or we're using inband tags,
3577 			 * so we want to use the cache buffers.
3578 			 */
3579 			if (dev->param.n_caches > 0) {
3580 				struct yaffs_cache *cache;
3581 
3582 				/* If we can't find the data in the cache, then
3583 				 * load the cache */
3584 				cache = yaffs_find_chunk_cache(in, chunk);
3585 
3586 				if (!cache &&
3587 				    yaffs_check_alloc_available(dev, 1)) {
3588 					cache = yaffs_grab_chunk_cache(dev);
3589 					cache->object = in;
3590 					cache->chunk_id = chunk;
3591 					cache->dirty = 0;
3592 					cache->locked = 0;
3593 					yaffs_rd_data_obj(in, chunk,
3594 							  cache->data);
3595 				} else if (cache &&
3596 					   !cache->dirty &&
3597 					   !yaffs_check_alloc_available(dev,
3598 									1)) {
3599 					/* Drop the cache if it was a read cache
3600 					 * item and no space check has been made
3601 					 * for it.
3602 					 */
3603 					cache = NULL;
3604 				}
3605 
3606 				if (cache) {
3607 					yaffs_use_cache(dev, cache, 1);
3608 					cache->locked = 1;
3609 
3610 					memcpy(&cache->data[start], buffer,
3611 					       n_copy);
3612 
3613 					cache->locked = 0;
3614 					cache->n_bytes = n_writeback;
3615 
3616 					if (write_through) {
3617 						chunk_written =
3618 						    yaffs_wr_data_obj
3619 						    (cache->object,
3620 						     cache->chunk_id,
3621 						     cache->data,
3622 						     cache->n_bytes, 1);
3623 						cache->dirty = 0;
3624 					}
3625 				} else {
3626 					chunk_written = -1;	/* fail write */
3627 				}
3628 			} else {
3629 				/* An incomplete start or end chunk (or maybe
3630 				 * both start and end chunk). Read into the
3631 				 * local buffer then copy over and write back.
3632 				 */
3633 
3634 				u8 *local_buffer = yaffs_get_temp_buffer(dev);
3635 
3636 				yaffs_rd_data_obj(in, chunk, local_buffer);
3637 				memcpy(&local_buffer[start], buffer, n_copy);
3638 
3639 				chunk_written =
3640 				    yaffs_wr_data_obj(in, chunk,
3641 						      local_buffer,
3642 						      n_writeback, 0);
3643 
3644 				yaffs_release_temp_buffer(dev, local_buffer);
3645 			}
3646 		} else {
3647 			/* A full chunk. Write directly from the buffer. */
3648 
3649 			chunk_written =
3650 			    yaffs_wr_data_obj(in, chunk, buffer,
3651 					      dev->data_bytes_per_chunk, 0);
3652 
3653 			/* Since we've overwritten the cached data,
3654 			 * we better invalidate it. */
3655 			yaffs_invalidate_chunk_cache(in, chunk);
3656 		}
3657 
3658 		if (chunk_written >= 0) {
3659 			n -= n_copy;
3660 			offset += n_copy;
3661 			buffer += n_copy;
3662 			n_done += n_copy;
3663 		}
3664 	}
3665 
3666 	/* Update file object */
3667 
3668 	if ((start_write + n_done) > in->variant.file_variant.file_size)
3669 		in->variant.file_variant.file_size = (start_write + n_done);
3670 
3671 	in->dirty = 1;
3672 	return n_done;
3673 }
3674 
3675 int yaffs_wr_file(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
3676 		  int n_bytes, int write_through)
3677 {
3678 	yaffs2_handle_hole(in, offset);
3679 	return yaffs_do_file_wr(in, buffer, offset, n_bytes, write_through);
3680 }
3681 
3682 /* ---------------------- File resizing stuff ------------------ */
3683 
3684 static void yaffs_prune_chunks(struct yaffs_obj *in, loff_t new_size)
3685 {
3686 
3687 	struct yaffs_dev *dev = in->my_dev;
3688 	loff_t old_size = in->variant.file_variant.file_size;
3689 	int i;
3690 	int chunk_id;
3691 	u32 dummy;
3692 	int last_del;
3693 	int start_del;
3694 
3695 	if (old_size > 0)
3696 		yaffs_addr_to_chunk(dev, old_size - 1, &last_del, &dummy);
3697 	else
3698 		last_del = 0;
3699 
3700 	yaffs_addr_to_chunk(dev, new_size + dev->data_bytes_per_chunk - 1,
3701 				&start_del, &dummy);
3702 	last_del++;
3703 	start_del++;
3704 
3705 	/* Delete backwards so that we don't end up with holes if
3706 	 * power is lost part-way through the operation.
3707 	 */
3708 	for (i = last_del; i >= start_del; i--) {
3709 		/* NB this could be optimised somewhat,
3710 		 * eg. could retrieve the tags and write them without
3711 		 * using yaffs_chunk_del
3712 		 */
3713 
3714 		chunk_id = yaffs_find_del_file_chunk(in, i, NULL);
3715 
3716 		if (chunk_id < 1)
3717 			continue;
3718 
3719 		if (chunk_id <
3720 		    (dev->internal_start_block * dev->param.chunks_per_block) ||
3721 		    chunk_id >=
3722 		    ((dev->internal_end_block + 1) *
3723 		      dev->param.chunks_per_block)) {
3724 			yaffs_trace(YAFFS_TRACE_ALWAYS,
3725 				"Found daft chunk_id %d for %d",
3726 				chunk_id, i);
3727 		} else {
3728 			in->n_data_chunks--;
3729 			yaffs_chunk_del(dev, chunk_id, 1, __LINE__);
3730 		}
3731 	}
3732 }
3733 
3734 void yaffs_resize_file_down(struct yaffs_obj *obj, loff_t new_size)
3735 {
3736 	int new_full;
3737 	u32 new_partial;
3738 	struct yaffs_dev *dev = obj->my_dev;
3739 
3740 	yaffs_addr_to_chunk(dev, new_size, &new_full, &new_partial);
3741 
3742 	yaffs_prune_chunks(obj, new_size);
3743 
3744 	if (new_partial != 0) {
3745 		int last_chunk = 1 + new_full;
3746 		u8 *local_buffer = yaffs_get_temp_buffer(dev);
3747 
3748 		/* Rewrite the last chunk with its new size and zero pad */
3749 		yaffs_rd_data_obj(obj, last_chunk, local_buffer);
3750 		memset(local_buffer + new_partial, 0,
3751 		       dev->data_bytes_per_chunk - new_partial);
3752 
3753 		yaffs_wr_data_obj(obj, last_chunk, local_buffer,
3754 				  new_partial, 1);
3755 
3756 		yaffs_release_temp_buffer(dev, local_buffer);
3757 	}
3758 
3759 	obj->variant.file_variant.file_size = new_size;
3760 
3761 	yaffs_prune_tree(dev, &obj->variant.file_variant);
3762 }
3763 
3764 int yaffs_resize_file(struct yaffs_obj *in, loff_t new_size)
3765 {
3766 	struct yaffs_dev *dev = in->my_dev;
3767 	loff_t old_size = in->variant.file_variant.file_size;
3768 
3769 	yaffs_flush_file_cache(in);
3770 	yaffs_invalidate_whole_cache(in);
3771 
3772 	yaffs_check_gc(dev, 0);
3773 
3774 	if (in->variant_type != YAFFS_OBJECT_TYPE_FILE)
3775 		return YAFFS_FAIL;
3776 
3777 	if (new_size == old_size)
3778 		return YAFFS_OK;
3779 
3780 	if (new_size > old_size) {
3781 		yaffs2_handle_hole(in, new_size);
3782 		in->variant.file_variant.file_size = new_size;
3783 	} else {
3784 		/* new_size < old_size */
3785 		yaffs_resize_file_down(in, new_size);
3786 	}
3787 
3788 	/* Write a new object header to reflect the resize.
3789 	 * show we've shrunk the file, if need be
3790 	 * Do this only if the file is not in the deleted directories
3791 	 * and is not shadowed.
3792 	 */
3793 	if (in->parent &&
3794 	    !in->is_shadowed &&
3795 	    in->parent->obj_id != YAFFS_OBJECTID_UNLINKED &&
3796 	    in->parent->obj_id != YAFFS_OBJECTID_DELETED)
3797 		yaffs_update_oh(in, NULL, 0, 0, 0, NULL);
3798 
3799 	return YAFFS_OK;
3800 }
3801 
3802 int yaffs_flush_file(struct yaffs_obj *in, int update_time, int data_sync)
3803 {
3804 	if (!in->dirty)
3805 		return YAFFS_OK;
3806 
3807 	yaffs_flush_file_cache(in);
3808 
3809 	if (data_sync)
3810 		return YAFFS_OK;
3811 
3812 	if (update_time)
3813 		yaffs_load_current_time(in, 0, 0);
3814 
3815 	return (yaffs_update_oh(in, NULL, 0, 0, 0, NULL) >= 0) ?
3816 				YAFFS_OK : YAFFS_FAIL;
3817 }
3818 
3819 
3820 /* yaffs_del_file deletes the whole file data
3821  * and the inode associated with the file.
3822  * It does not delete the links associated with the file.
3823  */
3824 static int yaffs_unlink_file_if_needed(struct yaffs_obj *in)
3825 {
3826 	int ret_val;
3827 	int del_now = 0;
3828 	struct yaffs_dev *dev = in->my_dev;
3829 
3830 	if (!in->my_inode)
3831 		del_now = 1;
3832 
3833 	if (del_now) {
3834 		ret_val =
3835 		    yaffs_change_obj_name(in, in->my_dev->del_dir,
3836 					  _Y("deleted"), 0, 0);
3837 		yaffs_trace(YAFFS_TRACE_TRACING,
3838 			"yaffs: immediate deletion of file %d",
3839 			in->obj_id);
3840 		in->deleted = 1;
3841 		in->my_dev->n_deleted_files++;
3842 		if (dev->param.disable_soft_del || dev->param.is_yaffs2)
3843 			yaffs_resize_file(in, 0);
3844 		yaffs_soft_del_file(in);
3845 	} else {
3846 		ret_val =
3847 		    yaffs_change_obj_name(in, in->my_dev->unlinked_dir,
3848 					  _Y("unlinked"), 0, 0);
3849 	}
3850 	return ret_val;
3851 }
3852 
3853 int yaffs_del_file(struct yaffs_obj *in)
3854 {
3855 	int ret_val = YAFFS_OK;
3856 	int deleted;	/* Need to cache value on stack if in is freed */
3857 	struct yaffs_dev *dev = in->my_dev;
3858 
3859 	if (dev->param.disable_soft_del || dev->param.is_yaffs2)
3860 		yaffs_resize_file(in, 0);
3861 
3862 	if (in->n_data_chunks > 0) {
3863 		/* Use soft deletion if there is data in the file.
3864 		 * That won't be the case if it has been resized to zero.
3865 		 */
3866 		if (!in->unlinked)
3867 			ret_val = yaffs_unlink_file_if_needed(in);
3868 
3869 		deleted = in->deleted;
3870 
3871 		if (ret_val == YAFFS_OK && in->unlinked && !in->deleted) {
3872 			in->deleted = 1;
3873 			deleted = 1;
3874 			in->my_dev->n_deleted_files++;
3875 			yaffs_soft_del_file(in);
3876 		}
3877 		return deleted ? YAFFS_OK : YAFFS_FAIL;
3878 	} else {
3879 		/* The file has no data chunks so we toss it immediately */
3880 		yaffs_free_tnode(in->my_dev, in->variant.file_variant.top);
3881 		in->variant.file_variant.top = NULL;
3882 		yaffs_generic_obj_del(in);
3883 
3884 		return YAFFS_OK;
3885 	}
3886 }
3887 
3888 int yaffs_is_non_empty_dir(struct yaffs_obj *obj)
3889 {
3890 	return (obj &&
3891 		obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) &&
3892 		!(list_empty(&obj->variant.dir_variant.children));
3893 }
3894 
3895 static int yaffs_del_dir(struct yaffs_obj *obj)
3896 {
3897 	/* First check that the directory is empty. */
3898 	if (yaffs_is_non_empty_dir(obj))
3899 		return YAFFS_FAIL;
3900 
3901 	return yaffs_generic_obj_del(obj);
3902 }
3903 
3904 static int yaffs_del_symlink(struct yaffs_obj *in)
3905 {
3906 	kfree(in->variant.symlink_variant.alias);
3907 	in->variant.symlink_variant.alias = NULL;
3908 
3909 	return yaffs_generic_obj_del(in);
3910 }
3911 
3912 static int yaffs_del_link(struct yaffs_obj *in)
3913 {
3914 	/* remove this hardlink from the list associated with the equivalent
3915 	 * object
3916 	 */
3917 	list_del_init(&in->hard_links);
3918 	return yaffs_generic_obj_del(in);
3919 }
3920 
3921 int yaffs_del_obj(struct yaffs_obj *obj)
3922 {
3923 	int ret_val = -1;
3924 
3925 	switch (obj->variant_type) {
3926 	case YAFFS_OBJECT_TYPE_FILE:
3927 		ret_val = yaffs_del_file(obj);
3928 		break;
3929 	case YAFFS_OBJECT_TYPE_DIRECTORY:
3930 		if (!list_empty(&obj->variant.dir_variant.dirty)) {
3931 			yaffs_trace(YAFFS_TRACE_BACKGROUND,
3932 				"Remove object %d from dirty directories",
3933 				obj->obj_id);
3934 			list_del_init(&obj->variant.dir_variant.dirty);
3935 		}
3936 		return yaffs_del_dir(obj);
3937 		break;
3938 	case YAFFS_OBJECT_TYPE_SYMLINK:
3939 		ret_val = yaffs_del_symlink(obj);
3940 		break;
3941 	case YAFFS_OBJECT_TYPE_HARDLINK:
3942 		ret_val = yaffs_del_link(obj);
3943 		break;
3944 	case YAFFS_OBJECT_TYPE_SPECIAL:
3945 		ret_val = yaffs_generic_obj_del(obj);
3946 		break;
3947 	case YAFFS_OBJECT_TYPE_UNKNOWN:
3948 		ret_val = 0;
3949 		break;		/* should not happen. */
3950 	}
3951 	return ret_val;
3952 }
3953 
3954 static int yaffs_unlink_worker(struct yaffs_obj *obj)
3955 {
3956 	int del_now = 0;
3957 
3958 	if (!obj)
3959 		return YAFFS_FAIL;
3960 
3961 	if (!obj->my_inode)
3962 		del_now = 1;
3963 
3964 	yaffs_update_parent(obj->parent);
3965 
3966 	if (obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
3967 		return yaffs_del_link(obj);
3968 	} else if (!list_empty(&obj->hard_links)) {
3969 		/* Curve ball: We're unlinking an object that has a hardlink.
3970 		 *
3971 		 * This problem arises because we are not strictly following
3972 		 * The Linux link/inode model.
3973 		 *
3974 		 * We can't really delete the object.
3975 		 * Instead, we do the following:
3976 		 * - Select a hardlink.
3977 		 * - Unhook it from the hard links
3978 		 * - Move it from its parent directory so that the rename works.
3979 		 * - Rename the object to the hardlink's name.
3980 		 * - Delete the hardlink
3981 		 */
3982 
3983 		struct yaffs_obj *hl;
3984 		struct yaffs_obj *parent;
3985 		int ret_val;
3986 		YCHAR name[YAFFS_MAX_NAME_LENGTH + 1];
3987 
3988 		hl = list_entry(obj->hard_links.next, struct yaffs_obj,
3989 				hard_links);
3990 
3991 		yaffs_get_obj_name(hl, name, YAFFS_MAX_NAME_LENGTH + 1);
3992 		parent = hl->parent;
3993 
3994 		list_del_init(&hl->hard_links);
3995 
3996 		yaffs_add_obj_to_dir(obj->my_dev->unlinked_dir, hl);
3997 
3998 		ret_val = yaffs_change_obj_name(obj, parent, name, 0, 0);
3999 
4000 		if (ret_val == YAFFS_OK)
4001 			ret_val = yaffs_generic_obj_del(hl);
4002 
4003 		return ret_val;
4004 
4005 	} else if (del_now) {
4006 		switch (obj->variant_type) {
4007 		case YAFFS_OBJECT_TYPE_FILE:
4008 			return yaffs_del_file(obj);
4009 			break;
4010 		case YAFFS_OBJECT_TYPE_DIRECTORY:
4011 			list_del_init(&obj->variant.dir_variant.dirty);
4012 			return yaffs_del_dir(obj);
4013 			break;
4014 		case YAFFS_OBJECT_TYPE_SYMLINK:
4015 			return yaffs_del_symlink(obj);
4016 			break;
4017 		case YAFFS_OBJECT_TYPE_SPECIAL:
4018 			return yaffs_generic_obj_del(obj);
4019 			break;
4020 		case YAFFS_OBJECT_TYPE_HARDLINK:
4021 		case YAFFS_OBJECT_TYPE_UNKNOWN:
4022 		default:
4023 			return YAFFS_FAIL;
4024 		}
4025 	} else if (yaffs_is_non_empty_dir(obj)) {
4026 		return YAFFS_FAIL;
4027 	} else {
4028 		return yaffs_change_obj_name(obj, obj->my_dev->unlinked_dir,
4029 						_Y("unlinked"), 0, 0);
4030 	}
4031 }
4032 
4033 static int yaffs_unlink_obj(struct yaffs_obj *obj)
4034 {
4035 	if (obj && obj->unlink_allowed)
4036 		return yaffs_unlink_worker(obj);
4037 
4038 	return YAFFS_FAIL;
4039 }
4040 
4041 int yaffs_unlinker(struct yaffs_obj *dir, const YCHAR *name)
4042 {
4043 	struct yaffs_obj *obj;
4044 
4045 	obj = yaffs_find_by_name(dir, name);
4046 	return yaffs_unlink_obj(obj);
4047 }
4048 
4049 /* Note:
4050  * If old_name is NULL then we take old_dir as the object to be renamed.
4051  */
4052 int yaffs_rename_obj(struct yaffs_obj *old_dir, const YCHAR *old_name,
4053 		     struct yaffs_obj *new_dir, const YCHAR *new_name)
4054 {
4055 	struct yaffs_obj *obj = NULL;
4056 	struct yaffs_obj *existing_target = NULL;
4057 	int force = 0;
4058 	int result;
4059 	struct yaffs_dev *dev;
4060 
4061 	if (!old_dir || old_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4062 		BUG();
4063 		return YAFFS_FAIL;
4064 	}
4065 	if (!new_dir || new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4066 		BUG();
4067 		return YAFFS_FAIL;
4068 	}
4069 
4070 	dev = old_dir->my_dev;
4071 
4072 #ifdef CONFIG_YAFFS_CASE_INSENSITIVE
4073 	/* Special case for case insemsitive systems.
4074 	 * While look-up is case insensitive, the name isn't.
4075 	 * Therefore we might want to change x.txt to X.txt
4076 	 */
4077 	if (old_dir == new_dir &&
4078 		old_name && new_name &&
4079 		yaffs_strcmp(old_name, new_name) == 0)
4080 		force = 1;
4081 #endif
4082 
4083 	if (yaffs_strnlen(new_name, YAFFS_MAX_NAME_LENGTH + 1) >
4084 	    YAFFS_MAX_NAME_LENGTH)
4085 		/* ENAMETOOLONG */
4086 		return YAFFS_FAIL;
4087 
4088 	if (old_name)
4089 		obj = yaffs_find_by_name(old_dir, old_name);
4090 	else{
4091 		obj = old_dir;
4092 		old_dir = obj->parent;
4093 	}
4094 
4095 	if (obj && obj->rename_allowed) {
4096 		/* Now handle an existing target, if there is one */
4097 		existing_target = yaffs_find_by_name(new_dir, new_name);
4098 		if (yaffs_is_non_empty_dir(existing_target)) {
4099 			return YAFFS_FAIL;	/* ENOTEMPTY */
4100 		} else if (existing_target && existing_target != obj) {
4101 			/* Nuke the target first, using shadowing,
4102 			 * but only if it isn't the same object.
4103 			 *
4104 			 * Note we must disable gc here otherwise it can mess
4105 			 * up the shadowing.
4106 			 *
4107 			 */
4108 			dev->gc_disable = 1;
4109 			yaffs_change_obj_name(obj, new_dir, new_name, force,
4110 					      existing_target->obj_id);
4111 			existing_target->is_shadowed = 1;
4112 			yaffs_unlink_obj(existing_target);
4113 			dev->gc_disable = 0;
4114 		}
4115 
4116 		result = yaffs_change_obj_name(obj, new_dir, new_name, 1, 0);
4117 
4118 		yaffs_update_parent(old_dir);
4119 		if (new_dir != old_dir)
4120 			yaffs_update_parent(new_dir);
4121 
4122 		return result;
4123 	}
4124 	return YAFFS_FAIL;
4125 }
4126 
4127 /*----------------------- Initialisation Scanning ---------------------- */
4128 
4129 void yaffs_handle_shadowed_obj(struct yaffs_dev *dev, int obj_id,
4130 			       int backward_scanning)
4131 {
4132 	struct yaffs_obj *obj;
4133 
4134 	if (backward_scanning) {
4135 		/* Handle YAFFS2 case (backward scanning)
4136 		 * If the shadowed object exists then ignore.
4137 		 */
4138 		obj = yaffs_find_by_number(dev, obj_id);
4139 		if (obj)
4140 			return;
4141 	}
4142 
4143 	/* Let's create it (if it does not exist) assuming it is a file so that
4144 	 * it can do shrinking etc.
4145 	 * We put it in unlinked dir to be cleaned up after the scanning
4146 	 */
4147 	obj =
4148 	    yaffs_find_or_create_by_number(dev, obj_id, YAFFS_OBJECT_TYPE_FILE);
4149 	if (!obj)
4150 		return;
4151 	obj->is_shadowed = 1;
4152 	yaffs_add_obj_to_dir(dev->unlinked_dir, obj);
4153 	obj->variant.file_variant.shrink_size = 0;
4154 	obj->valid = 1;		/* So that we don't read any other info. */
4155 }
4156 
4157 void yaffs_link_fixup(struct yaffs_dev *dev, struct list_head *hard_list)
4158 {
4159 	struct list_head *lh;
4160 	struct list_head *save;
4161 	struct yaffs_obj *hl;
4162 	struct yaffs_obj *in;
4163 
4164 	list_for_each_safe(lh, save, hard_list) {
4165 		hl = list_entry(lh, struct yaffs_obj, hard_links);
4166 		in = yaffs_find_by_number(dev,
4167 					hl->variant.hardlink_variant.equiv_id);
4168 
4169 		if (in) {
4170 			/* Add the hardlink pointers */
4171 			hl->variant.hardlink_variant.equiv_obj = in;
4172 			list_add(&hl->hard_links, &in->hard_links);
4173 		} else {
4174 			/* Todo Need to report/handle this better.
4175 			 * Got a problem... hardlink to a non-existant object
4176 			 */
4177 			hl->variant.hardlink_variant.equiv_obj = NULL;
4178 			INIT_LIST_HEAD(&hl->hard_links);
4179 		}
4180 	}
4181 }
4182 
4183 static void yaffs_strip_deleted_objs(struct yaffs_dev *dev)
4184 {
4185 	/*
4186 	 *  Sort out state of unlinked and deleted objects after scanning.
4187 	 */
4188 	struct list_head *i;
4189 	struct list_head *n;
4190 	struct yaffs_obj *l;
4191 
4192 	if (dev->read_only)
4193 		return;
4194 
4195 	/* Soft delete all the unlinked files */
4196 	list_for_each_safe(i, n,
4197 			   &dev->unlinked_dir->variant.dir_variant.children) {
4198 		l = list_entry(i, struct yaffs_obj, siblings);
4199 		yaffs_del_obj(l);
4200 	}
4201 
4202 	list_for_each_safe(i, n, &dev->del_dir->variant.dir_variant.children) {
4203 		l = list_entry(i, struct yaffs_obj, siblings);
4204 		yaffs_del_obj(l);
4205 	}
4206 }
4207 
4208 /*
4209  * This code iterates through all the objects making sure that they are rooted.
4210  * Any unrooted objects are re-rooted in lost+found.
4211  * An object needs to be in one of:
4212  * - Directly under deleted, unlinked
4213  * - Directly or indirectly under root.
4214  *
4215  * Note:
4216  *  This code assumes that we don't ever change the current relationships
4217  *  between directories:
4218  *   root_dir->parent == unlinked_dir->parent == del_dir->parent == NULL
4219  *   lost-n-found->parent == root_dir
4220  *
4221  * This fixes the problem where directories might have inadvertently been
4222  * deleted leaving the object "hanging" without being rooted in the
4223  * directory tree.
4224  */
4225 
4226 static int yaffs_has_null_parent(struct yaffs_dev *dev, struct yaffs_obj *obj)
4227 {
4228 	return (obj == dev->del_dir ||
4229 		obj == dev->unlinked_dir || obj == dev->root_dir);
4230 }
4231 
4232 static void yaffs_fix_hanging_objs(struct yaffs_dev *dev)
4233 {
4234 	struct yaffs_obj *obj;
4235 	struct yaffs_obj *parent;
4236 	int i;
4237 	struct list_head *lh;
4238 	struct list_head *n;
4239 	int depth_limit;
4240 	int hanging;
4241 
4242 	if (dev->read_only)
4243 		return;
4244 
4245 	/* Iterate through the objects in each hash entry,
4246 	 * looking at each object.
4247 	 * Make sure it is rooted.
4248 	 */
4249 
4250 	for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
4251 		list_for_each_safe(lh, n, &dev->obj_bucket[i].list) {
4252 			obj = list_entry(lh, struct yaffs_obj, hash_link);
4253 			parent = obj->parent;
4254 
4255 			if (yaffs_has_null_parent(dev, obj)) {
4256 				/* These directories are not hanging */
4257 				hanging = 0;
4258 			} else if (!parent ||
4259 				   parent->variant_type !=
4260 				   YAFFS_OBJECT_TYPE_DIRECTORY) {
4261 				hanging = 1;
4262 			} else if (yaffs_has_null_parent(dev, parent)) {
4263 				hanging = 0;
4264 			} else {
4265 				/*
4266 				 * Need to follow the parent chain to
4267 				 * see if it is hanging.
4268 				 */
4269 				hanging = 0;
4270 				depth_limit = 100;
4271 
4272 				while (parent != dev->root_dir &&
4273 				       parent->parent &&
4274 				       parent->parent->variant_type ==
4275 				       YAFFS_OBJECT_TYPE_DIRECTORY &&
4276 				       depth_limit > 0) {
4277 					parent = parent->parent;
4278 					depth_limit--;
4279 				}
4280 				if (parent != dev->root_dir)
4281 					hanging = 1;
4282 			}
4283 			if (hanging) {
4284 				yaffs_trace(YAFFS_TRACE_SCAN,
4285 					"Hanging object %d moved to lost and found",
4286 					obj->obj_id);
4287 				yaffs_add_obj_to_dir(dev->lost_n_found, obj);
4288 			}
4289 		}
4290 	}
4291 }
4292 
4293 /*
4294  * Delete directory contents for cleaning up lost and found.
4295  */
4296 static void yaffs_del_dir_contents(struct yaffs_obj *dir)
4297 {
4298 	struct yaffs_obj *obj;
4299 	struct list_head *lh;
4300 	struct list_head *n;
4301 
4302 	if (dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
4303 		BUG();
4304 
4305 	list_for_each_safe(lh, n, &dir->variant.dir_variant.children) {
4306 		obj = list_entry(lh, struct yaffs_obj, siblings);
4307 		if (obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY)
4308 			yaffs_del_dir_contents(obj);
4309 		yaffs_trace(YAFFS_TRACE_SCAN,
4310 			"Deleting lost_found object %d",
4311 			obj->obj_id);
4312 		yaffs_unlink_obj(obj);
4313 	}
4314 }
4315 
4316 static void yaffs_empty_l_n_f(struct yaffs_dev *dev)
4317 {
4318 	yaffs_del_dir_contents(dev->lost_n_found);
4319 }
4320 
4321 
4322 struct yaffs_obj *yaffs_find_by_name(struct yaffs_obj *directory,
4323 				     const YCHAR *name)
4324 {
4325 	int sum;
4326 	struct list_head *i;
4327 	YCHAR buffer[YAFFS_MAX_NAME_LENGTH + 1];
4328 	struct yaffs_obj *l;
4329 
4330 	if (!name)
4331 		return NULL;
4332 
4333 	if (!directory) {
4334 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4335 			"tragedy: yaffs_find_by_name: null pointer directory"
4336 			);
4337 		BUG();
4338 		return NULL;
4339 	}
4340 	if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4341 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4342 			"tragedy: yaffs_find_by_name: non-directory"
4343 			);
4344 		BUG();
4345 	}
4346 
4347 	sum = yaffs_calc_name_sum(name);
4348 
4349 	list_for_each(i, &directory->variant.dir_variant.children) {
4350 		l = list_entry(i, struct yaffs_obj, siblings);
4351 
4352 		if (l->parent != directory)
4353 			BUG();
4354 
4355 		yaffs_check_obj_details_loaded(l);
4356 
4357 		/* Special case for lost-n-found */
4358 		if (l->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
4359 			if (!yaffs_strcmp(name, YAFFS_LOSTNFOUND_NAME))
4360 				return l;
4361 		} else if (l->sum == sum || l->hdr_chunk <= 0) {
4362 			/* LostnFound chunk called Objxxx
4363 			 * Do a real check
4364 			 */
4365 			yaffs_get_obj_name(l, buffer,
4366 				YAFFS_MAX_NAME_LENGTH + 1);
4367 			if (!yaffs_strncmp(name, buffer, YAFFS_MAX_NAME_LENGTH))
4368 				return l;
4369 		}
4370 	}
4371 	return NULL;
4372 }
4373 
4374 /* GetEquivalentObject dereferences any hard links to get to the
4375  * actual object.
4376  */
4377 
4378 struct yaffs_obj *yaffs_get_equivalent_obj(struct yaffs_obj *obj)
4379 {
4380 	if (obj && obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
4381 		obj = obj->variant.hardlink_variant.equiv_obj;
4382 		yaffs_check_obj_details_loaded(obj);
4383 	}
4384 	return obj;
4385 }
4386 
4387 /*
4388  *  A note or two on object names.
4389  *  * If the object name is missing, we then make one up in the form objnnn
4390  *
4391  *  * ASCII names are stored in the object header's name field from byte zero
4392  *  * Unicode names are historically stored starting from byte zero.
4393  *
4394  * Then there are automatic Unicode names...
4395  * The purpose of these is to save names in a way that can be read as
4396  * ASCII or Unicode names as appropriate, thus allowing a Unicode and ASCII
4397  * system to share files.
4398  *
4399  * These automatic unicode are stored slightly differently...
4400  *  - If the name can fit in the ASCII character space then they are saved as
4401  *    ascii names as per above.
4402  *  - If the name needs Unicode then the name is saved in Unicode
4403  *    starting at oh->name[1].
4404 
4405  */
4406 static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name,
4407 				int buffer_size)
4408 {
4409 	/* Create an object name if we could not find one. */
4410 	if (yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH) == 0) {
4411 		YCHAR local_name[20];
4412 		YCHAR num_string[20];
4413 		YCHAR *x = &num_string[19];
4414 		unsigned v = obj->obj_id;
4415 		num_string[19] = 0;
4416 		while (v > 0) {
4417 			x--;
4418 			*x = '0' + (v % 10);
4419 			v /= 10;
4420 		}
4421 		/* make up a name */
4422 		yaffs_strcpy(local_name, YAFFS_LOSTNFOUND_PREFIX);
4423 		yaffs_strcat(local_name, x);
4424 		yaffs_strncpy(name, local_name, buffer_size - 1);
4425 	}
4426 }
4427 
4428 int yaffs_get_obj_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size)
4429 {
4430 	memset(name, 0, buffer_size * sizeof(YCHAR));
4431 	yaffs_check_obj_details_loaded(obj);
4432 	if (obj->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
4433 		yaffs_strncpy(name, YAFFS_LOSTNFOUND_NAME, buffer_size - 1);
4434 	} else if (obj->short_name[0]) {
4435 		yaffs_strcpy(name, obj->short_name);
4436 	} else if (obj->hdr_chunk > 0) {
4437 		u8 *buffer = yaffs_get_temp_buffer(obj->my_dev);
4438 
4439 		struct yaffs_obj_hdr *oh = (struct yaffs_obj_hdr *)buffer;
4440 
4441 		memset(buffer, 0, obj->my_dev->data_bytes_per_chunk);
4442 
4443 		if (obj->hdr_chunk > 0) {
4444 			yaffs_rd_chunk_tags_nand(obj->my_dev,
4445 						 obj->hdr_chunk,
4446 						 buffer, NULL);
4447 		}
4448 		yaffs_load_name_from_oh(obj->my_dev, name, oh->name,
4449 					buffer_size);
4450 
4451 		yaffs_release_temp_buffer(obj->my_dev, buffer);
4452 	}
4453 
4454 	yaffs_fix_null_name(obj, name, buffer_size);
4455 
4456 	return yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH);
4457 }
4458 
4459 loff_t yaffs_get_obj_length(struct yaffs_obj *obj)
4460 {
4461 	/* Dereference any hard linking */
4462 	obj = yaffs_get_equivalent_obj(obj);
4463 
4464 	if (obj->variant_type == YAFFS_OBJECT_TYPE_FILE)
4465 		return obj->variant.file_variant.file_size;
4466 	if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
4467 		if (!obj->variant.symlink_variant.alias)
4468 			return 0;
4469 		return yaffs_strnlen(obj->variant.symlink_variant.alias,
4470 				     YAFFS_MAX_ALIAS_LENGTH);
4471 	} else {
4472 		/* Only a directory should drop through to here */
4473 		return obj->my_dev->data_bytes_per_chunk;
4474 	}
4475 }
4476 
4477 int yaffs_get_obj_link_count(struct yaffs_obj *obj)
4478 {
4479 	int count = 0;
4480 	struct list_head *i;
4481 
4482 	if (!obj->unlinked)
4483 		count++;	/* the object itself */
4484 
4485 	list_for_each(i, &obj->hard_links)
4486 	    count++;		/* add the hard links; */
4487 
4488 	return count;
4489 }
4490 
4491 int yaffs_get_obj_inode(struct yaffs_obj *obj)
4492 {
4493 	obj = yaffs_get_equivalent_obj(obj);
4494 
4495 	return obj->obj_id;
4496 }
4497 
4498 unsigned yaffs_get_obj_type(struct yaffs_obj *obj)
4499 {
4500 	obj = yaffs_get_equivalent_obj(obj);
4501 
4502 	switch (obj->variant_type) {
4503 	case YAFFS_OBJECT_TYPE_FILE:
4504 		return DT_REG;
4505 		break;
4506 	case YAFFS_OBJECT_TYPE_DIRECTORY:
4507 		return DT_DIR;
4508 		break;
4509 	case YAFFS_OBJECT_TYPE_SYMLINK:
4510 		return DT_LNK;
4511 		break;
4512 	case YAFFS_OBJECT_TYPE_HARDLINK:
4513 		return DT_REG;
4514 		break;
4515 	case YAFFS_OBJECT_TYPE_SPECIAL:
4516 		if (S_ISFIFO(obj->yst_mode))
4517 			return DT_FIFO;
4518 		if (S_ISCHR(obj->yst_mode))
4519 			return DT_CHR;
4520 		if (S_ISBLK(obj->yst_mode))
4521 			return DT_BLK;
4522 		if (S_ISSOCK(obj->yst_mode))
4523 			return DT_SOCK;
4524 		return DT_REG;
4525 		break;
4526 	default:
4527 		return DT_REG;
4528 		break;
4529 	}
4530 }
4531 
4532 YCHAR *yaffs_get_symlink_alias(struct yaffs_obj *obj)
4533 {
4534 	obj = yaffs_get_equivalent_obj(obj);
4535 	if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK)
4536 		return yaffs_clone_str(obj->variant.symlink_variant.alias);
4537 	else
4538 		return yaffs_clone_str(_Y(""));
4539 }
4540 
4541 /*--------------------------- Initialisation code -------------------------- */
4542 
4543 static int yaffs_check_dev_fns(const struct yaffs_dev *dev)
4544 {
4545 	/* Common functions, gotta have */
4546 	if (!dev->param.erase_fn || !dev->param.initialise_flash_fn)
4547 		return 0;
4548 
4549 	/* Can use the "with tags" style interface for yaffs1 or yaffs2 */
4550 	if (dev->param.write_chunk_tags_fn &&
4551 	    dev->param.read_chunk_tags_fn &&
4552 	    !dev->param.write_chunk_fn &&
4553 	    !dev->param.read_chunk_fn &&
4554 	    dev->param.bad_block_fn && dev->param.query_block_fn)
4555 		return 1;
4556 
4557 	/* Can use the "spare" style interface for yaffs1 */
4558 	if (!dev->param.is_yaffs2 &&
4559 	    !dev->param.write_chunk_tags_fn &&
4560 	    !dev->param.read_chunk_tags_fn &&
4561 	    dev->param.write_chunk_fn &&
4562 	    dev->param.read_chunk_fn &&
4563 	    !dev->param.bad_block_fn && !dev->param.query_block_fn)
4564 		return 1;
4565 
4566 	return 0;		/* bad */
4567 }
4568 
4569 static int yaffs_create_initial_dir(struct yaffs_dev *dev)
4570 {
4571 	/* Initialise the unlinked, deleted, root and lost+found directories */
4572 	dev->lost_n_found = dev->root_dir = NULL;
4573 	dev->unlinked_dir = dev->del_dir = NULL;
4574 	dev->unlinked_dir =
4575 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_UNLINKED, S_IFDIR);
4576 	dev->del_dir =
4577 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_DELETED, S_IFDIR);
4578 	dev->root_dir =
4579 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_ROOT,
4580 				  YAFFS_ROOT_MODE | S_IFDIR);
4581 	dev->lost_n_found =
4582 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_LOSTNFOUND,
4583 				  YAFFS_LOSTNFOUND_MODE | S_IFDIR);
4584 
4585 	if (dev->lost_n_found && dev->root_dir && dev->unlinked_dir
4586 	    && dev->del_dir) {
4587 		yaffs_add_obj_to_dir(dev->root_dir, dev->lost_n_found);
4588 		return YAFFS_OK;
4589 	}
4590 	return YAFFS_FAIL;
4591 }
4592 
4593 int yaffs_guts_initialise(struct yaffs_dev *dev)
4594 {
4595 	int init_failed = 0;
4596 	unsigned x;
4597 	int bits;
4598 
4599 	yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_guts_initialise()");
4600 
4601 	/* Check stuff that must be set */
4602 
4603 	if (!dev) {
4604 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4605 			"yaffs: Need a device"
4606 			);
4607 		return YAFFS_FAIL;
4608 	}
4609 
4610 	if (dev->is_mounted) {
4611 		yaffs_trace(YAFFS_TRACE_ALWAYS, "device already mounted");
4612 		return YAFFS_FAIL;
4613 	}
4614 
4615 	dev->internal_start_block = dev->param.start_block;
4616 	dev->internal_end_block = dev->param.end_block;
4617 	dev->block_offset = 0;
4618 	dev->chunk_offset = 0;
4619 	dev->n_free_chunks = 0;
4620 
4621 	dev->gc_block = 0;
4622 
4623 	if (dev->param.start_block == 0) {
4624 		dev->internal_start_block = dev->param.start_block + 1;
4625 		dev->internal_end_block = dev->param.end_block + 1;
4626 		dev->block_offset = 1;
4627 		dev->chunk_offset = dev->param.chunks_per_block;
4628 	}
4629 
4630 	/* Check geometry parameters. */
4631 
4632 	if ((!dev->param.inband_tags && dev->param.is_yaffs2 &&
4633 		dev->param.total_bytes_per_chunk < 1024) ||
4634 		(!dev->param.is_yaffs2 &&
4635 			dev->param.total_bytes_per_chunk < 512) ||
4636 		(dev->param.inband_tags && !dev->param.is_yaffs2) ||
4637 		 dev->param.chunks_per_block < 2 ||
4638 		 dev->param.n_reserved_blocks < 2 ||
4639 		dev->internal_start_block <= 0 ||
4640 		dev->internal_end_block <= 0 ||
4641 		dev->internal_end_block <=
4642 		(dev->internal_start_block + dev->param.n_reserved_blocks + 2)
4643 		) {
4644 		/* otherwise it is too small */
4645 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4646 			"NAND geometry problems: chunk size %d, type is yaffs%s, inband_tags %d ",
4647 			dev->param.total_bytes_per_chunk,
4648 			dev->param.is_yaffs2 ? "2" : "",
4649 			dev->param.inband_tags);
4650 		return YAFFS_FAIL;
4651 	}
4652 
4653 	if (yaffs_init_nand(dev) != YAFFS_OK) {
4654 		yaffs_trace(YAFFS_TRACE_ALWAYS, "InitialiseNAND failed");
4655 		return YAFFS_FAIL;
4656 	}
4657 
4658 	/* Sort out space for inband tags, if required */
4659 	if (dev->param.inband_tags)
4660 		dev->data_bytes_per_chunk =
4661 		    dev->param.total_bytes_per_chunk -
4662 		    sizeof(struct yaffs_packed_tags2_tags_only);
4663 	else
4664 		dev->data_bytes_per_chunk = dev->param.total_bytes_per_chunk;
4665 
4666 	/* Got the right mix of functions? */
4667 	if (!yaffs_check_dev_fns(dev)) {
4668 		/* Function missing */
4669 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4670 			"device function(s) missing or wrong");
4671 
4672 		return YAFFS_FAIL;
4673 	}
4674 
4675 	/* Finished with most checks. Further checks happen later on too. */
4676 
4677 	dev->is_mounted = 1;
4678 
4679 	/* OK now calculate a few things for the device */
4680 
4681 	/*
4682 	 *  Calculate all the chunk size manipulation numbers:
4683 	 */
4684 	x = dev->data_bytes_per_chunk;
4685 	/* We always use dev->chunk_shift and dev->chunk_div */
4686 	dev->chunk_shift = calc_shifts(x);
4687 	x >>= dev->chunk_shift;
4688 	dev->chunk_div = x;
4689 	/* We only use chunk mask if chunk_div is 1 */
4690 	dev->chunk_mask = (1 << dev->chunk_shift) - 1;
4691 
4692 	/*
4693 	 * Calculate chunk_grp_bits.
4694 	 * We need to find the next power of 2 > than internal_end_block
4695 	 */
4696 
4697 	x = dev->param.chunks_per_block * (dev->internal_end_block + 1);
4698 
4699 	bits = calc_shifts_ceiling(x);
4700 
4701 	/* Set up tnode width if wide tnodes are enabled. */
4702 	if (!dev->param.wide_tnodes_disabled) {
4703 		/* bits must be even so that we end up with 32-bit words */
4704 		if (bits & 1)
4705 			bits++;
4706 		if (bits < 16)
4707 			dev->tnode_width = 16;
4708 		else
4709 			dev->tnode_width = bits;
4710 	} else {
4711 		dev->tnode_width = 16;
4712 	}
4713 
4714 	dev->tnode_mask = (1 << dev->tnode_width) - 1;
4715 
4716 	/* Level0 Tnodes are 16 bits or wider (if wide tnodes are enabled),
4717 	 * so if the bitwidth of the
4718 	 * chunk range we're using is greater than 16 we need
4719 	 * to figure out chunk shift and chunk_grp_size
4720 	 */
4721 
4722 	if (bits <= dev->tnode_width)
4723 		dev->chunk_grp_bits = 0;
4724 	else
4725 		dev->chunk_grp_bits = bits - dev->tnode_width;
4726 
4727 	dev->tnode_size = (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8;
4728 	if (dev->tnode_size < sizeof(struct yaffs_tnode))
4729 		dev->tnode_size = sizeof(struct yaffs_tnode);
4730 
4731 	dev->chunk_grp_size = 1 << dev->chunk_grp_bits;
4732 
4733 	if (dev->param.chunks_per_block < dev->chunk_grp_size) {
4734 		/* We have a problem because the soft delete won't work if
4735 		 * the chunk group size > chunks per block.
4736 		 * This can be remedied by using larger "virtual blocks".
4737 		 */
4738 		yaffs_trace(YAFFS_TRACE_ALWAYS, "chunk group too large");
4739 
4740 		return YAFFS_FAIL;
4741 	}
4742 
4743 	/* Finished verifying the device, continue with initialisation */
4744 
4745 	/* More device initialisation */
4746 	dev->all_gcs = 0;
4747 	dev->passive_gc_count = 0;
4748 	dev->oldest_dirty_gc_count = 0;
4749 	dev->bg_gcs = 0;
4750 	dev->gc_block_finder = 0;
4751 	dev->buffered_block = -1;
4752 	dev->doing_buffered_block_rewrite = 0;
4753 	dev->n_deleted_files = 0;
4754 	dev->n_bg_deletions = 0;
4755 	dev->n_unlinked_files = 0;
4756 	dev->n_ecc_fixed = 0;
4757 	dev->n_ecc_unfixed = 0;
4758 	dev->n_tags_ecc_fixed = 0;
4759 	dev->n_tags_ecc_unfixed = 0;
4760 	dev->n_erase_failures = 0;
4761 	dev->n_erased_blocks = 0;
4762 	dev->gc_disable = 0;
4763 	dev->has_pending_prioritised_gc = 1;
4764 		/* Assume the worst for now, will get fixed on first GC */
4765 	INIT_LIST_HEAD(&dev->dirty_dirs);
4766 	dev->oldest_dirty_seq = 0;
4767 	dev->oldest_dirty_block = 0;
4768 
4769 	/* Initialise temporary buffers and caches. */
4770 	if (!yaffs_init_tmp_buffers(dev))
4771 		init_failed = 1;
4772 
4773 	dev->cache = NULL;
4774 	dev->gc_cleanup_list = NULL;
4775 
4776 	if (!init_failed && dev->param.n_caches > 0) {
4777 		int i;
4778 		void *buf;
4779 		int cache_bytes =
4780 		    dev->param.n_caches * sizeof(struct yaffs_cache);
4781 
4782 		if (dev->param.n_caches > YAFFS_MAX_SHORT_OP_CACHES)
4783 			dev->param.n_caches = YAFFS_MAX_SHORT_OP_CACHES;
4784 
4785 		dev->cache = kmalloc(cache_bytes, GFP_NOFS);
4786 
4787 		buf = (u8 *) dev->cache;
4788 
4789 		if (dev->cache)
4790 			memset(dev->cache, 0, cache_bytes);
4791 
4792 		for (i = 0; i < dev->param.n_caches && buf; i++) {
4793 			dev->cache[i].object = NULL;
4794 			dev->cache[i].last_use = 0;
4795 			dev->cache[i].dirty = 0;
4796 			dev->cache[i].data = buf =
4797 			    kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
4798 		}
4799 		if (!buf)
4800 			init_failed = 1;
4801 
4802 		dev->cache_last_use = 0;
4803 	}
4804 
4805 	dev->cache_hits = 0;
4806 
4807 	if (!init_failed) {
4808 		dev->gc_cleanup_list =
4809 		    kmalloc(dev->param.chunks_per_block * sizeof(u32),
4810 					GFP_NOFS);
4811 		if (!dev->gc_cleanup_list)
4812 			init_failed = 1;
4813 	}
4814 
4815 	if (dev->param.is_yaffs2)
4816 		dev->param.use_header_file_size = 1;
4817 
4818 	if (!init_failed && !yaffs_init_blocks(dev))
4819 		init_failed = 1;
4820 
4821 	yaffs_init_tnodes_and_objs(dev);
4822 
4823 	if (!init_failed && !yaffs_create_initial_dir(dev))
4824 		init_failed = 1;
4825 
4826 	if (!init_failed && dev->param.is_yaffs2 &&
4827 		!dev->param.disable_summary &&
4828 		!yaffs_summary_init(dev))
4829 		init_failed = 1;
4830 
4831 	if (!init_failed) {
4832 		/* Now scan the flash. */
4833 		if (dev->param.is_yaffs2) {
4834 			if (yaffs2_checkpt_restore(dev)) {
4835 				yaffs_check_obj_details_loaded(dev->root_dir);
4836 				yaffs_trace(YAFFS_TRACE_CHECKPOINT |
4837 					YAFFS_TRACE_MOUNT,
4838 					"yaffs: restored from checkpoint"
4839 					);
4840 			} else {
4841 
4842 				/* Clean up the mess caused by an aborted
4843 				 * checkpoint load then scan backwards.
4844 				 */
4845 				yaffs_deinit_blocks(dev);
4846 
4847 				yaffs_deinit_tnodes_and_objs(dev);
4848 
4849 				dev->n_erased_blocks = 0;
4850 				dev->n_free_chunks = 0;
4851 				dev->alloc_block = -1;
4852 				dev->alloc_page = -1;
4853 				dev->n_deleted_files = 0;
4854 				dev->n_unlinked_files = 0;
4855 				dev->n_bg_deletions = 0;
4856 
4857 				if (!init_failed && !yaffs_init_blocks(dev))
4858 					init_failed = 1;
4859 
4860 				yaffs_init_tnodes_and_objs(dev);
4861 
4862 				if (!init_failed
4863 				    && !yaffs_create_initial_dir(dev))
4864 					init_failed = 1;
4865 
4866 				if (!init_failed && !yaffs2_scan_backwards(dev))
4867 					init_failed = 1;
4868 			}
4869 		} else if (!yaffs1_scan(dev)) {
4870 			init_failed = 1;
4871 		}
4872 
4873 		yaffs_strip_deleted_objs(dev);
4874 		yaffs_fix_hanging_objs(dev);
4875 		if (dev->param.empty_lost_n_found)
4876 			yaffs_empty_l_n_f(dev);
4877 	}
4878 
4879 	if (init_failed) {
4880 		/* Clean up the mess */
4881 		yaffs_trace(YAFFS_TRACE_TRACING,
4882 		  "yaffs: yaffs_guts_initialise() aborted.");
4883 
4884 		yaffs_deinitialise(dev);
4885 		return YAFFS_FAIL;
4886 	}
4887 
4888 	/* Zero out stats */
4889 	dev->n_page_reads = 0;
4890 	dev->n_page_writes = 0;
4891 	dev->n_erasures = 0;
4892 	dev->n_gc_copies = 0;
4893 	dev->n_retried_writes = 0;
4894 
4895 	dev->n_retired_blocks = 0;
4896 
4897 	yaffs_verify_free_chunks(dev);
4898 	yaffs_verify_blocks(dev);
4899 
4900 	/* Clean up any aborted checkpoint data */
4901 	if (!dev->is_checkpointed && dev->blocks_in_checkpt > 0)
4902 		yaffs2_checkpt_invalidate(dev);
4903 
4904 	yaffs_trace(YAFFS_TRACE_TRACING,
4905 	  "yaffs: yaffs_guts_initialise() done.");
4906 	return YAFFS_OK;
4907 }
4908 
4909 void yaffs_deinitialise(struct yaffs_dev *dev)
4910 {
4911 	if (dev->is_mounted) {
4912 		int i;
4913 
4914 		yaffs_deinit_blocks(dev);
4915 		yaffs_deinit_tnodes_and_objs(dev);
4916 		yaffs_summary_deinit(dev);
4917 
4918 		if (dev->param.n_caches > 0 && dev->cache) {
4919 
4920 			for (i = 0; i < dev->param.n_caches; i++) {
4921 				kfree(dev->cache[i].data);
4922 				dev->cache[i].data = NULL;
4923 			}
4924 
4925 			kfree(dev->cache);
4926 			dev->cache = NULL;
4927 		}
4928 
4929 		kfree(dev->gc_cleanup_list);
4930 
4931 		for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++)
4932 			kfree(dev->temp_buffer[i].buffer);
4933 
4934 		dev->is_mounted = 0;
4935 
4936 		if (dev->param.deinitialise_flash_fn)
4937 			dev->param.deinitialise_flash_fn(dev);
4938 	}
4939 }
4940 
4941 int yaffs_count_free_chunks(struct yaffs_dev *dev)
4942 {
4943 	int n_free = 0;
4944 	int b;
4945 	struct yaffs_block_info *blk;
4946 
4947 	blk = dev->block_info;
4948 	for (b = dev->internal_start_block; b <= dev->internal_end_block; b++) {
4949 		switch (blk->block_state) {
4950 		case YAFFS_BLOCK_STATE_EMPTY:
4951 		case YAFFS_BLOCK_STATE_ALLOCATING:
4952 		case YAFFS_BLOCK_STATE_COLLECTING:
4953 		case YAFFS_BLOCK_STATE_FULL:
4954 			n_free +=
4955 			    (dev->param.chunks_per_block - blk->pages_in_use +
4956 			     blk->soft_del_pages);
4957 			break;
4958 		default:
4959 			break;
4960 		}
4961 		blk++;
4962 	}
4963 	return n_free;
4964 }
4965 
4966 int yaffs_get_n_free_chunks(struct yaffs_dev *dev)
4967 {
4968 	/* This is what we report to the outside world */
4969 	int n_free;
4970 	int n_dirty_caches;
4971 	int blocks_for_checkpt;
4972 	int i;
4973 
4974 	n_free = dev->n_free_chunks;
4975 	n_free += dev->n_deleted_files;
4976 
4977 	/* Now count and subtract the number of dirty chunks in the cache. */
4978 
4979 	for (n_dirty_caches = 0, i = 0; i < dev->param.n_caches; i++) {
4980 		if (dev->cache[i].dirty)
4981 			n_dirty_caches++;
4982 	}
4983 
4984 	n_free -= n_dirty_caches;
4985 
4986 	n_free -=
4987 	    ((dev->param.n_reserved_blocks + 1) * dev->param.chunks_per_block);
4988 
4989 	/* Now figure checkpoint space and report that... */
4990 	blocks_for_checkpt = yaffs_calc_checkpt_blocks_required(dev);
4991 
4992 	n_free -= (blocks_for_checkpt * dev->param.chunks_per_block);
4993 
4994 	if (n_free < 0)
4995 		n_free = 0;
4996 
4997 	return n_free;
4998 }
4999 
5000 /*\
5001  * Marshalling functions to get loff_t file sizes into aand out of
5002  * object headers.
5003  */
5004 void yaffs_oh_size_load(struct yaffs_obj_hdr *oh, loff_t fsize)
5005 {
5006 	oh->file_size_low = (fsize & 0xFFFFFFFF);
5007 	oh->file_size_high = ((fsize >> 32) & 0xFFFFFFFF);
5008 }
5009 
5010 loff_t yaffs_oh_to_size(struct yaffs_obj_hdr *oh)
5011 {
5012 	loff_t retval;
5013 
5014 	if (~(oh->file_size_high))
5015 		retval = (((loff_t) oh->file_size_high) << 32) |
5016 			(((loff_t) oh->file_size_low) & 0xFFFFFFFF);
5017 	else
5018 		retval = (loff_t) oh->file_size_low;
5019 
5020 	return retval;
5021 }
5022