xref: /openbmc/u-boot/fs/ubifs/super.c (revision 3491ba6311c0aede2c6530ef42e2df6b58cf000d)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements UBIFS initialization and VFS superblock operations. Some
14  * initialization stuff which is rather large and complex is placed at
15  * corresponding subsystems, but most of it is here.
16  */
17 
18 #define __UBOOT__
19 #ifndef __UBOOT__
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/ctype.h>
24 #include <linux/kthread.h>
25 #include <linux/parser.h>
26 #include <linux/seq_file.h>
27 #include <linux/mount.h>
28 #include <linux/math64.h>
29 #include <linux/writeback.h>
30 #else
31 
32 #include <linux/compat.h>
33 #include <linux/stat.h>
34 #include <linux/err.h>
35 #include "ubifs.h"
36 #include <ubi_uboot.h>
37 #include <mtd/ubi-user.h>
38 
39 struct dentry;
40 struct file;
41 struct iattr;
42 struct kstat;
43 struct vfsmount;
44 
45 #define INODE_LOCKED_MAX	64
46 
47 struct super_block *ubifs_sb;
48 LIST_HEAD(super_blocks);
49 
50 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
51 
52 int set_anon_super(struct super_block *s, void *data)
53 {
54 	return 0;
55 }
56 
57 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
58 {
59 	struct inode *inode;
60 
61 	inode = (struct inode *)malloc(sizeof(struct ubifs_inode));
62 	if (inode) {
63 		inode->i_ino = ino;
64 		inode->i_sb = sb;
65 		list_add(&inode->i_sb_list, &sb->s_inodes);
66 		inode->i_state = I_LOCK | I_NEW;
67 	}
68 
69 	return inode;
70 }
71 
72 void iget_failed(struct inode *inode)
73 {
74 }
75 
76 int ubifs_iput(struct inode *inode)
77 {
78 	list_del_init(&inode->i_sb_list);
79 
80 	free(inode);
81 	return 0;
82 }
83 
84 /*
85  * Lock (save) inode in inode array for readback after recovery
86  */
87 void iput(struct inode *inode)
88 {
89 	int i;
90 	struct inode *ino;
91 
92 	/*
93 	 * Search end of list
94 	 */
95 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
96 		if (inodes_locked_down[i] == NULL)
97 			break;
98 	}
99 
100 	if (i >= INODE_LOCKED_MAX) {
101 		ubifs_err("Error, can't lock (save) more inodes while recovery!!!");
102 		return;
103 	}
104 
105 	/*
106 	 * Allocate and use new inode
107 	 */
108 	ino = (struct inode *)malloc(sizeof(struct ubifs_inode));
109 	memcpy(ino, inode, sizeof(struct ubifs_inode));
110 
111 	/*
112 	 * Finally save inode in array
113 	 */
114 	inodes_locked_down[i] = ino;
115 }
116 
117 /* from fs/inode.c */
118 /**
119  * clear_nlink - directly zero an inode's link count
120  * @inode: inode
121  *
122  * This is a low-level filesystem helper to replace any
123  * direct filesystem manipulation of i_nlink.  See
124  * drop_nlink() for why we care about i_nlink hitting zero.
125  */
126 void clear_nlink(struct inode *inode)
127 {
128 	if (inode->i_nlink) {
129 		inode->__i_nlink = 0;
130 		atomic_long_inc(&inode->i_sb->s_remove_count);
131 	}
132 }
133 EXPORT_SYMBOL(clear_nlink);
134 
135 /**
136  * set_nlink - directly set an inode's link count
137  * @inode: inode
138  * @nlink: new nlink (should be non-zero)
139  *
140  * This is a low-level filesystem helper to replace any
141  * direct filesystem manipulation of i_nlink.
142  */
143 void set_nlink(struct inode *inode, unsigned int nlink)
144 {
145 	if (!nlink) {
146 		clear_nlink(inode);
147 	} else {
148 		/* Yes, some filesystems do change nlink from zero to one */
149 		if (inode->i_nlink == 0)
150 			atomic_long_dec(&inode->i_sb->s_remove_count);
151 
152 		inode->__i_nlink = nlink;
153 	}
154 }
155 EXPORT_SYMBOL(set_nlink);
156 
157 /* from include/linux/fs.h */
158 static inline void i_uid_write(struct inode *inode, uid_t uid)
159 {
160 	inode->i_uid.val = uid;
161 }
162 
163 static inline void i_gid_write(struct inode *inode, gid_t gid)
164 {
165 	inode->i_gid.val = gid;
166 }
167 
168 void unlock_new_inode(struct inode *inode)
169 {
170 	return;
171 }
172 #endif
173 
174 /*
175  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
176  * allocating too much.
177  */
178 #define UBIFS_KMALLOC_OK (128*1024)
179 
180 /* Slab cache for UBIFS inodes */
181 struct kmem_cache *ubifs_inode_slab;
182 
183 #ifndef __UBOOT__
184 /* UBIFS TNC shrinker description */
185 static struct shrinker ubifs_shrinker_info = {
186 	.scan_objects = ubifs_shrink_scan,
187 	.count_objects = ubifs_shrink_count,
188 	.seeks = DEFAULT_SEEKS,
189 };
190 #endif
191 
192 /**
193  * validate_inode - validate inode.
194  * @c: UBIFS file-system description object
195  * @inode: the inode to validate
196  *
197  * This is a helper function for 'ubifs_iget()' which validates various fields
198  * of a newly built inode to make sure they contain sane values and prevent
199  * possible vulnerabilities. Returns zero if the inode is all right and
200  * a non-zero error code if not.
201  */
202 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
203 {
204 	int err;
205 	const struct ubifs_inode *ui = ubifs_inode(inode);
206 
207 	if (inode->i_size > c->max_inode_sz) {
208 		ubifs_err("inode is too large (%lld)",
209 			  (long long)inode->i_size);
210 		return 1;
211 	}
212 
213 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
214 		ubifs_err("unknown compression type %d", ui->compr_type);
215 		return 2;
216 	}
217 
218 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
219 		return 3;
220 
221 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
222 		return 4;
223 
224 	if (ui->xattr && !S_ISREG(inode->i_mode))
225 		return 5;
226 
227 	if (!ubifs_compr_present(ui->compr_type)) {
228 		ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
229 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
230 	}
231 
232 	err = dbg_check_dir(c, inode);
233 	return err;
234 }
235 
236 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
237 {
238 	int err;
239 	union ubifs_key key;
240 	struct ubifs_ino_node *ino;
241 	struct ubifs_info *c = sb->s_fs_info;
242 	struct inode *inode;
243 	struct ubifs_inode *ui;
244 #ifdef __UBOOT__
245 	int i;
246 #endif
247 
248 	dbg_gen("inode %lu", inum);
249 
250 #ifdef __UBOOT__
251 	/*
252 	 * U-Boot special handling of locked down inodes via recovery
253 	 * e.g. ubifs_recover_size()
254 	 */
255 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
256 		/*
257 		 * Exit on last entry (NULL), inode not found in list
258 		 */
259 		if (inodes_locked_down[i] == NULL)
260 			break;
261 
262 		if (inodes_locked_down[i]->i_ino == inum) {
263 			/*
264 			 * We found the locked down inode in our array,
265 			 * so just return this pointer instead of creating
266 			 * a new one.
267 			 */
268 			return inodes_locked_down[i];
269 		}
270 	}
271 #endif
272 
273 	inode = iget_locked(sb, inum);
274 	if (!inode)
275 		return ERR_PTR(-ENOMEM);
276 	if (!(inode->i_state & I_NEW))
277 		return inode;
278 	ui = ubifs_inode(inode);
279 
280 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
281 	if (!ino) {
282 		err = -ENOMEM;
283 		goto out;
284 	}
285 
286 	ino_key_init(c, &key, inode->i_ino);
287 
288 	err = ubifs_tnc_lookup(c, &key, ino);
289 	if (err)
290 		goto out_ino;
291 
292 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
293 	set_nlink(inode, le32_to_cpu(ino->nlink));
294 	i_uid_write(inode, le32_to_cpu(ino->uid));
295 	i_gid_write(inode, le32_to_cpu(ino->gid));
296 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
297 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
298 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
299 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
300 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
301 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
302 	inode->i_mode = le32_to_cpu(ino->mode);
303 	inode->i_size = le64_to_cpu(ino->size);
304 
305 	ui->data_len    = le32_to_cpu(ino->data_len);
306 	ui->flags       = le32_to_cpu(ino->flags);
307 	ui->compr_type  = le16_to_cpu(ino->compr_type);
308 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
309 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
310 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
311 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
312 	ui->synced_i_size = ui->ui_size = inode->i_size;
313 
314 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
315 
316 	err = validate_inode(c, inode);
317 	if (err)
318 		goto out_invalid;
319 
320 #ifndef __UBOOT__
321 	/* Disable read-ahead */
322 	inode->i_mapping->backing_dev_info = &c->bdi;
323 
324 	switch (inode->i_mode & S_IFMT) {
325 	case S_IFREG:
326 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
327 		inode->i_op = &ubifs_file_inode_operations;
328 		inode->i_fop = &ubifs_file_operations;
329 		if (ui->xattr) {
330 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
331 			if (!ui->data) {
332 				err = -ENOMEM;
333 				goto out_ino;
334 			}
335 			memcpy(ui->data, ino->data, ui->data_len);
336 			((char *)ui->data)[ui->data_len] = '\0';
337 		} else if (ui->data_len != 0) {
338 			err = 10;
339 			goto out_invalid;
340 		}
341 		break;
342 	case S_IFDIR:
343 		inode->i_op  = &ubifs_dir_inode_operations;
344 		inode->i_fop = &ubifs_dir_operations;
345 		if (ui->data_len != 0) {
346 			err = 11;
347 			goto out_invalid;
348 		}
349 		break;
350 	case S_IFLNK:
351 		inode->i_op = &ubifs_symlink_inode_operations;
352 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
353 			err = 12;
354 			goto out_invalid;
355 		}
356 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
357 		if (!ui->data) {
358 			err = -ENOMEM;
359 			goto out_ino;
360 		}
361 		memcpy(ui->data, ino->data, ui->data_len);
362 		((char *)ui->data)[ui->data_len] = '\0';
363 		break;
364 	case S_IFBLK:
365 	case S_IFCHR:
366 	{
367 		dev_t rdev;
368 		union ubifs_dev_desc *dev;
369 
370 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
371 		if (!ui->data) {
372 			err = -ENOMEM;
373 			goto out_ino;
374 		}
375 
376 		dev = (union ubifs_dev_desc *)ino->data;
377 		if (ui->data_len == sizeof(dev->new))
378 			rdev = new_decode_dev(le32_to_cpu(dev->new));
379 		else if (ui->data_len == sizeof(dev->huge))
380 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
381 		else {
382 			err = 13;
383 			goto out_invalid;
384 		}
385 		memcpy(ui->data, ino->data, ui->data_len);
386 		inode->i_op = &ubifs_file_inode_operations;
387 		init_special_inode(inode, inode->i_mode, rdev);
388 		break;
389 	}
390 	case S_IFSOCK:
391 	case S_IFIFO:
392 		inode->i_op = &ubifs_file_inode_operations;
393 		init_special_inode(inode, inode->i_mode, 0);
394 		if (ui->data_len != 0) {
395 			err = 14;
396 			goto out_invalid;
397 		}
398 		break;
399 	default:
400 		err = 15;
401 		goto out_invalid;
402 	}
403 #else
404 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
405 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
406 			err = 12;
407 			goto out_invalid;
408 		}
409 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
410 		if (!ui->data) {
411 			err = -ENOMEM;
412 			goto out_ino;
413 		}
414 		memcpy(ui->data, ino->data, ui->data_len);
415 		((char *)ui->data)[ui->data_len] = '\0';
416 	}
417 #endif
418 
419 	kfree(ino);
420 #ifndef __UBOOT__
421 	ubifs_set_inode_flags(inode);
422 #endif
423 	unlock_new_inode(inode);
424 	return inode;
425 
426 out_invalid:
427 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
428 	ubifs_dump_node(c, ino);
429 	ubifs_dump_inode(c, inode);
430 	err = -EINVAL;
431 out_ino:
432 	kfree(ino);
433 out:
434 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
435 	iget_failed(inode);
436 	return ERR_PTR(err);
437 }
438 
439 static struct inode *ubifs_alloc_inode(struct super_block *sb)
440 {
441 	struct ubifs_inode *ui;
442 
443 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
444 	if (!ui)
445 		return NULL;
446 
447 	memset((void *)ui + sizeof(struct inode), 0,
448 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
449 	mutex_init(&ui->ui_mutex);
450 	spin_lock_init(&ui->ui_lock);
451 	return &ui->vfs_inode;
452 };
453 
454 #ifndef __UBOOT__
455 static void ubifs_i_callback(struct rcu_head *head)
456 {
457 	struct inode *inode = container_of(head, struct inode, i_rcu);
458 	struct ubifs_inode *ui = ubifs_inode(inode);
459 	kmem_cache_free(ubifs_inode_slab, ui);
460 }
461 
462 static void ubifs_destroy_inode(struct inode *inode)
463 {
464 	struct ubifs_inode *ui = ubifs_inode(inode);
465 
466 	kfree(ui->data);
467 	call_rcu(&inode->i_rcu, ubifs_i_callback);
468 }
469 
470 /*
471  * Note, Linux write-back code calls this without 'i_mutex'.
472  */
473 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
474 {
475 	int err = 0;
476 	struct ubifs_info *c = inode->i_sb->s_fs_info;
477 	struct ubifs_inode *ui = ubifs_inode(inode);
478 
479 	ubifs_assert(!ui->xattr);
480 	if (is_bad_inode(inode))
481 		return 0;
482 
483 	mutex_lock(&ui->ui_mutex);
484 	/*
485 	 * Due to races between write-back forced by budgeting
486 	 * (see 'sync_some_inodes()') and background write-back, the inode may
487 	 * have already been synchronized, do not do this again. This might
488 	 * also happen if it was synchronized in an VFS operation, e.g.
489 	 * 'ubifs_link()'.
490 	 */
491 	if (!ui->dirty) {
492 		mutex_unlock(&ui->ui_mutex);
493 		return 0;
494 	}
495 
496 	/*
497 	 * As an optimization, do not write orphan inodes to the media just
498 	 * because this is not needed.
499 	 */
500 	dbg_gen("inode %lu, mode %#x, nlink %u",
501 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
502 	if (inode->i_nlink) {
503 		err = ubifs_jnl_write_inode(c, inode);
504 		if (err)
505 			ubifs_err("can't write inode %lu, error %d",
506 				  inode->i_ino, err);
507 		else
508 			err = dbg_check_inode_size(c, inode, ui->ui_size);
509 	}
510 
511 	ui->dirty = 0;
512 	mutex_unlock(&ui->ui_mutex);
513 	ubifs_release_dirty_inode_budget(c, ui);
514 	return err;
515 }
516 
517 static void ubifs_evict_inode(struct inode *inode)
518 {
519 	int err;
520 	struct ubifs_info *c = inode->i_sb->s_fs_info;
521 	struct ubifs_inode *ui = ubifs_inode(inode);
522 
523 	if (ui->xattr)
524 		/*
525 		 * Extended attribute inode deletions are fully handled in
526 		 * 'ubifs_removexattr()'. These inodes are special and have
527 		 * limited usage, so there is nothing to do here.
528 		 */
529 		goto out;
530 
531 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
532 	ubifs_assert(!atomic_read(&inode->i_count));
533 
534 	truncate_inode_pages_final(&inode->i_data);
535 
536 	if (inode->i_nlink)
537 		goto done;
538 
539 	if (is_bad_inode(inode))
540 		goto out;
541 
542 	ui->ui_size = inode->i_size = 0;
543 	err = ubifs_jnl_delete_inode(c, inode);
544 	if (err)
545 		/*
546 		 * Worst case we have a lost orphan inode wasting space, so a
547 		 * simple error message is OK here.
548 		 */
549 		ubifs_err("can't delete inode %lu, error %d",
550 			  inode->i_ino, err);
551 
552 out:
553 	if (ui->dirty)
554 		ubifs_release_dirty_inode_budget(c, ui);
555 	else {
556 		/* We've deleted something - clean the "no space" flags */
557 		c->bi.nospace = c->bi.nospace_rp = 0;
558 		smp_wmb();
559 	}
560 done:
561 	clear_inode(inode);
562 }
563 #endif
564 
565 static void ubifs_dirty_inode(struct inode *inode, int flags)
566 {
567 	struct ubifs_inode *ui = ubifs_inode(inode);
568 
569 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
570 	if (!ui->dirty) {
571 		ui->dirty = 1;
572 		dbg_gen("inode %lu",  inode->i_ino);
573 	}
574 }
575 
576 #ifndef __UBOOT__
577 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
578 {
579 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
580 	unsigned long long free;
581 	__le32 *uuid = (__le32 *)c->uuid;
582 
583 	free = ubifs_get_free_space(c);
584 	dbg_gen("free space %lld bytes (%lld blocks)",
585 		free, free >> UBIFS_BLOCK_SHIFT);
586 
587 	buf->f_type = UBIFS_SUPER_MAGIC;
588 	buf->f_bsize = UBIFS_BLOCK_SIZE;
589 	buf->f_blocks = c->block_cnt;
590 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
591 	if (free > c->report_rp_size)
592 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
593 	else
594 		buf->f_bavail = 0;
595 	buf->f_files = 0;
596 	buf->f_ffree = 0;
597 	buf->f_namelen = UBIFS_MAX_NLEN;
598 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
599 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
600 	ubifs_assert(buf->f_bfree <= c->block_cnt);
601 	return 0;
602 }
603 
604 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
605 {
606 	struct ubifs_info *c = root->d_sb->s_fs_info;
607 
608 	if (c->mount_opts.unmount_mode == 2)
609 		seq_printf(s, ",fast_unmount");
610 	else if (c->mount_opts.unmount_mode == 1)
611 		seq_printf(s, ",norm_unmount");
612 
613 	if (c->mount_opts.bulk_read == 2)
614 		seq_printf(s, ",bulk_read");
615 	else if (c->mount_opts.bulk_read == 1)
616 		seq_printf(s, ",no_bulk_read");
617 
618 	if (c->mount_opts.chk_data_crc == 2)
619 		seq_printf(s, ",chk_data_crc");
620 	else if (c->mount_opts.chk_data_crc == 1)
621 		seq_printf(s, ",no_chk_data_crc");
622 
623 	if (c->mount_opts.override_compr) {
624 		seq_printf(s, ",compr=%s",
625 			   ubifs_compr_name(c->mount_opts.compr_type));
626 	}
627 
628 	return 0;
629 }
630 
631 static int ubifs_sync_fs(struct super_block *sb, int wait)
632 {
633 	int i, err;
634 	struct ubifs_info *c = sb->s_fs_info;
635 
636 	/*
637 	 * Zero @wait is just an advisory thing to help the file system shove
638 	 * lots of data into the queues, and there will be the second
639 	 * '->sync_fs()' call, with non-zero @wait.
640 	 */
641 	if (!wait)
642 		return 0;
643 
644 	/*
645 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
646 	 * do this if it waits for an already running commit.
647 	 */
648 	for (i = 0; i < c->jhead_cnt; i++) {
649 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
650 		if (err)
651 			return err;
652 	}
653 
654 	/*
655 	 * Strictly speaking, it is not necessary to commit the journal here,
656 	 * synchronizing write-buffers would be enough. But committing makes
657 	 * UBIFS free space predictions much more accurate, so we want to let
658 	 * the user be able to get more accurate results of 'statfs()' after
659 	 * they synchronize the file system.
660 	 */
661 	err = ubifs_run_commit(c);
662 	if (err)
663 		return err;
664 
665 	return ubi_sync(c->vi.ubi_num);
666 }
667 #endif
668 
669 /**
670  * init_constants_early - initialize UBIFS constants.
671  * @c: UBIFS file-system description object
672  *
673  * This function initialize UBIFS constants which do not need the superblock to
674  * be read. It also checks that the UBI volume satisfies basic UBIFS
675  * requirements. Returns zero in case of success and a negative error code in
676  * case of failure.
677  */
678 static int init_constants_early(struct ubifs_info *c)
679 {
680 	if (c->vi.corrupted) {
681 		ubifs_warn("UBI volume is corrupted - read-only mode");
682 		c->ro_media = 1;
683 	}
684 
685 	if (c->di.ro_mode) {
686 		ubifs_msg("read-only UBI device");
687 		c->ro_media = 1;
688 	}
689 
690 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
691 		ubifs_msg("static UBI volume - read-only mode");
692 		c->ro_media = 1;
693 	}
694 
695 	c->leb_cnt = c->vi.size;
696 	c->leb_size = c->vi.usable_leb_size;
697 	c->leb_start = c->di.leb_start;
698 	c->half_leb_size = c->leb_size / 2;
699 	c->min_io_size = c->di.min_io_size;
700 	c->min_io_shift = fls(c->min_io_size) - 1;
701 	c->max_write_size = c->di.max_write_size;
702 	c->max_write_shift = fls(c->max_write_size) - 1;
703 
704 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
705 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
706 			  c->leb_size, UBIFS_MIN_LEB_SZ);
707 		return -EINVAL;
708 	}
709 
710 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
711 		ubifs_err("too few LEBs (%d), min. is %d",
712 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
713 		return -EINVAL;
714 	}
715 
716 	if (!is_power_of_2(c->min_io_size)) {
717 		ubifs_err("bad min. I/O size %d", c->min_io_size);
718 		return -EINVAL;
719 	}
720 
721 	/*
722 	 * Maximum write size has to be greater or equivalent to min. I/O
723 	 * size, and be multiple of min. I/O size.
724 	 */
725 	if (c->max_write_size < c->min_io_size ||
726 	    c->max_write_size % c->min_io_size ||
727 	    !is_power_of_2(c->max_write_size)) {
728 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
729 			  c->max_write_size, c->min_io_size);
730 		return -EINVAL;
731 	}
732 
733 	/*
734 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
735 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
736 	 * less than 8.
737 	 */
738 	if (c->min_io_size < 8) {
739 		c->min_io_size = 8;
740 		c->min_io_shift = 3;
741 		if (c->max_write_size < c->min_io_size) {
742 			c->max_write_size = c->min_io_size;
743 			c->max_write_shift = c->min_io_shift;
744 		}
745 	}
746 
747 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
748 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
749 
750 	/*
751 	 * Initialize node length ranges which are mostly needed for node
752 	 * length validation.
753 	 */
754 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
755 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
756 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
757 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
758 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
759 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
760 
761 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
762 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
763 	c->ranges[UBIFS_ORPH_NODE].min_len =
764 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
765 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
766 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
767 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
768 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
769 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
770 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
771 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
772 	/*
773 	 * Minimum indexing node size is amended later when superblock is
774 	 * read and the key length is known.
775 	 */
776 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
777 	/*
778 	 * Maximum indexing node size is amended later when superblock is
779 	 * read and the fanout is known.
780 	 */
781 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
782 
783 	/*
784 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
785 	 * about these values.
786 	 */
787 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
788 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
789 
790 	/*
791 	 * Calculate how many bytes would be wasted at the end of LEB if it was
792 	 * fully filled with data nodes of maximum size. This is used in
793 	 * calculations when reporting free space.
794 	 */
795 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
796 
797 	/* Buffer size for bulk-reads */
798 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
799 	if (c->max_bu_buf_len > c->leb_size)
800 		c->max_bu_buf_len = c->leb_size;
801 	return 0;
802 }
803 
804 /**
805  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
806  * @c: UBIFS file-system description object
807  * @lnum: LEB the write-buffer was synchronized to
808  * @free: how many free bytes left in this LEB
809  * @pad: how many bytes were padded
810  *
811  * This is a callback function which is called by the I/O unit when the
812  * write-buffer is synchronized. We need this to correctly maintain space
813  * accounting in bud logical eraseblocks. This function returns zero in case of
814  * success and a negative error code in case of failure.
815  *
816  * This function actually belongs to the journal, but we keep it here because
817  * we want to keep it static.
818  */
819 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
820 {
821 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
822 }
823 
824 /*
825  * init_constants_sb - initialize UBIFS constants.
826  * @c: UBIFS file-system description object
827  *
828  * This is a helper function which initializes various UBIFS constants after
829  * the superblock has been read. It also checks various UBIFS parameters and
830  * makes sure they are all right. Returns zero in case of success and a
831  * negative error code in case of failure.
832  */
833 static int init_constants_sb(struct ubifs_info *c)
834 {
835 	int tmp, err;
836 	long long tmp64;
837 
838 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
839 	c->max_znode_sz = sizeof(struct ubifs_znode) +
840 				c->fanout * sizeof(struct ubifs_zbranch);
841 
842 	tmp = ubifs_idx_node_sz(c, 1);
843 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
844 	c->min_idx_node_sz = ALIGN(tmp, 8);
845 
846 	tmp = ubifs_idx_node_sz(c, c->fanout);
847 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
848 	c->max_idx_node_sz = ALIGN(tmp, 8);
849 
850 	/* Make sure LEB size is large enough to fit full commit */
851 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
852 	tmp = ALIGN(tmp, c->min_io_size);
853 	if (tmp > c->leb_size) {
854 		ubifs_err("too small LEB size %d, at least %d needed",
855 			  c->leb_size, tmp);
856 		return -EINVAL;
857 	}
858 
859 	/*
860 	 * Make sure that the log is large enough to fit reference nodes for
861 	 * all buds plus one reserved LEB.
862 	 */
863 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
864 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
865 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
866 	tmp /= c->leb_size;
867 	tmp += 1;
868 	if (c->log_lebs < tmp) {
869 		ubifs_err("too small log %d LEBs, required min. %d LEBs",
870 			  c->log_lebs, tmp);
871 		return -EINVAL;
872 	}
873 
874 	/*
875 	 * When budgeting we assume worst-case scenarios when the pages are not
876 	 * be compressed and direntries are of the maximum size.
877 	 *
878 	 * Note, data, which may be stored in inodes is budgeted separately, so
879 	 * it is not included into 'c->bi.inode_budget'.
880 	 */
881 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
882 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
883 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
884 
885 	/*
886 	 * When the amount of flash space used by buds becomes
887 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
888 	 * The writers are unblocked when the commit is finished. To avoid
889 	 * writers to be blocked UBIFS initiates background commit in advance,
890 	 * when number of bud bytes becomes above the limit defined below.
891 	 */
892 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
893 
894 	/*
895 	 * Ensure minimum journal size. All the bytes in the journal heads are
896 	 * considered to be used, when calculating the current journal usage.
897 	 * Consequently, if the journal is too small, UBIFS will treat it as
898 	 * always full.
899 	 */
900 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
901 	if (c->bg_bud_bytes < tmp64)
902 		c->bg_bud_bytes = tmp64;
903 	if (c->max_bud_bytes < tmp64 + c->leb_size)
904 		c->max_bud_bytes = tmp64 + c->leb_size;
905 
906 	err = ubifs_calc_lpt_geom(c);
907 	if (err)
908 		return err;
909 
910 	/* Initialize effective LEB size used in budgeting calculations */
911 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
912 	return 0;
913 }
914 
915 /*
916  * init_constants_master - initialize UBIFS constants.
917  * @c: UBIFS file-system description object
918  *
919  * This is a helper function which initializes various UBIFS constants after
920  * the master node has been read. It also checks various UBIFS parameters and
921  * makes sure they are all right.
922  */
923 static void init_constants_master(struct ubifs_info *c)
924 {
925 	long long tmp64;
926 
927 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
928 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
929 
930 	/*
931 	 * Calculate total amount of FS blocks. This number is not used
932 	 * internally because it does not make much sense for UBIFS, but it is
933 	 * necessary to report something for the 'statfs()' call.
934 	 *
935 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
936 	 * deletions, minimum LEBs for the index, and assume only one journal
937 	 * head is available.
938 	 */
939 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
940 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
941 	tmp64 = ubifs_reported_space(c, tmp64);
942 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
943 }
944 
945 /**
946  * take_gc_lnum - reserve GC LEB.
947  * @c: UBIFS file-system description object
948  *
949  * This function ensures that the LEB reserved for garbage collection is marked
950  * as "taken" in lprops. We also have to set free space to LEB size and dirty
951  * space to zero, because lprops may contain out-of-date information if the
952  * file-system was un-mounted before it has been committed. This function
953  * returns zero in case of success and a negative error code in case of
954  * failure.
955  */
956 static int take_gc_lnum(struct ubifs_info *c)
957 {
958 	int err;
959 
960 	if (c->gc_lnum == -1) {
961 		ubifs_err("no LEB for GC");
962 		return -EINVAL;
963 	}
964 
965 	/* And we have to tell lprops that this LEB is taken */
966 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
967 				  LPROPS_TAKEN, 0, 0);
968 	return err;
969 }
970 
971 /**
972  * alloc_wbufs - allocate write-buffers.
973  * @c: UBIFS file-system description object
974  *
975  * This helper function allocates and initializes UBIFS write-buffers. Returns
976  * zero in case of success and %-ENOMEM in case of failure.
977  */
978 static int alloc_wbufs(struct ubifs_info *c)
979 {
980 	int i, err;
981 
982 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
983 			   GFP_KERNEL);
984 	if (!c->jheads)
985 		return -ENOMEM;
986 
987 	/* Initialize journal heads */
988 	for (i = 0; i < c->jhead_cnt; i++) {
989 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
990 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
991 		if (err)
992 			return err;
993 
994 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
995 		c->jheads[i].wbuf.jhead = i;
996 		c->jheads[i].grouped = 1;
997 	}
998 
999 	/*
1000 	 * Garbage Collector head does not need to be synchronized by timer.
1001 	 * Also GC head nodes are not grouped.
1002 	 */
1003 	c->jheads[GCHD].wbuf.no_timer = 1;
1004 	c->jheads[GCHD].grouped = 0;
1005 
1006 	return 0;
1007 }
1008 
1009 /**
1010  * free_wbufs - free write-buffers.
1011  * @c: UBIFS file-system description object
1012  */
1013 static void free_wbufs(struct ubifs_info *c)
1014 {
1015 	int i;
1016 
1017 	if (c->jheads) {
1018 		for (i = 0; i < c->jhead_cnt; i++) {
1019 			kfree(c->jheads[i].wbuf.buf);
1020 			kfree(c->jheads[i].wbuf.inodes);
1021 		}
1022 		kfree(c->jheads);
1023 		c->jheads = NULL;
1024 	}
1025 }
1026 
1027 /**
1028  * free_orphans - free orphans.
1029  * @c: UBIFS file-system description object
1030  */
1031 static void free_orphans(struct ubifs_info *c)
1032 {
1033 	struct ubifs_orphan *orph;
1034 
1035 	while (c->orph_dnext) {
1036 		orph = c->orph_dnext;
1037 		c->orph_dnext = orph->dnext;
1038 		list_del(&orph->list);
1039 		kfree(orph);
1040 	}
1041 
1042 	while (!list_empty(&c->orph_list)) {
1043 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1044 		list_del(&orph->list);
1045 		kfree(orph);
1046 		ubifs_err("orphan list not empty at unmount");
1047 	}
1048 
1049 	vfree(c->orph_buf);
1050 	c->orph_buf = NULL;
1051 }
1052 
1053 #ifndef __UBOOT__
1054 /**
1055  * free_buds - free per-bud objects.
1056  * @c: UBIFS file-system description object
1057  */
1058 static void free_buds(struct ubifs_info *c)
1059 {
1060 	struct ubifs_bud *bud, *n;
1061 
1062 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1063 		kfree(bud);
1064 }
1065 #endif
1066 
1067 /**
1068  * check_volume_empty - check if the UBI volume is empty.
1069  * @c: UBIFS file-system description object
1070  *
1071  * This function checks if the UBIFS volume is empty by looking if its LEBs are
1072  * mapped or not. The result of checking is stored in the @c->empty variable.
1073  * Returns zero in case of success and a negative error code in case of
1074  * failure.
1075  */
1076 static int check_volume_empty(struct ubifs_info *c)
1077 {
1078 	int lnum, err;
1079 
1080 	c->empty = 1;
1081 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1082 		err = ubifs_is_mapped(c, lnum);
1083 		if (unlikely(err < 0))
1084 			return err;
1085 		if (err == 1) {
1086 			c->empty = 0;
1087 			break;
1088 		}
1089 
1090 		cond_resched();
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /*
1097  * UBIFS mount options.
1098  *
1099  * Opt_fast_unmount: do not run a journal commit before un-mounting
1100  * Opt_norm_unmount: run a journal commit before un-mounting
1101  * Opt_bulk_read: enable bulk-reads
1102  * Opt_no_bulk_read: disable bulk-reads
1103  * Opt_chk_data_crc: check CRCs when reading data nodes
1104  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1105  * Opt_override_compr: override default compressor
1106  * Opt_err: just end of array marker
1107  */
1108 enum {
1109 	Opt_fast_unmount,
1110 	Opt_norm_unmount,
1111 	Opt_bulk_read,
1112 	Opt_no_bulk_read,
1113 	Opt_chk_data_crc,
1114 	Opt_no_chk_data_crc,
1115 	Opt_override_compr,
1116 	Opt_err,
1117 };
1118 
1119 #ifndef __UBOOT__
1120 static const match_table_t tokens = {
1121 	{Opt_fast_unmount, "fast_unmount"},
1122 	{Opt_norm_unmount, "norm_unmount"},
1123 	{Opt_bulk_read, "bulk_read"},
1124 	{Opt_no_bulk_read, "no_bulk_read"},
1125 	{Opt_chk_data_crc, "chk_data_crc"},
1126 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1127 	{Opt_override_compr, "compr=%s"},
1128 	{Opt_err, NULL},
1129 };
1130 
1131 /**
1132  * parse_standard_option - parse a standard mount option.
1133  * @option: the option to parse
1134  *
1135  * Normally, standard mount options like "sync" are passed to file-systems as
1136  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1137  * be present in the options string. This function tries to deal with this
1138  * situation and parse standard options. Returns 0 if the option was not
1139  * recognized, and the corresponding integer flag if it was.
1140  *
1141  * UBIFS is only interested in the "sync" option, so do not check for anything
1142  * else.
1143  */
1144 static int parse_standard_option(const char *option)
1145 {
1146 	ubifs_msg("parse %s", option);
1147 	if (!strcmp(option, "sync"))
1148 		return MS_SYNCHRONOUS;
1149 	return 0;
1150 }
1151 
1152 /**
1153  * ubifs_parse_options - parse mount parameters.
1154  * @c: UBIFS file-system description object
1155  * @options: parameters to parse
1156  * @is_remount: non-zero if this is FS re-mount
1157  *
1158  * This function parses UBIFS mount options and returns zero in case success
1159  * and a negative error code in case of failure.
1160  */
1161 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1162 			       int is_remount)
1163 {
1164 	char *p;
1165 	substring_t args[MAX_OPT_ARGS];
1166 
1167 	if (!options)
1168 		return 0;
1169 
1170 	while ((p = strsep(&options, ","))) {
1171 		int token;
1172 
1173 		if (!*p)
1174 			continue;
1175 
1176 		token = match_token(p, tokens, args);
1177 		switch (token) {
1178 		/*
1179 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1180 		 * We accept them in order to be backward-compatible. But this
1181 		 * should be removed at some point.
1182 		 */
1183 		case Opt_fast_unmount:
1184 			c->mount_opts.unmount_mode = 2;
1185 			break;
1186 		case Opt_norm_unmount:
1187 			c->mount_opts.unmount_mode = 1;
1188 			break;
1189 		case Opt_bulk_read:
1190 			c->mount_opts.bulk_read = 2;
1191 			c->bulk_read = 1;
1192 			break;
1193 		case Opt_no_bulk_read:
1194 			c->mount_opts.bulk_read = 1;
1195 			c->bulk_read = 0;
1196 			break;
1197 		case Opt_chk_data_crc:
1198 			c->mount_opts.chk_data_crc = 2;
1199 			c->no_chk_data_crc = 0;
1200 			break;
1201 		case Opt_no_chk_data_crc:
1202 			c->mount_opts.chk_data_crc = 1;
1203 			c->no_chk_data_crc = 1;
1204 			break;
1205 		case Opt_override_compr:
1206 		{
1207 			char *name = match_strdup(&args[0]);
1208 
1209 			if (!name)
1210 				return -ENOMEM;
1211 			if (!strcmp(name, "none"))
1212 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1213 			else if (!strcmp(name, "lzo"))
1214 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1215 			else if (!strcmp(name, "zlib"))
1216 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1217 			else {
1218 				ubifs_err("unknown compressor \"%s\"", name);
1219 				kfree(name);
1220 				return -EINVAL;
1221 			}
1222 			kfree(name);
1223 			c->mount_opts.override_compr = 1;
1224 			c->default_compr = c->mount_opts.compr_type;
1225 			break;
1226 		}
1227 		default:
1228 		{
1229 			unsigned long flag;
1230 			struct super_block *sb = c->vfs_sb;
1231 
1232 			flag = parse_standard_option(p);
1233 			if (!flag) {
1234 				ubifs_err("unrecognized mount option \"%s\" or missing value",
1235 					  p);
1236 				return -EINVAL;
1237 			}
1238 			sb->s_flags |= flag;
1239 			break;
1240 		}
1241 		}
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 /**
1248  * destroy_journal - destroy journal data structures.
1249  * @c: UBIFS file-system description object
1250  *
1251  * This function destroys journal data structures including those that may have
1252  * been created by recovery functions.
1253  */
1254 static void destroy_journal(struct ubifs_info *c)
1255 {
1256 	while (!list_empty(&c->unclean_leb_list)) {
1257 		struct ubifs_unclean_leb *ucleb;
1258 
1259 		ucleb = list_entry(c->unclean_leb_list.next,
1260 				   struct ubifs_unclean_leb, list);
1261 		list_del(&ucleb->list);
1262 		kfree(ucleb);
1263 	}
1264 	while (!list_empty(&c->old_buds)) {
1265 		struct ubifs_bud *bud;
1266 
1267 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1268 		list_del(&bud->list);
1269 		kfree(bud);
1270 	}
1271 	ubifs_destroy_idx_gc(c);
1272 	ubifs_destroy_size_tree(c);
1273 	ubifs_tnc_close(c);
1274 	free_buds(c);
1275 }
1276 #endif
1277 
1278 /**
1279  * bu_init - initialize bulk-read information.
1280  * @c: UBIFS file-system description object
1281  */
1282 static void bu_init(struct ubifs_info *c)
1283 {
1284 	ubifs_assert(c->bulk_read == 1);
1285 
1286 	if (c->bu.buf)
1287 		return; /* Already initialized */
1288 
1289 again:
1290 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1291 	if (!c->bu.buf) {
1292 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1293 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1294 			goto again;
1295 		}
1296 
1297 		/* Just disable bulk-read */
1298 		ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1299 			   c->max_bu_buf_len);
1300 		c->mount_opts.bulk_read = 1;
1301 		c->bulk_read = 0;
1302 		return;
1303 	}
1304 }
1305 
1306 #ifndef __UBOOT__
1307 /**
1308  * check_free_space - check if there is enough free space to mount.
1309  * @c: UBIFS file-system description object
1310  *
1311  * This function makes sure UBIFS has enough free space to be mounted in
1312  * read/write mode. UBIFS must always have some free space to allow deletions.
1313  */
1314 static int check_free_space(struct ubifs_info *c)
1315 {
1316 	ubifs_assert(c->dark_wm > 0);
1317 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1318 		ubifs_err("insufficient free space to mount in R/W mode");
1319 		ubifs_dump_budg(c, &c->bi);
1320 		ubifs_dump_lprops(c);
1321 		return -ENOSPC;
1322 	}
1323 	return 0;
1324 }
1325 #endif
1326 
1327 /**
1328  * mount_ubifs - mount UBIFS file-system.
1329  * @c: UBIFS file-system description object
1330  *
1331  * This function mounts UBIFS file system. Returns zero in case of success and
1332  * a negative error code in case of failure.
1333  */
1334 static int mount_ubifs(struct ubifs_info *c)
1335 {
1336 	int err;
1337 	long long x, y;
1338 	size_t sz;
1339 
1340 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1341 #ifdef __UBOOT__
1342 	if (!c->ro_mount) {
1343 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1344 		return -EACCES;
1345 	}
1346 #endif
1347 
1348 	err = init_constants_early(c);
1349 	if (err)
1350 		return err;
1351 
1352 	err = ubifs_debugging_init(c);
1353 	if (err)
1354 		return err;
1355 
1356 	err = check_volume_empty(c);
1357 	if (err)
1358 		goto out_free;
1359 
1360 	if (c->empty && (c->ro_mount || c->ro_media)) {
1361 		/*
1362 		 * This UBI volume is empty, and read-only, or the file system
1363 		 * is mounted read-only - we cannot format it.
1364 		 */
1365 		ubifs_err("can't format empty UBI volume: read-only %s",
1366 			  c->ro_media ? "UBI volume" : "mount");
1367 		err = -EROFS;
1368 		goto out_free;
1369 	}
1370 
1371 	if (c->ro_media && !c->ro_mount) {
1372 		ubifs_err("cannot mount read-write - read-only media");
1373 		err = -EROFS;
1374 		goto out_free;
1375 	}
1376 
1377 	/*
1378 	 * The requirement for the buffer is that it should fit indexing B-tree
1379 	 * height amount of integers. We assume the height if the TNC tree will
1380 	 * never exceed 64.
1381 	 */
1382 	err = -ENOMEM;
1383 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1384 	if (!c->bottom_up_buf)
1385 		goto out_free;
1386 
1387 	c->sbuf = vmalloc(c->leb_size);
1388 	if (!c->sbuf)
1389 		goto out_free;
1390 
1391 #ifndef __UBOOT__
1392 	if (!c->ro_mount) {
1393 		c->ileb_buf = vmalloc(c->leb_size);
1394 		if (!c->ileb_buf)
1395 			goto out_free;
1396 	}
1397 #endif
1398 
1399 	if (c->bulk_read == 1)
1400 		bu_init(c);
1401 
1402 #ifndef __UBOOT__
1403 	if (!c->ro_mount) {
1404 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1405 					       GFP_KERNEL);
1406 		if (!c->write_reserve_buf)
1407 			goto out_free;
1408 	}
1409 #endif
1410 
1411 	c->mounting = 1;
1412 
1413 	err = ubifs_read_superblock(c);
1414 	if (err)
1415 		goto out_free;
1416 
1417 	/*
1418 	 * Make sure the compressor which is set as default in the superblock
1419 	 * or overridden by mount options is actually compiled in.
1420 	 */
1421 	if (!ubifs_compr_present(c->default_compr)) {
1422 		ubifs_err("'compressor \"%s\" is not compiled in",
1423 			  ubifs_compr_name(c->default_compr));
1424 		err = -ENOTSUPP;
1425 		goto out_free;
1426 	}
1427 
1428 	err = init_constants_sb(c);
1429 	if (err)
1430 		goto out_free;
1431 
1432 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1433 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1434 	c->cbuf = kmalloc(sz, GFP_NOFS);
1435 	if (!c->cbuf) {
1436 		err = -ENOMEM;
1437 		goto out_free;
1438 	}
1439 
1440 	err = alloc_wbufs(c);
1441 	if (err)
1442 		goto out_cbuf;
1443 
1444 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1445 #ifndef __UBOOT__
1446 	if (!c->ro_mount) {
1447 		/* Create background thread */
1448 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1449 		if (IS_ERR(c->bgt)) {
1450 			err = PTR_ERR(c->bgt);
1451 			c->bgt = NULL;
1452 			ubifs_err("cannot spawn \"%s\", error %d",
1453 				  c->bgt_name, err);
1454 			goto out_wbufs;
1455 		}
1456 		wake_up_process(c->bgt);
1457 	}
1458 #endif
1459 
1460 	err = ubifs_read_master(c);
1461 	if (err)
1462 		goto out_master;
1463 
1464 	init_constants_master(c);
1465 
1466 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1467 		ubifs_msg("recovery needed");
1468 		c->need_recovery = 1;
1469 	}
1470 
1471 #ifndef __UBOOT__
1472 	if (c->need_recovery && !c->ro_mount) {
1473 		err = ubifs_recover_inl_heads(c, c->sbuf);
1474 		if (err)
1475 			goto out_master;
1476 	}
1477 #endif
1478 
1479 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1480 	if (err)
1481 		goto out_master;
1482 
1483 #ifndef __UBOOT__
1484 	if (!c->ro_mount && c->space_fixup) {
1485 		err = ubifs_fixup_free_space(c);
1486 		if (err)
1487 			goto out_lpt;
1488 	}
1489 
1490 	if (!c->ro_mount) {
1491 		/*
1492 		 * Set the "dirty" flag so that if we reboot uncleanly we
1493 		 * will notice this immediately on the next mount.
1494 		 */
1495 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1496 		err = ubifs_write_master(c);
1497 		if (err)
1498 			goto out_lpt;
1499 	}
1500 #endif
1501 
1502 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1503 	if (err)
1504 		goto out_lpt;
1505 
1506 #ifndef __UBOOT__
1507 	err = ubifs_replay_journal(c);
1508 	if (err)
1509 		goto out_journal;
1510 #endif
1511 
1512 	/* Calculate 'min_idx_lebs' after journal replay */
1513 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1514 
1515 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1516 	if (err)
1517 		goto out_orphans;
1518 
1519 	if (!c->ro_mount) {
1520 #ifndef __UBOOT__
1521 		int lnum;
1522 
1523 		err = check_free_space(c);
1524 		if (err)
1525 			goto out_orphans;
1526 
1527 		/* Check for enough log space */
1528 		lnum = c->lhead_lnum + 1;
1529 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1530 			lnum = UBIFS_LOG_LNUM;
1531 		if (lnum == c->ltail_lnum) {
1532 			err = ubifs_consolidate_log(c);
1533 			if (err)
1534 				goto out_orphans;
1535 		}
1536 
1537 		if (c->need_recovery) {
1538 			err = ubifs_recover_size(c);
1539 			if (err)
1540 				goto out_orphans;
1541 			err = ubifs_rcvry_gc_commit(c);
1542 			if (err)
1543 				goto out_orphans;
1544 		} else {
1545 			err = take_gc_lnum(c);
1546 			if (err)
1547 				goto out_orphans;
1548 
1549 			/*
1550 			 * GC LEB may contain garbage if there was an unclean
1551 			 * reboot, and it should be un-mapped.
1552 			 */
1553 			err = ubifs_leb_unmap(c, c->gc_lnum);
1554 			if (err)
1555 				goto out_orphans;
1556 		}
1557 
1558 		err = dbg_check_lprops(c);
1559 		if (err)
1560 			goto out_orphans;
1561 #endif
1562 	} else if (c->need_recovery) {
1563 		err = ubifs_recover_size(c);
1564 		if (err)
1565 			goto out_orphans;
1566 	} else {
1567 		/*
1568 		 * Even if we mount read-only, we have to set space in GC LEB
1569 		 * to proper value because this affects UBIFS free space
1570 		 * reporting. We do not want to have a situation when
1571 		 * re-mounting from R/O to R/W changes amount of free space.
1572 		 */
1573 		err = take_gc_lnum(c);
1574 		if (err)
1575 			goto out_orphans;
1576 	}
1577 
1578 #ifndef __UBOOT__
1579 	spin_lock(&ubifs_infos_lock);
1580 	list_add_tail(&c->infos_list, &ubifs_infos);
1581 	spin_unlock(&ubifs_infos_lock);
1582 #endif
1583 
1584 	if (c->need_recovery) {
1585 		if (c->ro_mount)
1586 			ubifs_msg("recovery deferred");
1587 		else {
1588 			c->need_recovery = 0;
1589 			ubifs_msg("recovery completed");
1590 			/*
1591 			 * GC LEB has to be empty and taken at this point. But
1592 			 * the journal head LEBs may also be accounted as
1593 			 * "empty taken" if they are empty.
1594 			 */
1595 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1596 		}
1597 	} else
1598 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1599 
1600 	err = dbg_check_filesystem(c);
1601 	if (err)
1602 		goto out_infos;
1603 
1604 	err = dbg_debugfs_init_fs(c);
1605 	if (err)
1606 		goto out_infos;
1607 
1608 	c->mounting = 0;
1609 
1610 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1611 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1612 		  c->ro_mount ? ", R/O mode" : "");
1613 	x = (long long)c->main_lebs * c->leb_size;
1614 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1615 	ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1616 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1617 		  c->max_write_size);
1618 	ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1619 		  x, x >> 20, c->main_lebs,
1620 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1621 	ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1622 		  c->report_rp_size, c->report_rp_size >> 10);
1623 	ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1624 		  c->fmt_version, c->ro_compat_version,
1625 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1626 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1627 
1628 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1629 	dbg_gen("data journal heads:  %d",
1630 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1631 	dbg_gen("log LEBs:            %d (%d - %d)",
1632 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1633 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1634 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1635 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1636 		c->orph_lebs, c->orph_first, c->orph_last);
1637 	dbg_gen("main area LEBs:      %d (%d - %d)",
1638 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1639 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1640 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1641 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1642 		c->bi.old_idx_sz >> 20);
1643 	dbg_gen("key hash type:       %d", c->key_hash_type);
1644 	dbg_gen("tree fanout:         %d", c->fanout);
1645 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1646 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1647 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1648 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1649 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1650 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1651 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1652 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1653 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1654 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1655 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1656 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1657 	dbg_gen("dead watermark:      %d", c->dead_wm);
1658 	dbg_gen("dark watermark:      %d", c->dark_wm);
1659 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1660 	x = (long long)c->main_lebs * c->dark_wm;
1661 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1662 		x, x >> 10, x >> 20);
1663 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1664 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1665 		c->max_bud_bytes >> 20);
1666 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1667 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1668 		c->bg_bud_bytes >> 20);
1669 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1670 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1671 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1672 	dbg_gen("commit number:       %llu", c->cmt_no);
1673 
1674 	return 0;
1675 
1676 out_infos:
1677 	spin_lock(&ubifs_infos_lock);
1678 	list_del(&c->infos_list);
1679 	spin_unlock(&ubifs_infos_lock);
1680 out_orphans:
1681 	free_orphans(c);
1682 #ifndef __UBOOT__
1683 out_journal:
1684 	destroy_journal(c);
1685 #endif
1686 out_lpt:
1687 	ubifs_lpt_free(c, 0);
1688 out_master:
1689 	kfree(c->mst_node);
1690 	kfree(c->rcvrd_mst_node);
1691 	if (c->bgt)
1692 		kthread_stop(c->bgt);
1693 #ifndef __UBOOT__
1694 out_wbufs:
1695 #endif
1696 	free_wbufs(c);
1697 out_cbuf:
1698 	kfree(c->cbuf);
1699 out_free:
1700 	kfree(c->write_reserve_buf);
1701 	kfree(c->bu.buf);
1702 	vfree(c->ileb_buf);
1703 	vfree(c->sbuf);
1704 	kfree(c->bottom_up_buf);
1705 	ubifs_debugging_exit(c);
1706 	return err;
1707 }
1708 
1709 /**
1710  * ubifs_umount - un-mount UBIFS file-system.
1711  * @c: UBIFS file-system description object
1712  *
1713  * Note, this function is called to free allocated resourced when un-mounting,
1714  * as well as free resources when an error occurred while we were half way
1715  * through mounting (error path cleanup function). So it has to make sure the
1716  * resource was actually allocated before freeing it.
1717  */
1718 #ifndef __UBOOT__
1719 static void ubifs_umount(struct ubifs_info *c)
1720 #else
1721 void ubifs_umount(struct ubifs_info *c)
1722 #endif
1723 {
1724 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1725 		c->vi.vol_id);
1726 
1727 	dbg_debugfs_exit_fs(c);
1728 	spin_lock(&ubifs_infos_lock);
1729 	list_del(&c->infos_list);
1730 	spin_unlock(&ubifs_infos_lock);
1731 
1732 #ifndef __UBOOT__
1733 	if (c->bgt)
1734 		kthread_stop(c->bgt);
1735 
1736 	destroy_journal(c);
1737 #endif
1738 	free_wbufs(c);
1739 	free_orphans(c);
1740 	ubifs_lpt_free(c, 0);
1741 
1742 	kfree(c->cbuf);
1743 	kfree(c->rcvrd_mst_node);
1744 	kfree(c->mst_node);
1745 	kfree(c->write_reserve_buf);
1746 	kfree(c->bu.buf);
1747 	vfree(c->ileb_buf);
1748 	vfree(c->sbuf);
1749 	kfree(c->bottom_up_buf);
1750 	ubifs_debugging_exit(c);
1751 #ifdef __UBOOT__
1752 	/* Finally free U-Boot's global copy of superblock */
1753 	if (ubifs_sb != NULL) {
1754 		free(ubifs_sb->s_fs_info);
1755 		free(ubifs_sb);
1756 	}
1757 #endif
1758 }
1759 
1760 #ifndef __UBOOT__
1761 /**
1762  * ubifs_remount_rw - re-mount in read-write mode.
1763  * @c: UBIFS file-system description object
1764  *
1765  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1766  * mode. This function allocates the needed resources and re-mounts UBIFS in
1767  * read-write mode.
1768  */
1769 static int ubifs_remount_rw(struct ubifs_info *c)
1770 {
1771 	int err, lnum;
1772 
1773 	if (c->rw_incompat) {
1774 		ubifs_err("the file-system is not R/W-compatible");
1775 		ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1776 			  c->fmt_version, c->ro_compat_version,
1777 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1778 		return -EROFS;
1779 	}
1780 
1781 	mutex_lock(&c->umount_mutex);
1782 	dbg_save_space_info(c);
1783 	c->remounting_rw = 1;
1784 	c->ro_mount = 0;
1785 
1786 	if (c->space_fixup) {
1787 		err = ubifs_fixup_free_space(c);
1788 		if (err)
1789 			goto out;
1790 	}
1791 
1792 	err = check_free_space(c);
1793 	if (err)
1794 		goto out;
1795 
1796 	if (c->old_leb_cnt != c->leb_cnt) {
1797 		struct ubifs_sb_node *sup;
1798 
1799 		sup = ubifs_read_sb_node(c);
1800 		if (IS_ERR(sup)) {
1801 			err = PTR_ERR(sup);
1802 			goto out;
1803 		}
1804 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1805 		err = ubifs_write_sb_node(c, sup);
1806 		kfree(sup);
1807 		if (err)
1808 			goto out;
1809 	}
1810 
1811 	if (c->need_recovery) {
1812 		ubifs_msg("completing deferred recovery");
1813 		err = ubifs_write_rcvrd_mst_node(c);
1814 		if (err)
1815 			goto out;
1816 		err = ubifs_recover_size(c);
1817 		if (err)
1818 			goto out;
1819 		err = ubifs_clean_lebs(c, c->sbuf);
1820 		if (err)
1821 			goto out;
1822 		err = ubifs_recover_inl_heads(c, c->sbuf);
1823 		if (err)
1824 			goto out;
1825 	} else {
1826 		/* A readonly mount is not allowed to have orphans */
1827 		ubifs_assert(c->tot_orphans == 0);
1828 		err = ubifs_clear_orphans(c);
1829 		if (err)
1830 			goto out;
1831 	}
1832 
1833 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1834 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1835 		err = ubifs_write_master(c);
1836 		if (err)
1837 			goto out;
1838 	}
1839 
1840 	c->ileb_buf = vmalloc(c->leb_size);
1841 	if (!c->ileb_buf) {
1842 		err = -ENOMEM;
1843 		goto out;
1844 	}
1845 
1846 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1847 	if (!c->write_reserve_buf) {
1848 		err = -ENOMEM;
1849 		goto out;
1850 	}
1851 
1852 	err = ubifs_lpt_init(c, 0, 1);
1853 	if (err)
1854 		goto out;
1855 
1856 	/* Create background thread */
1857 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1858 	if (IS_ERR(c->bgt)) {
1859 		err = PTR_ERR(c->bgt);
1860 		c->bgt = NULL;
1861 		ubifs_err("cannot spawn \"%s\", error %d",
1862 			  c->bgt_name, err);
1863 		goto out;
1864 	}
1865 	wake_up_process(c->bgt);
1866 
1867 	c->orph_buf = vmalloc(c->leb_size);
1868 	if (!c->orph_buf) {
1869 		err = -ENOMEM;
1870 		goto out;
1871 	}
1872 
1873 	/* Check for enough log space */
1874 	lnum = c->lhead_lnum + 1;
1875 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1876 		lnum = UBIFS_LOG_LNUM;
1877 	if (lnum == c->ltail_lnum) {
1878 		err = ubifs_consolidate_log(c);
1879 		if (err)
1880 			goto out;
1881 	}
1882 
1883 	if (c->need_recovery)
1884 		err = ubifs_rcvry_gc_commit(c);
1885 	else
1886 		err = ubifs_leb_unmap(c, c->gc_lnum);
1887 	if (err)
1888 		goto out;
1889 
1890 	dbg_gen("re-mounted read-write");
1891 	c->remounting_rw = 0;
1892 
1893 	if (c->need_recovery) {
1894 		c->need_recovery = 0;
1895 		ubifs_msg("deferred recovery completed");
1896 	} else {
1897 		/*
1898 		 * Do not run the debugging space check if the were doing
1899 		 * recovery, because when we saved the information we had the
1900 		 * file-system in a state where the TNC and lprops has been
1901 		 * modified in memory, but all the I/O operations (including a
1902 		 * commit) were deferred. So the file-system was in
1903 		 * "non-committed" state. Now the file-system is in committed
1904 		 * state, and of course the amount of free space will change
1905 		 * because, for example, the old index size was imprecise.
1906 		 */
1907 		err = dbg_check_space_info(c);
1908 	}
1909 
1910 	mutex_unlock(&c->umount_mutex);
1911 	return err;
1912 
1913 out:
1914 	c->ro_mount = 1;
1915 	vfree(c->orph_buf);
1916 	c->orph_buf = NULL;
1917 	if (c->bgt) {
1918 		kthread_stop(c->bgt);
1919 		c->bgt = NULL;
1920 	}
1921 	free_wbufs(c);
1922 	kfree(c->write_reserve_buf);
1923 	c->write_reserve_buf = NULL;
1924 	vfree(c->ileb_buf);
1925 	c->ileb_buf = NULL;
1926 	ubifs_lpt_free(c, 1);
1927 	c->remounting_rw = 0;
1928 	mutex_unlock(&c->umount_mutex);
1929 	return err;
1930 }
1931 
1932 /**
1933  * ubifs_remount_ro - re-mount in read-only mode.
1934  * @c: UBIFS file-system description object
1935  *
1936  * We assume VFS has stopped writing. Possibly the background thread could be
1937  * running a commit, however kthread_stop will wait in that case.
1938  */
1939 static void ubifs_remount_ro(struct ubifs_info *c)
1940 {
1941 	int i, err;
1942 
1943 	ubifs_assert(!c->need_recovery);
1944 	ubifs_assert(!c->ro_mount);
1945 
1946 	mutex_lock(&c->umount_mutex);
1947 	if (c->bgt) {
1948 		kthread_stop(c->bgt);
1949 		c->bgt = NULL;
1950 	}
1951 
1952 	dbg_save_space_info(c);
1953 
1954 	for (i = 0; i < c->jhead_cnt; i++)
1955 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1956 
1957 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1958 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1959 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1960 	err = ubifs_write_master(c);
1961 	if (err)
1962 		ubifs_ro_mode(c, err);
1963 
1964 	vfree(c->orph_buf);
1965 	c->orph_buf = NULL;
1966 	kfree(c->write_reserve_buf);
1967 	c->write_reserve_buf = NULL;
1968 	vfree(c->ileb_buf);
1969 	c->ileb_buf = NULL;
1970 	ubifs_lpt_free(c, 1);
1971 	c->ro_mount = 1;
1972 	err = dbg_check_space_info(c);
1973 	if (err)
1974 		ubifs_ro_mode(c, err);
1975 	mutex_unlock(&c->umount_mutex);
1976 }
1977 
1978 static void ubifs_put_super(struct super_block *sb)
1979 {
1980 	int i;
1981 	struct ubifs_info *c = sb->s_fs_info;
1982 
1983 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1984 		  c->vi.vol_id);
1985 
1986 	/*
1987 	 * The following asserts are only valid if there has not been a failure
1988 	 * of the media. For example, there will be dirty inodes if we failed
1989 	 * to write them back because of I/O errors.
1990 	 */
1991 	if (!c->ro_error) {
1992 		ubifs_assert(c->bi.idx_growth == 0);
1993 		ubifs_assert(c->bi.dd_growth == 0);
1994 		ubifs_assert(c->bi.data_growth == 0);
1995 	}
1996 
1997 	/*
1998 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1999 	 * and file system un-mount. Namely, it prevents the shrinker from
2000 	 * picking this superblock for shrinking - it will be just skipped if
2001 	 * the mutex is locked.
2002 	 */
2003 	mutex_lock(&c->umount_mutex);
2004 	if (!c->ro_mount) {
2005 		/*
2006 		 * First of all kill the background thread to make sure it does
2007 		 * not interfere with un-mounting and freeing resources.
2008 		 */
2009 		if (c->bgt) {
2010 			kthread_stop(c->bgt);
2011 			c->bgt = NULL;
2012 		}
2013 
2014 		/*
2015 		 * On fatal errors c->ro_error is set to 1, in which case we do
2016 		 * not write the master node.
2017 		 */
2018 		if (!c->ro_error) {
2019 			int err;
2020 
2021 			/* Synchronize write-buffers */
2022 			for (i = 0; i < c->jhead_cnt; i++)
2023 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2024 
2025 			/*
2026 			 * We are being cleanly unmounted which means the
2027 			 * orphans were killed - indicate this in the master
2028 			 * node. Also save the reserved GC LEB number.
2029 			 */
2030 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2031 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2032 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2033 			err = ubifs_write_master(c);
2034 			if (err)
2035 				/*
2036 				 * Recovery will attempt to fix the master area
2037 				 * next mount, so we just print a message and
2038 				 * continue to unmount normally.
2039 				 */
2040 				ubifs_err("failed to write master node, error %d",
2041 					  err);
2042 		} else {
2043 #ifndef __UBOOT__
2044 			for (i = 0; i < c->jhead_cnt; i++)
2045 				/* Make sure write-buffer timers are canceled */
2046 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2047 #endif
2048 		}
2049 	}
2050 
2051 	ubifs_umount(c);
2052 #ifndef __UBOOT__
2053 	bdi_destroy(&c->bdi);
2054 #endif
2055 	ubi_close_volume(c->ubi);
2056 	mutex_unlock(&c->umount_mutex);
2057 }
2058 #endif
2059 
2060 #ifndef __UBOOT__
2061 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2062 {
2063 	int err;
2064 	struct ubifs_info *c = sb->s_fs_info;
2065 
2066 	sync_filesystem(sb);
2067 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2068 
2069 	err = ubifs_parse_options(c, data, 1);
2070 	if (err) {
2071 		ubifs_err("invalid or unknown remount parameter");
2072 		return err;
2073 	}
2074 
2075 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2076 		if (c->ro_error) {
2077 			ubifs_msg("cannot re-mount R/W due to prior errors");
2078 			return -EROFS;
2079 		}
2080 		if (c->ro_media) {
2081 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
2082 			return -EROFS;
2083 		}
2084 		err = ubifs_remount_rw(c);
2085 		if (err)
2086 			return err;
2087 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2088 		if (c->ro_error) {
2089 			ubifs_msg("cannot re-mount R/O due to prior errors");
2090 			return -EROFS;
2091 		}
2092 		ubifs_remount_ro(c);
2093 	}
2094 
2095 	if (c->bulk_read == 1)
2096 		bu_init(c);
2097 	else {
2098 		dbg_gen("disable bulk-read");
2099 		kfree(c->bu.buf);
2100 		c->bu.buf = NULL;
2101 	}
2102 
2103 	ubifs_assert(c->lst.taken_empty_lebs > 0);
2104 	return 0;
2105 }
2106 #endif
2107 
2108 const struct super_operations ubifs_super_operations = {
2109 	.alloc_inode   = ubifs_alloc_inode,
2110 #ifndef __UBOOT__
2111 	.destroy_inode = ubifs_destroy_inode,
2112 	.put_super     = ubifs_put_super,
2113 	.write_inode   = ubifs_write_inode,
2114 	.evict_inode   = ubifs_evict_inode,
2115 	.statfs        = ubifs_statfs,
2116 #endif
2117 	.dirty_inode   = ubifs_dirty_inode,
2118 #ifndef __UBOOT__
2119 	.remount_fs    = ubifs_remount_fs,
2120 	.show_options  = ubifs_show_options,
2121 	.sync_fs       = ubifs_sync_fs,
2122 #endif
2123 };
2124 
2125 /**
2126  * open_ubi - parse UBI device name string and open the UBI device.
2127  * @name: UBI volume name
2128  * @mode: UBI volume open mode
2129  *
2130  * The primary method of mounting UBIFS is by specifying the UBI volume
2131  * character device node path. However, UBIFS may also be mounted withoug any
2132  * character device node using one of the following methods:
2133  *
2134  * o ubiX_Y    - mount UBI device number X, volume Y;
2135  * o ubiY      - mount UBI device number 0, volume Y;
2136  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2137  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2138  *
2139  * Alternative '!' separator may be used instead of ':' (because some shells
2140  * like busybox may interpret ':' as an NFS host name separator). This function
2141  * returns UBI volume description object in case of success and a negative
2142  * error code in case of failure.
2143  */
2144 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2145 {
2146 #ifndef __UBOOT__
2147 	struct ubi_volume_desc *ubi;
2148 #endif
2149 	int dev, vol;
2150 	char *endptr;
2151 
2152 #ifndef __UBOOT__
2153 	/* First, try to open using the device node path method */
2154 	ubi = ubi_open_volume_path(name, mode);
2155 	if (!IS_ERR(ubi))
2156 		return ubi;
2157 #endif
2158 
2159 	/* Try the "nodev" method */
2160 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2161 		return ERR_PTR(-EINVAL);
2162 
2163 	/* ubi:NAME method */
2164 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2165 		return ubi_open_volume_nm(0, name + 4, mode);
2166 
2167 	if (!isdigit(name[3]))
2168 		return ERR_PTR(-EINVAL);
2169 
2170 	dev = simple_strtoul(name + 3, &endptr, 0);
2171 
2172 	/* ubiY method */
2173 	if (*endptr == '\0')
2174 		return ubi_open_volume(0, dev, mode);
2175 
2176 	/* ubiX_Y method */
2177 	if (*endptr == '_' && isdigit(endptr[1])) {
2178 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2179 		if (*endptr != '\0')
2180 			return ERR_PTR(-EINVAL);
2181 		return ubi_open_volume(dev, vol, mode);
2182 	}
2183 
2184 	/* ubiX:NAME method */
2185 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2186 		return ubi_open_volume_nm(dev, ++endptr, mode);
2187 
2188 	return ERR_PTR(-EINVAL);
2189 }
2190 
2191 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2192 {
2193 	struct ubifs_info *c;
2194 
2195 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2196 	if (c) {
2197 		spin_lock_init(&c->cnt_lock);
2198 		spin_lock_init(&c->cs_lock);
2199 		spin_lock_init(&c->buds_lock);
2200 		spin_lock_init(&c->space_lock);
2201 		spin_lock_init(&c->orphan_lock);
2202 		init_rwsem(&c->commit_sem);
2203 		mutex_init(&c->lp_mutex);
2204 		mutex_init(&c->tnc_mutex);
2205 		mutex_init(&c->log_mutex);
2206 		mutex_init(&c->mst_mutex);
2207 		mutex_init(&c->umount_mutex);
2208 		mutex_init(&c->bu_mutex);
2209 		mutex_init(&c->write_reserve_mutex);
2210 		init_waitqueue_head(&c->cmt_wq);
2211 		c->buds = RB_ROOT;
2212 		c->old_idx = RB_ROOT;
2213 		c->size_tree = RB_ROOT;
2214 		c->orph_tree = RB_ROOT;
2215 		INIT_LIST_HEAD(&c->infos_list);
2216 		INIT_LIST_HEAD(&c->idx_gc);
2217 		INIT_LIST_HEAD(&c->replay_list);
2218 		INIT_LIST_HEAD(&c->replay_buds);
2219 		INIT_LIST_HEAD(&c->uncat_list);
2220 		INIT_LIST_HEAD(&c->empty_list);
2221 		INIT_LIST_HEAD(&c->freeable_list);
2222 		INIT_LIST_HEAD(&c->frdi_idx_list);
2223 		INIT_LIST_HEAD(&c->unclean_leb_list);
2224 		INIT_LIST_HEAD(&c->old_buds);
2225 		INIT_LIST_HEAD(&c->orph_list);
2226 		INIT_LIST_HEAD(&c->orph_new);
2227 		c->no_chk_data_crc = 1;
2228 
2229 		c->highest_inum = UBIFS_FIRST_INO;
2230 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2231 
2232 		ubi_get_volume_info(ubi, &c->vi);
2233 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2234 	}
2235 	return c;
2236 }
2237 
2238 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2239 {
2240 	struct ubifs_info *c = sb->s_fs_info;
2241 	struct inode *root;
2242 	int err;
2243 
2244 	c->vfs_sb = sb;
2245 #ifndef __UBOOT__
2246 	/* Re-open the UBI device in read-write mode */
2247 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2248 #else
2249 	/* U-Boot read only mode */
2250 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2251 #endif
2252 
2253 	if (IS_ERR(c->ubi)) {
2254 		err = PTR_ERR(c->ubi);
2255 		goto out;
2256 	}
2257 
2258 #ifndef __UBOOT__
2259 	/*
2260 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2261 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2262 	 * which means the user would have to wait not just for their own I/O
2263 	 * but the read-ahead I/O as well i.e. completely pointless.
2264 	 *
2265 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2266 	 */
2267 	co>bdi.name = "ubifs",
2268 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
2269 	err  = bdi_init(&c->bdi);
2270 	if (err)
2271 		goto out_close;
2272 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2273 			   c->vi.ubi_num, c->vi.vol_id);
2274 	if (err)
2275 		goto out_bdi;
2276 
2277 	err = ubifs_parse_options(c, data, 0);
2278 	if (err)
2279 		goto out_bdi;
2280 
2281 	sb->s_bdi = &c->bdi;
2282 #endif
2283 	sb->s_fs_info = c;
2284 	sb->s_magic = UBIFS_SUPER_MAGIC;
2285 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2286 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2287 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2288 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2289 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2290 	sb->s_op = &ubifs_super_operations;
2291 
2292 	mutex_lock(&c->umount_mutex);
2293 	err = mount_ubifs(c);
2294 	if (err) {
2295 		ubifs_assert(err < 0);
2296 		goto out_unlock;
2297 	}
2298 
2299 	/* Read the root inode */
2300 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2301 	if (IS_ERR(root)) {
2302 		err = PTR_ERR(root);
2303 		goto out_umount;
2304 	}
2305 
2306 #ifndef __UBOOT__
2307 	sb->s_root = d_make_root(root);
2308 	if (!sb->s_root) {
2309 		err = -ENOMEM;
2310 		goto out_umount;
2311 	}
2312 #else
2313 	sb->s_root = NULL;
2314 #endif
2315 
2316 	mutex_unlock(&c->umount_mutex);
2317 	return 0;
2318 
2319 out_umount:
2320 	ubifs_umount(c);
2321 out_unlock:
2322 	mutex_unlock(&c->umount_mutex);
2323 #ifndef __UBOOT__
2324 out_bdi:
2325 	bdi_destroy(&c->bdi);
2326 out_close:
2327 #endif
2328 	ubi_close_volume(c->ubi);
2329 out:
2330 	return err;
2331 }
2332 
2333 static int sb_test(struct super_block *sb, void *data)
2334 {
2335 	struct ubifs_info *c1 = data;
2336 	struct ubifs_info *c = sb->s_fs_info;
2337 
2338 	return c->vi.cdev == c1->vi.cdev;
2339 }
2340 
2341 static int sb_set(struct super_block *sb, void *data)
2342 {
2343 	sb->s_fs_info = data;
2344 	return set_anon_super(sb, NULL);
2345 }
2346 
2347 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2348 {
2349 	struct super_block *s;
2350 	int err;
2351 
2352 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2353 	if (!s) {
2354 		err = -ENOMEM;
2355 		return ERR_PTR(err);
2356 	}
2357 
2358 	INIT_HLIST_NODE(&s->s_instances);
2359 	INIT_LIST_HEAD(&s->s_inodes);
2360 	s->s_time_gran = 1000000000;
2361 	s->s_flags = flags;
2362 
2363 	return s;
2364 }
2365 
2366 /**
2367  *	sget	-	find or create a superblock
2368  *	@type:	filesystem type superblock should belong to
2369  *	@test:	comparison callback
2370  *	@set:	setup callback
2371  *	@flags:	mount flags
2372  *	@data:	argument to each of them
2373  */
2374 struct super_block *sget(struct file_system_type *type,
2375 			int (*test)(struct super_block *,void *),
2376 			int (*set)(struct super_block *,void *),
2377 			int flags,
2378 			void *data)
2379 {
2380 	struct super_block *s = NULL;
2381 #ifndef __UBOOT__
2382 	struct super_block *old;
2383 #endif
2384 	int err;
2385 
2386 #ifndef __UBOOT__
2387 retry:
2388 	spin_lock(&sb_lock);
2389 	if (test) {
2390 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2391 			if (!test(old, data))
2392 				continue;
2393 			if (!grab_super(old))
2394 				goto retry;
2395 			if (s) {
2396 				up_write(&s->s_umount);
2397 				destroy_super(s);
2398 				s = NULL;
2399 			}
2400 			return old;
2401 		}
2402 	}
2403 #endif
2404 	if (!s) {
2405 		spin_unlock(&sb_lock);
2406 		s = alloc_super(type, flags);
2407 		if (!s)
2408 			return ERR_PTR(-ENOMEM);
2409 #ifndef __UBOOT__
2410 		goto retry;
2411 #endif
2412 	}
2413 
2414 	err = set(s, data);
2415 	if (err) {
2416 #ifndef __UBOOT__
2417 		spin_unlock(&sb_lock);
2418 		up_write(&s->s_umount);
2419 		destroy_super(s);
2420 #endif
2421 		return ERR_PTR(err);
2422 	}
2423 	s->s_type = type;
2424 #ifndef __UBOOT__
2425 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2426 #else
2427 	strncpy(s->s_id, type->name, sizeof(s->s_id));
2428 #endif
2429 	list_add_tail(&s->s_list, &super_blocks);
2430 	hlist_add_head(&s->s_instances, &type->fs_supers);
2431 #ifndef __UBOOT__
2432 	spin_unlock(&sb_lock);
2433 	get_filesystem(type);
2434 	register_shrinker(&s->s_shrink);
2435 #endif
2436 	return s;
2437 }
2438 
2439 EXPORT_SYMBOL(sget);
2440 
2441 
2442 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2443 			const char *name, void *data)
2444 {
2445 	struct ubi_volume_desc *ubi;
2446 	struct ubifs_info *c;
2447 	struct super_block *sb;
2448 	int err;
2449 
2450 	dbg_gen("name %s, flags %#x", name, flags);
2451 
2452 	/*
2453 	 * Get UBI device number and volume ID. Mount it read-only so far
2454 	 * because this might be a new mount point, and UBI allows only one
2455 	 * read-write user at a time.
2456 	 */
2457 	ubi = open_ubi(name, UBI_READONLY);
2458 	if (IS_ERR(ubi)) {
2459 		ubifs_err("cannot open \"%s\", error %d",
2460 			  name, (int)PTR_ERR(ubi));
2461 		return ERR_CAST(ubi);
2462 	}
2463 
2464 	c = alloc_ubifs_info(ubi);
2465 	if (!c) {
2466 		err = -ENOMEM;
2467 		goto out_close;
2468 	}
2469 
2470 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2471 
2472 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2473 	if (IS_ERR(sb)) {
2474 		err = PTR_ERR(sb);
2475 		kfree(c);
2476 		goto out_close;
2477 	}
2478 
2479 	if (sb->s_root) {
2480 		struct ubifs_info *c1 = sb->s_fs_info;
2481 		kfree(c);
2482 		/* A new mount point for already mounted UBIFS */
2483 		dbg_gen("this ubi volume is already mounted");
2484 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2485 			err = -EBUSY;
2486 			goto out_deact;
2487 		}
2488 	} else {
2489 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2490 		if (err)
2491 			goto out_deact;
2492 		/* We do not support atime */
2493 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2494 	}
2495 
2496 	/* 'fill_super()' opens ubi again so we must close it here */
2497 	ubi_close_volume(ubi);
2498 
2499 #ifdef __UBOOT__
2500 	ubifs_sb = sb;
2501 	return 0;
2502 #else
2503 	return dget(sb->s_root);
2504 #endif
2505 
2506 out_deact:
2507 #ifndef __UBOOT__
2508 	deactivate_locked_super(sb);
2509 #endif
2510 out_close:
2511 	ubi_close_volume(ubi);
2512 	return ERR_PTR(err);
2513 }
2514 
2515 static void kill_ubifs_super(struct super_block *s)
2516 {
2517 	struct ubifs_info *c = s->s_fs_info;
2518 #ifndef __UBOOT__
2519 	kill_anon_super(s);
2520 #endif
2521 	kfree(c);
2522 }
2523 
2524 static struct file_system_type ubifs_fs_type = {
2525 	.name    = "ubifs",
2526 	.owner   = THIS_MODULE,
2527 	.mount   = ubifs_mount,
2528 	.kill_sb = kill_ubifs_super,
2529 };
2530 #ifndef __UBOOT__
2531 MODULE_ALIAS_FS("ubifs");
2532 
2533 /*
2534  * Inode slab cache constructor.
2535  */
2536 static void inode_slab_ctor(void *obj)
2537 {
2538 	struct ubifs_inode *ui = obj;
2539 	inode_init_once(&ui->vfs_inode);
2540 }
2541 
2542 static int __init ubifs_init(void)
2543 #else
2544 int ubifs_init(void)
2545 #endif
2546 {
2547 	int err;
2548 
2549 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2550 
2551 	/* Make sure node sizes are 8-byte aligned */
2552 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2553 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2554 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2555 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2556 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2557 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2558 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2559 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2560 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2561 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2562 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2563 
2564 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2565 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2566 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2567 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2568 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2569 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2570 
2571 	/* Check min. node size */
2572 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2573 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2574 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2575 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2576 
2577 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2578 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2579 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2580 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2581 
2582 	/* Defined node sizes */
2583 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2584 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2585 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2586 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2587 
2588 	/*
2589 	 * We use 2 bit wide bit-fields to store compression type, which should
2590 	 * be amended if more compressors are added. The bit-fields are:
2591 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2592 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2593 	 */
2594 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2595 
2596 	/*
2597 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2598 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2599 	 */
2600 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2601 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2602 			  (unsigned int)PAGE_CACHE_SIZE);
2603 		return -EINVAL;
2604 	}
2605 
2606 #ifndef __UBOOT__
2607 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2608 				sizeof(struct ubifs_inode), 0,
2609 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2610 				&inode_slab_ctor);
2611 	if (!ubifs_inode_slab)
2612 		return -ENOMEM;
2613 
2614 	register_shrinker(&ubifs_shrinker_info);
2615 #endif
2616 
2617 	err = ubifs_compressors_init();
2618 	if (err)
2619 		goto out_shrinker;
2620 
2621 #ifndef __UBOOT__
2622 	err = dbg_debugfs_init();
2623 	if (err)
2624 		goto out_compr;
2625 
2626 	err = register_filesystem(&ubifs_fs_type);
2627 	if (err) {
2628 		ubifs_err("cannot register file system, error %d", err);
2629 		goto out_dbg;
2630 	}
2631 #endif
2632 	return 0;
2633 
2634 #ifndef __UBOOT__
2635 out_dbg:
2636 	dbg_debugfs_exit();
2637 out_compr:
2638 	ubifs_compressors_exit();
2639 #endif
2640 out_shrinker:
2641 #ifndef __UBOOT__
2642 	unregister_shrinker(&ubifs_shrinker_info);
2643 #endif
2644 	kmem_cache_destroy(ubifs_inode_slab);
2645 	return err;
2646 }
2647 /* late_initcall to let compressors initialize first */
2648 late_initcall(ubifs_init);
2649 
2650 #ifndef __UBOOT__
2651 static void __exit ubifs_exit(void)
2652 {
2653 	ubifs_assert(list_empty(&ubifs_infos));
2654 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2655 
2656 	dbg_debugfs_exit();
2657 	ubifs_compressors_exit();
2658 	unregister_shrinker(&ubifs_shrinker_info);
2659 
2660 	/*
2661 	 * Make sure all delayed rcu free inodes are flushed before we
2662 	 * destroy cache.
2663 	 */
2664 	rcu_barrier();
2665 	kmem_cache_destroy(ubifs_inode_slab);
2666 	unregister_filesystem(&ubifs_fs_type);
2667 }
2668 module_exit(ubifs_exit);
2669 
2670 MODULE_LICENSE("GPL");
2671 MODULE_VERSION(__stringify(UBIFS_VERSION));
2672 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2673 MODULE_DESCRIPTION("UBIFS - UBI File System");
2674 #else
2675 int uboot_ubifs_mount(char *vol_name)
2676 {
2677 	struct dentry *ret;
2678 	int flags;
2679 
2680 	/*
2681 	 * First unmount if allready mounted
2682 	 */
2683 	if (ubifs_sb)
2684 		ubifs_umount(ubifs_sb->s_fs_info);
2685 
2686 	/*
2687 	 * Mount in read-only mode
2688 	 */
2689 	flags = MS_RDONLY;
2690 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2691 	if (IS_ERR(ret)) {
2692 		printf("Error reading superblock on volume '%s' " \
2693 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2694 		return -1;
2695 	}
2696 
2697 	return 0;
2698 }
2699 #endif
2700