xref: /openbmc/u-boot/fs/ubifs/replay.c (revision 903fd79564a2b8874fa2e09fd6a04b7cb99690da)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Adrian Hunter
9  *          Artem Bityutskiy (Битюцкий Артём)
10  */
11 
12 /*
13  * This file contains journal replay code. It runs when the file-system is being
14  * mounted and requires no locking.
15  *
16  * The larger is the journal, the longer it takes to scan it, so the longer it
17  * takes to mount UBIFS. This is why the journal has limited size which may be
18  * changed depending on the system requirements. But a larger journal gives
19  * faster I/O speed because it writes the index less frequently. So this is a
20  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
21  * larger is the journal, the more memory its index may consume.
22  */
23 
24 #ifdef __UBOOT__
25 #include <linux/compat.h>
26 #include <linux/err.h>
27 #endif
28 #include "ubifs.h"
29 #include <linux/list_sort.h>
30 
31 /**
32  * struct replay_entry - replay list entry.
33  * @lnum: logical eraseblock number of the node
34  * @offs: node offset
35  * @len: node length
36  * @deletion: non-zero if this entry corresponds to a node deletion
37  * @sqnum: node sequence number
38  * @list: links the replay list
39  * @key: node key
40  * @nm: directory entry name
41  * @old_size: truncation old size
42  * @new_size: truncation new size
43  *
44  * The replay process first scans all buds and builds the replay list, then
45  * sorts the replay list in nodes sequence number order, and then inserts all
46  * the replay entries to the TNC.
47  */
48 struct replay_entry {
49 	int lnum;
50 	int offs;
51 	int len;
52 	unsigned int deletion:1;
53 	unsigned long long sqnum;
54 	struct list_head list;
55 	union ubifs_key key;
56 	union {
57 		struct qstr nm;
58 		struct {
59 			loff_t old_size;
60 			loff_t new_size;
61 		};
62 	};
63 };
64 
65 /**
66  * struct bud_entry - entry in the list of buds to replay.
67  * @list: next bud in the list
68  * @bud: bud description object
69  * @sqnum: reference node sequence number
70  * @free: free bytes in the bud
71  * @dirty: dirty bytes in the bud
72  */
73 struct bud_entry {
74 	struct list_head list;
75 	struct ubifs_bud *bud;
76 	unsigned long long sqnum;
77 	int free;
78 	int dirty;
79 };
80 
81 #ifndef __UBOOT__
82 /**
83  * set_bud_lprops - set free and dirty space used by a bud.
84  * @c: UBIFS file-system description object
85  * @b: bud entry which describes the bud
86  *
87  * This function makes sure the LEB properties of bud @b are set correctly
88  * after the replay. Returns zero in case of success and a negative error code
89  * in case of failure.
90  */
91 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
92 {
93 	const struct ubifs_lprops *lp;
94 	int err = 0, dirty;
95 
96 	ubifs_get_lprops(c);
97 
98 	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
99 	if (IS_ERR(lp)) {
100 		err = PTR_ERR(lp);
101 		goto out;
102 	}
103 
104 	dirty = lp->dirty;
105 	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
106 		/*
107 		 * The LEB was added to the journal with a starting offset of
108 		 * zero which means the LEB must have been empty. The LEB
109 		 * property values should be @lp->free == @c->leb_size and
110 		 * @lp->dirty == 0, but that is not the case. The reason is that
111 		 * the LEB had been garbage collected before it became the bud,
112 		 * and there was not commit inbetween. The garbage collector
113 		 * resets the free and dirty space without recording it
114 		 * anywhere except lprops, so if there was no commit then
115 		 * lprops does not have that information.
116 		 *
117 		 * We do not need to adjust free space because the scan has told
118 		 * us the exact value which is recorded in the replay entry as
119 		 * @b->free.
120 		 *
121 		 * However we do need to subtract from the dirty space the
122 		 * amount of space that the garbage collector reclaimed, which
123 		 * is the whole LEB minus the amount of space that was free.
124 		 */
125 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
126 			lp->free, lp->dirty);
127 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
128 			lp->free, lp->dirty);
129 		dirty -= c->leb_size - lp->free;
130 		/*
131 		 * If the replay order was perfect the dirty space would now be
132 		 * zero. The order is not perfect because the journal heads
133 		 * race with each other. This is not a problem but is does mean
134 		 * that the dirty space may temporarily exceed c->leb_size
135 		 * during the replay.
136 		 */
137 		if (dirty != 0)
138 			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
139 				b->bud->lnum, lp->free, lp->dirty, b->free,
140 				b->dirty);
141 	}
142 	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
143 			     lp->flags | LPROPS_TAKEN, 0);
144 	if (IS_ERR(lp)) {
145 		err = PTR_ERR(lp);
146 		goto out;
147 	}
148 
149 	/* Make sure the journal head points to the latest bud */
150 	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
151 				     b->bud->lnum, c->leb_size - b->free);
152 
153 out:
154 	ubifs_release_lprops(c);
155 	return err;
156 }
157 
158 /**
159  * set_buds_lprops - set free and dirty space for all replayed buds.
160  * @c: UBIFS file-system description object
161  *
162  * This function sets LEB properties for all replayed buds. Returns zero in
163  * case of success and a negative error code in case of failure.
164  */
165 static int set_buds_lprops(struct ubifs_info *c)
166 {
167 	struct bud_entry *b;
168 	int err;
169 
170 	list_for_each_entry(b, &c->replay_buds, list) {
171 		err = set_bud_lprops(c, b);
172 		if (err)
173 			return err;
174 	}
175 
176 	return 0;
177 }
178 
179 /**
180  * trun_remove_range - apply a replay entry for a truncation to the TNC.
181  * @c: UBIFS file-system description object
182  * @r: replay entry of truncation
183  */
184 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
185 {
186 	unsigned min_blk, max_blk;
187 	union ubifs_key min_key, max_key;
188 	ino_t ino;
189 
190 	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
191 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
192 		min_blk += 1;
193 
194 	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
195 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
196 		max_blk -= 1;
197 
198 	ino = key_inum(c, &r->key);
199 
200 	data_key_init(c, &min_key, ino, min_blk);
201 	data_key_init(c, &max_key, ino, max_blk);
202 
203 	return ubifs_tnc_remove_range(c, &min_key, &max_key);
204 }
205 
206 /**
207  * apply_replay_entry - apply a replay entry to the TNC.
208  * @c: UBIFS file-system description object
209  * @r: replay entry to apply
210  *
211  * Apply a replay entry to the TNC.
212  */
213 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
214 {
215 	int err;
216 
217 	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
218 		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
219 
220 	/* Set c->replay_sqnum to help deal with dangling branches. */
221 	c->replay_sqnum = r->sqnum;
222 
223 	if (is_hash_key(c, &r->key)) {
224 		if (r->deletion)
225 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
226 		else
227 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
228 					       r->len, &r->nm);
229 	} else {
230 		if (r->deletion)
231 			switch (key_type(c, &r->key)) {
232 			case UBIFS_INO_KEY:
233 			{
234 				ino_t inum = key_inum(c, &r->key);
235 
236 				err = ubifs_tnc_remove_ino(c, inum);
237 				break;
238 			}
239 			case UBIFS_TRUN_KEY:
240 				err = trun_remove_range(c, r);
241 				break;
242 			default:
243 				err = ubifs_tnc_remove(c, &r->key);
244 				break;
245 			}
246 		else
247 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
248 					    r->len);
249 		if (err)
250 			return err;
251 
252 		if (c->need_recovery)
253 			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
254 						       r->new_size);
255 	}
256 
257 	return err;
258 }
259 
260 /**
261  * replay_entries_cmp - compare 2 replay entries.
262  * @priv: UBIFS file-system description object
263  * @a: first replay entry
264  * @a: second replay entry
265  *
266  * This is a comparios function for 'list_sort()' which compares 2 replay
267  * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
268  * greater sequence number and %-1 otherwise.
269  */
270 static int replay_entries_cmp(void *priv, struct list_head *a,
271 			      struct list_head *b)
272 {
273 	struct replay_entry *ra, *rb;
274 
275 	cond_resched();
276 	if (a == b)
277 		return 0;
278 
279 	ra = list_entry(a, struct replay_entry, list);
280 	rb = list_entry(b, struct replay_entry, list);
281 	ubifs_assert(ra->sqnum != rb->sqnum);
282 	if (ra->sqnum > rb->sqnum)
283 		return 1;
284 	return -1;
285 }
286 
287 /**
288  * apply_replay_list - apply the replay list to the TNC.
289  * @c: UBIFS file-system description object
290  *
291  * Apply all entries in the replay list to the TNC. Returns zero in case of
292  * success and a negative error code in case of failure.
293  */
294 static int apply_replay_list(struct ubifs_info *c)
295 {
296 	struct replay_entry *r;
297 	int err;
298 
299 	list_sort(c, &c->replay_list, &replay_entries_cmp);
300 
301 	list_for_each_entry(r, &c->replay_list, list) {
302 		cond_resched();
303 
304 		err = apply_replay_entry(c, r);
305 		if (err)
306 			return err;
307 	}
308 
309 	return 0;
310 }
311 
312 /**
313  * destroy_replay_list - destroy the replay.
314  * @c: UBIFS file-system description object
315  *
316  * Destroy the replay list.
317  */
318 static void destroy_replay_list(struct ubifs_info *c)
319 {
320 	struct replay_entry *r, *tmp;
321 
322 	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
323 		if (is_hash_key(c, &r->key))
324 			kfree(r->nm.name);
325 		list_del(&r->list);
326 		kfree(r);
327 	}
328 }
329 
330 /**
331  * insert_node - insert a node to the replay list
332  * @c: UBIFS file-system description object
333  * @lnum: node logical eraseblock number
334  * @offs: node offset
335  * @len: node length
336  * @key: node key
337  * @sqnum: sequence number
338  * @deletion: non-zero if this is a deletion
339  * @used: number of bytes in use in a LEB
340  * @old_size: truncation old size
341  * @new_size: truncation new size
342  *
343  * This function inserts a scanned non-direntry node to the replay list. The
344  * replay list contains @struct replay_entry elements, and we sort this list in
345  * sequence number order before applying it. The replay list is applied at the
346  * very end of the replay process. Since the list is sorted in sequence number
347  * order, the older modifications are applied first. This function returns zero
348  * in case of success and a negative error code in case of failure.
349  */
350 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
351 		       union ubifs_key *key, unsigned long long sqnum,
352 		       int deletion, int *used, loff_t old_size,
353 		       loff_t new_size)
354 {
355 	struct replay_entry *r;
356 
357 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
358 
359 	if (key_inum(c, key) >= c->highest_inum)
360 		c->highest_inum = key_inum(c, key);
361 
362 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
363 	if (!r)
364 		return -ENOMEM;
365 
366 	if (!deletion)
367 		*used += ALIGN(len, 8);
368 	r->lnum = lnum;
369 	r->offs = offs;
370 	r->len = len;
371 	r->deletion = !!deletion;
372 	r->sqnum = sqnum;
373 	key_copy(c, key, &r->key);
374 	r->old_size = old_size;
375 	r->new_size = new_size;
376 
377 	list_add_tail(&r->list, &c->replay_list);
378 	return 0;
379 }
380 
381 /**
382  * insert_dent - insert a directory entry node into the replay list.
383  * @c: UBIFS file-system description object
384  * @lnum: node logical eraseblock number
385  * @offs: node offset
386  * @len: node length
387  * @key: node key
388  * @name: directory entry name
389  * @nlen: directory entry name length
390  * @sqnum: sequence number
391  * @deletion: non-zero if this is a deletion
392  * @used: number of bytes in use in a LEB
393  *
394  * This function inserts a scanned directory entry node or an extended
395  * attribute entry to the replay list. Returns zero in case of success and a
396  * negative error code in case of failure.
397  */
398 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
399 		       union ubifs_key *key, const char *name, int nlen,
400 		       unsigned long long sqnum, int deletion, int *used)
401 {
402 	struct replay_entry *r;
403 	char *nbuf;
404 
405 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
406 	if (key_inum(c, key) >= c->highest_inum)
407 		c->highest_inum = key_inum(c, key);
408 
409 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
410 	if (!r)
411 		return -ENOMEM;
412 
413 	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
414 	if (!nbuf) {
415 		kfree(r);
416 		return -ENOMEM;
417 	}
418 
419 	if (!deletion)
420 		*used += ALIGN(len, 8);
421 	r->lnum = lnum;
422 	r->offs = offs;
423 	r->len = len;
424 	r->deletion = !!deletion;
425 	r->sqnum = sqnum;
426 	key_copy(c, key, &r->key);
427 	r->nm.len = nlen;
428 	memcpy(nbuf, name, nlen);
429 	nbuf[nlen] = '\0';
430 	r->nm.name = nbuf;
431 
432 	list_add_tail(&r->list, &c->replay_list);
433 	return 0;
434 }
435 #endif
436 
437 /**
438  * ubifs_validate_entry - validate directory or extended attribute entry node.
439  * @c: UBIFS file-system description object
440  * @dent: the node to validate
441  *
442  * This function validates directory or extended attribute entry node @dent.
443  * Returns zero if the node is all right and a %-EINVAL if not.
444  */
445 int ubifs_validate_entry(struct ubifs_info *c,
446 			 const struct ubifs_dent_node *dent)
447 {
448 	int key_type = key_type_flash(c, dent->key);
449 	int nlen = le16_to_cpu(dent->nlen);
450 
451 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
452 	    dent->type >= UBIFS_ITYPES_CNT ||
453 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
454 	    strnlen(dent->name, nlen) != nlen ||
455 	    le64_to_cpu(dent->inum) > MAX_INUM) {
456 		ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
457 			  "directory entry" : "extended attribute entry");
458 		return -EINVAL;
459 	}
460 
461 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
462 		ubifs_err("bad key type %d", key_type);
463 		return -EINVAL;
464 	}
465 
466 	return 0;
467 }
468 
469 #ifndef __UBOOT__
470 /**
471  * is_last_bud - check if the bud is the last in the journal head.
472  * @c: UBIFS file-system description object
473  * @bud: bud description object
474  *
475  * This function checks if bud @bud is the last bud in its journal head. This
476  * information is then used by 'replay_bud()' to decide whether the bud can
477  * have corruptions or not. Indeed, only last buds can be corrupted by power
478  * cuts. Returns %1 if this is the last bud, and %0 if not.
479  */
480 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
481 {
482 	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
483 	struct ubifs_bud *next;
484 	uint32_t data;
485 	int err;
486 
487 	if (list_is_last(&bud->list, &jh->buds_list))
488 		return 1;
489 
490 	/*
491 	 * The following is a quirk to make sure we work correctly with UBIFS
492 	 * images used with older UBIFS.
493 	 *
494 	 * Normally, the last bud will be the last in the journal head's list
495 	 * of bud. However, there is one exception if the UBIFS image belongs
496 	 * to older UBIFS. This is fairly unlikely: one would need to use old
497 	 * UBIFS, then have a power cut exactly at the right point, and then
498 	 * try to mount this image with new UBIFS.
499 	 *
500 	 * The exception is: it is possible to have 2 buds A and B, A goes
501 	 * before B, and B is the last, bud B is contains no data, and bud A is
502 	 * corrupted at the end. The reason is that in older versions when the
503 	 * journal code switched the next bud (from A to B), it first added a
504 	 * log reference node for the new bud (B), and only after this it
505 	 * synchronized the write-buffer of current bud (A). But later this was
506 	 * changed and UBIFS started to always synchronize the write-buffer of
507 	 * the bud (A) before writing the log reference for the new bud (B).
508 	 *
509 	 * But because older UBIFS always synchronized A's write-buffer before
510 	 * writing to B, we can recognize this exceptional situation but
511 	 * checking the contents of bud B - if it is empty, then A can be
512 	 * treated as the last and we can recover it.
513 	 *
514 	 * TODO: remove this piece of code in a couple of years (today it is
515 	 * 16.05.2011).
516 	 */
517 	next = list_entry(bud->list.next, struct ubifs_bud, list);
518 	if (!list_is_last(&next->list, &jh->buds_list))
519 		return 0;
520 
521 	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
522 	if (err)
523 		return 0;
524 
525 	return data == 0xFFFFFFFF;
526 }
527 
528 /**
529  * replay_bud - replay a bud logical eraseblock.
530  * @c: UBIFS file-system description object
531  * @b: bud entry which describes the bud
532  *
533  * This function replays bud @bud, recovers it if needed, and adds all nodes
534  * from this bud to the replay list. Returns zero in case of success and a
535  * negative error code in case of failure.
536  */
537 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
538 {
539 	int is_last = is_last_bud(c, b->bud);
540 	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
541 	struct ubifs_scan_leb *sleb;
542 	struct ubifs_scan_node *snod;
543 
544 	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
545 		lnum, b->bud->jhead, offs, is_last);
546 
547 	if (c->need_recovery && is_last)
548 		/*
549 		 * Recover only last LEBs in the journal heads, because power
550 		 * cuts may cause corruptions only in these LEBs, because only
551 		 * these LEBs could possibly be written to at the power cut
552 		 * time.
553 		 */
554 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
555 	else
556 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
557 	if (IS_ERR(sleb))
558 		return PTR_ERR(sleb);
559 
560 	/*
561 	 * The bud does not have to start from offset zero - the beginning of
562 	 * the 'lnum' LEB may contain previously committed data. One of the
563 	 * things we have to do in replay is to correctly update lprops with
564 	 * newer information about this LEB.
565 	 *
566 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
567 	 * bytes of free space because it only contain information about
568 	 * committed data.
569 	 *
570 	 * But we know that real amount of free space is 'c->leb_size -
571 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
572 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
573 	 * how much of these data are dirty and update lprops with this
574 	 * information.
575 	 *
576 	 * The dirt in that LEB region is comprised of padding nodes, deletion
577 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
578 	 * nodes in this LEB. So instead of calculating clean space, we
579 	 * calculate used space ('used' variable).
580 	 */
581 
582 	list_for_each_entry(snod, &sleb->nodes, list) {
583 		int deletion = 0;
584 
585 		cond_resched();
586 
587 		if (snod->sqnum >= SQNUM_WATERMARK) {
588 			ubifs_err("file system's life ended");
589 			goto out_dump;
590 		}
591 
592 		if (snod->sqnum > c->max_sqnum)
593 			c->max_sqnum = snod->sqnum;
594 
595 		switch (snod->type) {
596 		case UBIFS_INO_NODE:
597 		{
598 			struct ubifs_ino_node *ino = snod->node;
599 			loff_t new_size = le64_to_cpu(ino->size);
600 
601 			if (le32_to_cpu(ino->nlink) == 0)
602 				deletion = 1;
603 			err = insert_node(c, lnum, snod->offs, snod->len,
604 					  &snod->key, snod->sqnum, deletion,
605 					  &used, 0, new_size);
606 			break;
607 		}
608 		case UBIFS_DATA_NODE:
609 		{
610 			struct ubifs_data_node *dn = snod->node;
611 			loff_t new_size = le32_to_cpu(dn->size) +
612 					  key_block(c, &snod->key) *
613 					  UBIFS_BLOCK_SIZE;
614 
615 			err = insert_node(c, lnum, snod->offs, snod->len,
616 					  &snod->key, snod->sqnum, deletion,
617 					  &used, 0, new_size);
618 			break;
619 		}
620 		case UBIFS_DENT_NODE:
621 		case UBIFS_XENT_NODE:
622 		{
623 			struct ubifs_dent_node *dent = snod->node;
624 
625 			err = ubifs_validate_entry(c, dent);
626 			if (err)
627 				goto out_dump;
628 
629 			err = insert_dent(c, lnum, snod->offs, snod->len,
630 					  &snod->key, dent->name,
631 					  le16_to_cpu(dent->nlen), snod->sqnum,
632 					  !le64_to_cpu(dent->inum), &used);
633 			break;
634 		}
635 		case UBIFS_TRUN_NODE:
636 		{
637 			struct ubifs_trun_node *trun = snod->node;
638 			loff_t old_size = le64_to_cpu(trun->old_size);
639 			loff_t new_size = le64_to_cpu(trun->new_size);
640 			union ubifs_key key;
641 
642 			/* Validate truncation node */
643 			if (old_size < 0 || old_size > c->max_inode_sz ||
644 			    new_size < 0 || new_size > c->max_inode_sz ||
645 			    old_size <= new_size) {
646 				ubifs_err("bad truncation node");
647 				goto out_dump;
648 			}
649 
650 			/*
651 			 * Create a fake truncation key just to use the same
652 			 * functions which expect nodes to have keys.
653 			 */
654 			trun_key_init(c, &key, le32_to_cpu(trun->inum));
655 			err = insert_node(c, lnum, snod->offs, snod->len,
656 					  &key, snod->sqnum, 1, &used,
657 					  old_size, new_size);
658 			break;
659 		}
660 		default:
661 			ubifs_err("unexpected node type %d in bud LEB %d:%d",
662 				  snod->type, lnum, snod->offs);
663 			err = -EINVAL;
664 			goto out_dump;
665 		}
666 		if (err)
667 			goto out;
668 	}
669 
670 	ubifs_assert(ubifs_search_bud(c, lnum));
671 	ubifs_assert(sleb->endpt - offs >= used);
672 	ubifs_assert(sleb->endpt % c->min_io_size == 0);
673 
674 	b->dirty = sleb->endpt - offs - used;
675 	b->free = c->leb_size - sleb->endpt;
676 	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
677 		lnum, b->dirty, b->free);
678 
679 out:
680 	ubifs_scan_destroy(sleb);
681 	return err;
682 
683 out_dump:
684 	ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
685 	ubifs_dump_node(c, snod->node);
686 	ubifs_scan_destroy(sleb);
687 	return -EINVAL;
688 }
689 
690 /**
691  * replay_buds - replay all buds.
692  * @c: UBIFS file-system description object
693  *
694  * This function returns zero in case of success and a negative error code in
695  * case of failure.
696  */
697 static int replay_buds(struct ubifs_info *c)
698 {
699 	struct bud_entry *b;
700 	int err;
701 	unsigned long long prev_sqnum = 0;
702 
703 	list_for_each_entry(b, &c->replay_buds, list) {
704 		err = replay_bud(c, b);
705 		if (err)
706 			return err;
707 
708 		ubifs_assert(b->sqnum > prev_sqnum);
709 		prev_sqnum = b->sqnum;
710 	}
711 
712 	return 0;
713 }
714 
715 /**
716  * destroy_bud_list - destroy the list of buds to replay.
717  * @c: UBIFS file-system description object
718  */
719 static void destroy_bud_list(struct ubifs_info *c)
720 {
721 	struct bud_entry *b;
722 
723 	while (!list_empty(&c->replay_buds)) {
724 		b = list_entry(c->replay_buds.next, struct bud_entry, list);
725 		list_del(&b->list);
726 		kfree(b);
727 	}
728 }
729 
730 /**
731  * add_replay_bud - add a bud to the list of buds to replay.
732  * @c: UBIFS file-system description object
733  * @lnum: bud logical eraseblock number to replay
734  * @offs: bud start offset
735  * @jhead: journal head to which this bud belongs
736  * @sqnum: reference node sequence number
737  *
738  * This function returns zero in case of success and a negative error code in
739  * case of failure.
740  */
741 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
742 			  unsigned long long sqnum)
743 {
744 	struct ubifs_bud *bud;
745 	struct bud_entry *b;
746 
747 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
748 
749 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
750 	if (!bud)
751 		return -ENOMEM;
752 
753 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
754 	if (!b) {
755 		kfree(bud);
756 		return -ENOMEM;
757 	}
758 
759 	bud->lnum = lnum;
760 	bud->start = offs;
761 	bud->jhead = jhead;
762 	ubifs_add_bud(c, bud);
763 
764 	b->bud = bud;
765 	b->sqnum = sqnum;
766 	list_add_tail(&b->list, &c->replay_buds);
767 
768 	return 0;
769 }
770 
771 /**
772  * validate_ref - validate a reference node.
773  * @c: UBIFS file-system description object
774  * @ref: the reference node to validate
775  * @ref_lnum: LEB number of the reference node
776  * @ref_offs: reference node offset
777  *
778  * This function returns %1 if a bud reference already exists for the LEB. %0 is
779  * returned if the reference node is new, otherwise %-EINVAL is returned if
780  * validation failed.
781  */
782 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
783 {
784 	struct ubifs_bud *bud;
785 	int lnum = le32_to_cpu(ref->lnum);
786 	unsigned int offs = le32_to_cpu(ref->offs);
787 	unsigned int jhead = le32_to_cpu(ref->jhead);
788 
789 	/*
790 	 * ref->offs may point to the end of LEB when the journal head points
791 	 * to the end of LEB and we write reference node for it during commit.
792 	 * So this is why we require 'offs > c->leb_size'.
793 	 */
794 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
795 	    lnum < c->main_first || offs > c->leb_size ||
796 	    offs & (c->min_io_size - 1))
797 		return -EINVAL;
798 
799 	/* Make sure we have not already looked at this bud */
800 	bud = ubifs_search_bud(c, lnum);
801 	if (bud) {
802 		if (bud->jhead == jhead && bud->start <= offs)
803 			return 1;
804 		ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
805 		return -EINVAL;
806 	}
807 
808 	return 0;
809 }
810 
811 /**
812  * replay_log_leb - replay a log logical eraseblock.
813  * @c: UBIFS file-system description object
814  * @lnum: log logical eraseblock to replay
815  * @offs: offset to start replaying from
816  * @sbuf: scan buffer
817  *
818  * This function replays a log LEB and returns zero in case of success, %1 if
819  * this is the last LEB in the log, and a negative error code in case of
820  * failure.
821  */
822 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
823 {
824 	int err;
825 	struct ubifs_scan_leb *sleb;
826 	struct ubifs_scan_node *snod;
827 	const struct ubifs_cs_node *node;
828 
829 	dbg_mnt("replay log LEB %d:%d", lnum, offs);
830 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
831 	if (IS_ERR(sleb)) {
832 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
833 			return PTR_ERR(sleb);
834 		/*
835 		 * Note, the below function will recover this log LEB only if
836 		 * it is the last, because unclean reboots can possibly corrupt
837 		 * only the tail of the log.
838 		 */
839 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
840 		if (IS_ERR(sleb))
841 			return PTR_ERR(sleb);
842 	}
843 
844 	if (sleb->nodes_cnt == 0) {
845 		err = 1;
846 		goto out;
847 	}
848 
849 	node = sleb->buf;
850 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
851 	if (c->cs_sqnum == 0) {
852 		/*
853 		 * This is the first log LEB we are looking at, make sure that
854 		 * the first node is a commit start node. Also record its
855 		 * sequence number so that UBIFS can determine where the log
856 		 * ends, because all nodes which were have higher sequence
857 		 * numbers.
858 		 */
859 		if (snod->type != UBIFS_CS_NODE) {
860 			ubifs_err("first log node at LEB %d:%d is not CS node",
861 				  lnum, offs);
862 			goto out_dump;
863 		}
864 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
865 			ubifs_err("first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
866 				  lnum, offs,
867 				  (unsigned long long)le64_to_cpu(node->cmt_no),
868 				  c->cmt_no);
869 			goto out_dump;
870 		}
871 
872 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
873 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
874 	}
875 
876 	if (snod->sqnum < c->cs_sqnum) {
877 		/*
878 		 * This means that we reached end of log and now
879 		 * look to the older log data, which was already
880 		 * committed but the eraseblock was not erased (UBIFS
881 		 * only un-maps it). So this basically means we have to
882 		 * exit with "end of log" code.
883 		 */
884 		err = 1;
885 		goto out;
886 	}
887 
888 	/* Make sure the first node sits at offset zero of the LEB */
889 	if (snod->offs != 0) {
890 		ubifs_err("first node is not at zero offset");
891 		goto out_dump;
892 	}
893 
894 	list_for_each_entry(snod, &sleb->nodes, list) {
895 		cond_resched();
896 
897 		if (snod->sqnum >= SQNUM_WATERMARK) {
898 			ubifs_err("file system's life ended");
899 			goto out_dump;
900 		}
901 
902 		if (snod->sqnum < c->cs_sqnum) {
903 			ubifs_err("bad sqnum %llu, commit sqnum %llu",
904 				  snod->sqnum, c->cs_sqnum);
905 			goto out_dump;
906 		}
907 
908 		if (snod->sqnum > c->max_sqnum)
909 			c->max_sqnum = snod->sqnum;
910 
911 		switch (snod->type) {
912 		case UBIFS_REF_NODE: {
913 			const struct ubifs_ref_node *ref = snod->node;
914 
915 			err = validate_ref(c, ref);
916 			if (err == 1)
917 				break; /* Already have this bud */
918 			if (err)
919 				goto out_dump;
920 
921 			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
922 					     le32_to_cpu(ref->offs),
923 					     le32_to_cpu(ref->jhead),
924 					     snod->sqnum);
925 			if (err)
926 				goto out;
927 
928 			break;
929 		}
930 		case UBIFS_CS_NODE:
931 			/* Make sure it sits at the beginning of LEB */
932 			if (snod->offs != 0) {
933 				ubifs_err("unexpected node in log");
934 				goto out_dump;
935 			}
936 			break;
937 		default:
938 			ubifs_err("unexpected node in log");
939 			goto out_dump;
940 		}
941 	}
942 
943 	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
944 		c->lhead_lnum = lnum;
945 		c->lhead_offs = sleb->endpt;
946 	}
947 
948 	err = !sleb->endpt;
949 out:
950 	ubifs_scan_destroy(sleb);
951 	return err;
952 
953 out_dump:
954 	ubifs_err("log error detected while replaying the log at LEB %d:%d",
955 		  lnum, offs + snod->offs);
956 	ubifs_dump_node(c, snod->node);
957 	ubifs_scan_destroy(sleb);
958 	return -EINVAL;
959 }
960 
961 /**
962  * take_ihead - update the status of the index head in lprops to 'taken'.
963  * @c: UBIFS file-system description object
964  *
965  * This function returns the amount of free space in the index head LEB or a
966  * negative error code.
967  */
968 static int take_ihead(struct ubifs_info *c)
969 {
970 	const struct ubifs_lprops *lp;
971 	int err, free;
972 
973 	ubifs_get_lprops(c);
974 
975 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
976 	if (IS_ERR(lp)) {
977 		err = PTR_ERR(lp);
978 		goto out;
979 	}
980 
981 	free = lp->free;
982 
983 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
984 			     lp->flags | LPROPS_TAKEN, 0);
985 	if (IS_ERR(lp)) {
986 		err = PTR_ERR(lp);
987 		goto out;
988 	}
989 
990 	err = free;
991 out:
992 	ubifs_release_lprops(c);
993 	return err;
994 }
995 
996 /**
997  * ubifs_replay_journal - replay journal.
998  * @c: UBIFS file-system description object
999  *
1000  * This function scans the journal, replays and cleans it up. It makes sure all
1001  * memory data structures related to uncommitted journal are built (dirty TNC
1002  * tree, tree of buds, modified lprops, etc).
1003  */
1004 int ubifs_replay_journal(struct ubifs_info *c)
1005 {
1006 	int err, lnum, free;
1007 
1008 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1009 
1010 	/* Update the status of the index head in lprops to 'taken' */
1011 	free = take_ihead(c);
1012 	if (free < 0)
1013 		return free; /* Error code */
1014 
1015 	if (c->ihead_offs != c->leb_size - free) {
1016 		ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1017 			  c->ihead_offs);
1018 		return -EINVAL;
1019 	}
1020 
1021 	dbg_mnt("start replaying the journal");
1022 	c->replaying = 1;
1023 	lnum = c->ltail_lnum = c->lhead_lnum;
1024 
1025 	do {
1026 		err = replay_log_leb(c, lnum, 0, c->sbuf);
1027 		if (err == 1)
1028 			/* We hit the end of the log */
1029 			break;
1030 		if (err)
1031 			goto out;
1032 		lnum = ubifs_next_log_lnum(c, lnum);
1033 	} while (lnum != c->ltail_lnum);
1034 
1035 	err = replay_buds(c);
1036 	if (err)
1037 		goto out;
1038 
1039 	err = apply_replay_list(c);
1040 	if (err)
1041 		goto out;
1042 
1043 	err = set_buds_lprops(c);
1044 	if (err)
1045 		goto out;
1046 
1047 	/*
1048 	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1049 	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1050 	 * depend on it. This means we have to initialize it to make sure
1051 	 * budgeting works properly.
1052 	 */
1053 	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1054 	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1055 
1056 	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1057 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1058 		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1059 		(unsigned long)c->highest_inum);
1060 out:
1061 	destroy_replay_list(c);
1062 	destroy_bud_list(c);
1063 	c->replaying = 0;
1064 	return err;
1065 }
1066 #endif
1067