xref: /openbmc/u-boot/fs/ubifs/io.c (revision a89c33db96a1e55319a286dd4c3c05ca64ac6bfd)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35  * mutexes defined inside these objects. Since sometimes upper-level code
36  * has to lock the write-buffer (e.g. journal space reservation code), many
37  * functions related to write-buffers have "nolock" suffix which means that the
38  * caller has to lock the write-buffer before calling this function.
39  *
40  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41  * aligned, UBIFS starts the next node from the aligned address, and the padded
42  * bytes may contain any rubbish. In other words, UBIFS does not put padding
43  * bytes in those small gaps. Common headers of nodes store real node lengths,
44  * not aligned lengths. Indexing nodes also store real lengths in branches.
45  *
46  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47  * uses padding nodes or padding bytes, if the padding node does not fit.
48  *
49  * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50  * every time they are read from the flash media.
51  */
52 
53 #include "ubifs.h"
54 
55 /**
56  * ubifs_ro_mode - switch UBIFS to read read-only mode.
57  * @c: UBIFS file-system description object
58  * @err: error code which is the reason of switching to R/O mode
59  */
60 void ubifs_ro_mode(struct ubifs_info *c, int err)
61 {
62 	if (!c->ro_media) {
63 		c->ro_media = 1;
64 		c->no_chk_data_crc = 0;
65 		ubifs_warn("switched to read-only mode, error %d", err);
66 		dbg_dump_stack();
67 	}
68 }
69 
70 /**
71  * ubifs_check_node - check node.
72  * @c: UBIFS file-system description object
73  * @buf: node to check
74  * @lnum: logical eraseblock number
75  * @offs: offset within the logical eraseblock
76  * @quiet: print no messages
77  * @must_chk_crc: indicates whether to always check the CRC
78  *
79  * This function checks node magic number and CRC checksum. This function also
80  * validates node length to prevent UBIFS from becoming crazy when an attacker
81  * feeds it a file-system image with incorrect nodes. For example, too large
82  * node length in the common header could cause UBIFS to read memory outside of
83  * allocated buffer when checking the CRC checksum.
84  *
85  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
86  * true, which is controlled by corresponding UBIFS mount option. However, if
87  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
88  * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
89  * ignored and CRC is checked.
90  *
91  * This function returns zero in case of success and %-EUCLEAN in case of bad
92  * CRC or magic.
93  */
94 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
95 		     int offs, int quiet, int must_chk_crc)
96 {
97 	int err = -EINVAL, type, node_len;
98 	uint32_t crc, node_crc, magic;
99 	const struct ubifs_ch *ch = buf;
100 
101 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
102 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
103 
104 	magic = le32_to_cpu(ch->magic);
105 	if (magic != UBIFS_NODE_MAGIC) {
106 		if (!quiet)
107 			ubifs_err("bad magic %#08x, expected %#08x",
108 				  magic, UBIFS_NODE_MAGIC);
109 		err = -EUCLEAN;
110 		goto out;
111 	}
112 
113 	type = ch->node_type;
114 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
115 		if (!quiet)
116 			ubifs_err("bad node type %d", type);
117 		goto out;
118 	}
119 
120 	node_len = le32_to_cpu(ch->len);
121 	if (node_len + offs > c->leb_size)
122 		goto out_len;
123 
124 	if (c->ranges[type].max_len == 0) {
125 		if (node_len != c->ranges[type].len)
126 			goto out_len;
127 	} else if (node_len < c->ranges[type].min_len ||
128 		   node_len > c->ranges[type].max_len)
129 		goto out_len;
130 
131 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
132 	     c->no_chk_data_crc)
133 		return 0;
134 
135 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
136 	node_crc = le32_to_cpu(ch->crc);
137 	if (crc != node_crc) {
138 		if (!quiet)
139 			ubifs_err("bad CRC: calculated %#08x, read %#08x",
140 				  crc, node_crc);
141 		err = -EUCLEAN;
142 		goto out;
143 	}
144 
145 	return 0;
146 
147 out_len:
148 	if (!quiet)
149 		ubifs_err("bad node length %d", node_len);
150 out:
151 	if (!quiet) {
152 		ubifs_err("bad node at LEB %d:%d", lnum, offs);
153 		dbg_dump_node(c, buf);
154 		dbg_dump_stack();
155 	}
156 	return err;
157 }
158 
159 /**
160  * ubifs_pad - pad flash space.
161  * @c: UBIFS file-system description object
162  * @buf: buffer to put padding to
163  * @pad: how many bytes to pad
164  *
165  * The flash media obliges us to write only in chunks of %c->min_io_size and
166  * when we have to write less data we add padding node to the write-buffer and
167  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
168  * media is being scanned. If the amount of wasted space is not enough to fit a
169  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
170  * pattern (%UBIFS_PADDING_BYTE).
171  *
172  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
173  * used.
174  */
175 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
176 {
177 	uint32_t crc;
178 
179 	ubifs_assert(pad >= 0 && !(pad & 7));
180 
181 	if (pad >= UBIFS_PAD_NODE_SZ) {
182 		struct ubifs_ch *ch = buf;
183 		struct ubifs_pad_node *pad_node = buf;
184 
185 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
186 		ch->node_type = UBIFS_PAD_NODE;
187 		ch->group_type = UBIFS_NO_NODE_GROUP;
188 		ch->padding[0] = ch->padding[1] = 0;
189 		ch->sqnum = 0;
190 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
191 		pad -= UBIFS_PAD_NODE_SZ;
192 		pad_node->pad_len = cpu_to_le32(pad);
193 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
194 		ch->crc = cpu_to_le32(crc);
195 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
196 	} else if (pad > 0)
197 		/* Too little space, padding node won't fit */
198 		memset(buf, UBIFS_PADDING_BYTE, pad);
199 }
200 
201 /**
202  * next_sqnum - get next sequence number.
203  * @c: UBIFS file-system description object
204  */
205 static unsigned long long next_sqnum(struct ubifs_info *c)
206 {
207 	unsigned long long sqnum;
208 
209 	spin_lock(&c->cnt_lock);
210 	sqnum = ++c->max_sqnum;
211 	spin_unlock(&c->cnt_lock);
212 
213 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
214 		if (sqnum >= SQNUM_WATERMARK) {
215 			ubifs_err("sequence number overflow %llu, end of life",
216 				  sqnum);
217 			ubifs_ro_mode(c, -EINVAL);
218 		}
219 		ubifs_warn("running out of sequence numbers, end of life soon");
220 	}
221 
222 	return sqnum;
223 }
224 
225 /**
226  * ubifs_prepare_node - prepare node to be written to flash.
227  * @c: UBIFS file-system description object
228  * @node: the node to pad
229  * @len: node length
230  * @pad: if the buffer has to be padded
231  *
232  * This function prepares node at @node to be written to the media - it
233  * calculates node CRC, fills the common header, and adds proper padding up to
234  * the next minimum I/O unit if @pad is not zero.
235  */
236 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
237 {
238 	uint32_t crc;
239 	struct ubifs_ch *ch = node;
240 	unsigned long long sqnum = next_sqnum(c);
241 
242 	ubifs_assert(len >= UBIFS_CH_SZ);
243 
244 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
245 	ch->len = cpu_to_le32(len);
246 	ch->group_type = UBIFS_NO_NODE_GROUP;
247 	ch->sqnum = cpu_to_le64(sqnum);
248 	ch->padding[0] = ch->padding[1] = 0;
249 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
250 	ch->crc = cpu_to_le32(crc);
251 
252 	if (pad) {
253 		len = ALIGN(len, 8);
254 		pad = ALIGN(len, c->min_io_size) - len;
255 		ubifs_pad(c, node + len, pad);
256 	}
257 }
258 
259 /**
260  * ubifs_read_node - read node.
261  * @c: UBIFS file-system description object
262  * @buf: buffer to read to
263  * @type: node type
264  * @len: node length (not aligned)
265  * @lnum: logical eraseblock number
266  * @offs: offset within the logical eraseblock
267  *
268  * This function reads a node of known type and and length, checks it and
269  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
270  * and a negative error code in case of failure.
271  */
272 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
273 		    int lnum, int offs)
274 {
275 	int err, l;
276 	struct ubifs_ch *ch = buf;
277 
278 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
279 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
280 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
281 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
282 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
283 
284 	err = ubi_read(c->ubi, lnum, buf, offs, len);
285 	if (err && err != -EBADMSG) {
286 		ubifs_err("cannot read node %d from LEB %d:%d, error %d",
287 			  type, lnum, offs, err);
288 		return err;
289 	}
290 
291 	if (type != ch->node_type) {
292 		ubifs_err("bad node type (%d but expected %d)",
293 			  ch->node_type, type);
294 		goto out;
295 	}
296 
297 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
298 	if (err) {
299 		ubifs_err("expected node type %d", type);
300 		return err;
301 	}
302 
303 	l = le32_to_cpu(ch->len);
304 	if (l != len) {
305 		ubifs_err("bad node length %d, expected %d", l, len);
306 		goto out;
307 	}
308 
309 	return 0;
310 
311 out:
312 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
313 	dbg_dump_node(c, buf);
314 	dbg_dump_stack();
315 	return -EINVAL;
316 }
317