xref: /openbmc/u-boot/drivers/timer/tsc_timer.c (revision 49a97162ea573b8646ba29162b71fc2c29e9c5d4)
183d290c5STom Rini // SPDX-License-Identifier: GPL-2.0+
27030f27eSBin Meng /*
37030f27eSBin Meng  * Copyright (c) 2012 The Chromium OS Authors.
47030f27eSBin Meng  *
57030f27eSBin Meng  * TSC calibration codes are adapted from Linux kernel
67030f27eSBin Meng  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
77030f27eSBin Meng  */
87030f27eSBin Meng 
97030f27eSBin Meng #include <common.h>
107030f27eSBin Meng #include <dm.h>
117030f27eSBin Meng #include <malloc.h>
127030f27eSBin Meng #include <timer.h>
130b992e49SBin Meng #include <asm/cpu.h>
147030f27eSBin Meng #include <asm/io.h>
157030f27eSBin Meng #include <asm/i8254.h>
167030f27eSBin Meng #include <asm/ibmpc.h>
177030f27eSBin Meng #include <asm/msr.h>
187030f27eSBin Meng #include <asm/u-boot-x86.h>
197030f27eSBin Meng 
203df39ef1SBin Meng #define MAX_NUM_FREQS	9
217030f27eSBin Meng 
22*ca7db866SBernhard Messerklinger #define INTEL_FAM6_SKYLAKE_MOBILE	0x4E
23*ca7db866SBernhard Messerklinger #define INTEL_FAM6_ATOM_GOLDMONT	0x5C /* Apollo Lake */
24*ca7db866SBernhard Messerklinger #define INTEL_FAM6_SKYLAKE_DESKTOP	0x5E
25*ca7db866SBernhard Messerklinger #define INTEL_FAM6_ATOM_GOLDMONT_X	0x5F /* Denverton */
26*ca7db866SBernhard Messerklinger #define INTEL_FAM6_KABYLAKE_MOBILE	0x8E
27*ca7db866SBernhard Messerklinger #define INTEL_FAM6_KABYLAKE_DESKTOP	0x9E
28*ca7db866SBernhard Messerklinger 
297030f27eSBin Meng DECLARE_GLOBAL_DATA_PTR;
307030f27eSBin Meng 
31*ca7db866SBernhard Messerklinger /*
32*ca7db866SBernhard Messerklinger  * native_calibrate_tsc
33*ca7db866SBernhard Messerklinger  * Determine TSC frequency via CPUID, else return 0.
34*ca7db866SBernhard Messerklinger  */
native_calibrate_tsc(void)35*ca7db866SBernhard Messerklinger static unsigned long native_calibrate_tsc(void)
36*ca7db866SBernhard Messerklinger {
37*ca7db866SBernhard Messerklinger 	struct cpuid_result tsc_info;
38*ca7db866SBernhard Messerklinger 	unsigned int crystal_freq;
39*ca7db866SBernhard Messerklinger 
40*ca7db866SBernhard Messerklinger 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
41*ca7db866SBernhard Messerklinger 		return 0;
42*ca7db866SBernhard Messerklinger 
43*ca7db866SBernhard Messerklinger 	if (cpuid_eax(0) < 0x15)
44*ca7db866SBernhard Messerklinger 		return 0;
45*ca7db866SBernhard Messerklinger 
46*ca7db866SBernhard Messerklinger 	tsc_info = cpuid(0x15);
47*ca7db866SBernhard Messerklinger 
48*ca7db866SBernhard Messerklinger 	if (tsc_info.ebx == 0 || tsc_info.eax == 0)
49*ca7db866SBernhard Messerklinger 		return 0;
50*ca7db866SBernhard Messerklinger 
51*ca7db866SBernhard Messerklinger 	crystal_freq = tsc_info.ecx / 1000;
52*ca7db866SBernhard Messerklinger 
53*ca7db866SBernhard Messerklinger 	if (!crystal_freq) {
54*ca7db866SBernhard Messerklinger 		switch (gd->arch.x86_model) {
55*ca7db866SBernhard Messerklinger 		case INTEL_FAM6_SKYLAKE_MOBILE:
56*ca7db866SBernhard Messerklinger 		case INTEL_FAM6_SKYLAKE_DESKTOP:
57*ca7db866SBernhard Messerklinger 		case INTEL_FAM6_KABYLAKE_MOBILE:
58*ca7db866SBernhard Messerklinger 		case INTEL_FAM6_KABYLAKE_DESKTOP:
59*ca7db866SBernhard Messerklinger 			crystal_freq = 24000;	/* 24.0 MHz */
60*ca7db866SBernhard Messerklinger 			break;
61*ca7db866SBernhard Messerklinger 		case INTEL_FAM6_ATOM_GOLDMONT_X:
62*ca7db866SBernhard Messerklinger 			crystal_freq = 25000;	/* 25.0 MHz */
63*ca7db866SBernhard Messerklinger 			break;
64*ca7db866SBernhard Messerklinger 		case INTEL_FAM6_ATOM_GOLDMONT:
65*ca7db866SBernhard Messerklinger 			crystal_freq = 19200;	/* 19.2 MHz */
66*ca7db866SBernhard Messerklinger 			break;
67*ca7db866SBernhard Messerklinger 		default:
68*ca7db866SBernhard Messerklinger 			return 0;
69*ca7db866SBernhard Messerklinger 		}
70*ca7db866SBernhard Messerklinger 	}
71*ca7db866SBernhard Messerklinger 
72*ca7db866SBernhard Messerklinger 	return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
73*ca7db866SBernhard Messerklinger }
74*ca7db866SBernhard Messerklinger 
cpu_mhz_from_cpuid(void)75acc2482fSChristian Gmeiner static unsigned long cpu_mhz_from_cpuid(void)
76acc2482fSChristian Gmeiner {
77acc2482fSChristian Gmeiner 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
78acc2482fSChristian Gmeiner 		return 0;
79acc2482fSChristian Gmeiner 
80acc2482fSChristian Gmeiner 	if (cpuid_eax(0) < 0x16)
81acc2482fSChristian Gmeiner 		return 0;
82acc2482fSChristian Gmeiner 
83acc2482fSChristian Gmeiner 	return cpuid_eax(0x16);
84acc2482fSChristian Gmeiner }
85acc2482fSChristian Gmeiner 
867030f27eSBin Meng /*
877030f27eSBin Meng  * According to Intel 64 and IA-32 System Programming Guide,
887030f27eSBin Meng  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
897030f27eSBin Meng  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
907030f27eSBin Meng  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
917030f27eSBin Meng  * so we need manually differentiate SoC families. This is what the
927030f27eSBin Meng  * field msr_plat does.
937030f27eSBin Meng  */
947030f27eSBin Meng struct freq_desc {
957030f27eSBin Meng 	u8 x86_family;	/* CPU family */
967030f27eSBin Meng 	u8 x86_model;	/* model */
977030f27eSBin Meng 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
987030f27eSBin Meng 	u8 msr_plat;
997030f27eSBin Meng 	u32 freqs[MAX_NUM_FREQS];
1007030f27eSBin Meng };
1017030f27eSBin Meng 
1027030f27eSBin Meng static struct freq_desc freq_desc_tables[] = {
1037030f27eSBin Meng 	/* PNW */
1043df39ef1SBin Meng 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
1057030f27eSBin Meng 	/* CLV+ */
1063df39ef1SBin Meng 	{ 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
107c6367748SBin Meng 	/* TNG - Intel Atom processor Z3400 series */
1083df39ef1SBin Meng 	{ 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
109c6367748SBin Meng 	/* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
1103df39ef1SBin Meng 	{ 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
111c6367748SBin Meng 	/* ANN - Intel Atom processor Z3500 series */
1123df39ef1SBin Meng 	{ 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
1133df39ef1SBin Meng 	/* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
1143df39ef1SBin Meng 	{ 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
1153df39ef1SBin Meng 			80000, 93300, 90000, 88900, 87500 } },
1167030f27eSBin Meng 	/* Ivybridge */
1173df39ef1SBin Meng 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
1187030f27eSBin Meng };
1197030f27eSBin Meng 
match_cpu(u8 family,u8 model)1207030f27eSBin Meng static int match_cpu(u8 family, u8 model)
1217030f27eSBin Meng {
1227030f27eSBin Meng 	int i;
1237030f27eSBin Meng 
1247030f27eSBin Meng 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
1257030f27eSBin Meng 		if ((family == freq_desc_tables[i].x86_family) &&
1267030f27eSBin Meng 		    (model == freq_desc_tables[i].x86_model))
1277030f27eSBin Meng 			return i;
1287030f27eSBin Meng 	}
1297030f27eSBin Meng 
1307030f27eSBin Meng 	return -1;
1317030f27eSBin Meng }
1327030f27eSBin Meng 
1337030f27eSBin Meng /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
1347030f27eSBin Meng #define id_to_freq(cpu_index, freq_id) \
1357030f27eSBin Meng 	(freq_desc_tables[cpu_index].freqs[freq_id])
1367030f27eSBin Meng 
1377030f27eSBin Meng /*
138167a4016SBin Meng  * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
139167a4016SBin Meng  * reliable and the frequency is known (provided by HW).
1407030f27eSBin Meng  *
141167a4016SBin Meng  * On these platforms PIT/HPET is generally not available so calibration won't
142167a4016SBin Meng  * work at all and there is no other clocksource to act as a watchdog for the
143167a4016SBin Meng  * TSC, so we have no other choice than to trust it.
144167a4016SBin Meng  *
145167a4016SBin Meng  * Returns the TSC frequency in MHz or 0 if HW does not provide it.
1467030f27eSBin Meng  */
cpu_mhz_from_msr(void)147167a4016SBin Meng static unsigned long __maybe_unused cpu_mhz_from_msr(void)
1487030f27eSBin Meng {
1497030f27eSBin Meng 	u32 lo, hi, ratio, freq_id, freq;
1507030f27eSBin Meng 	unsigned long res;
1517030f27eSBin Meng 	int cpu_index;
1527030f27eSBin Meng 
1530b992e49SBin Meng 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
1540b992e49SBin Meng 		return 0;
1550b992e49SBin Meng 
1567030f27eSBin Meng 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
1577030f27eSBin Meng 	if (cpu_index < 0)
1587030f27eSBin Meng 		return 0;
1597030f27eSBin Meng 
1607030f27eSBin Meng 	if (freq_desc_tables[cpu_index].msr_plat) {
1617030f27eSBin Meng 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
162d92e9c8dSBin Meng 		ratio = (lo >> 8) & 0xff;
1637030f27eSBin Meng 	} else {
1647030f27eSBin Meng 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
1657030f27eSBin Meng 		ratio = (hi >> 8) & 0x1f;
1667030f27eSBin Meng 	}
1677030f27eSBin Meng 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
1687030f27eSBin Meng 
1697030f27eSBin Meng 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
1707030f27eSBin Meng 		/* TODO: Figure out how best to deal with this */
171f5757154SBin Meng 		freq = 100000;
1727030f27eSBin Meng 		debug("Using frequency: %u KHz\n", freq);
1737030f27eSBin Meng 	} else {
1747030f27eSBin Meng 		/* Get FSB FREQ ID */
1757030f27eSBin Meng 		rdmsr(MSR_FSB_FREQ, lo, hi);
1767030f27eSBin Meng 		freq_id = lo & 0x7;
1777030f27eSBin Meng 		freq = id_to_freq(cpu_index, freq_id);
1787030f27eSBin Meng 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
1797030f27eSBin Meng 		      freq_id, freq);
1807030f27eSBin Meng 	}
1817030f27eSBin Meng 
1827030f27eSBin Meng 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
1837030f27eSBin Meng 	res = freq * ratio / 1000;
1847030f27eSBin Meng 	debug("TSC runs at %lu MHz\n", res);
1857030f27eSBin Meng 
1867030f27eSBin Meng 	return res;
1877030f27eSBin Meng }
1887030f27eSBin Meng 
1897030f27eSBin Meng /*
1907030f27eSBin Meng  * This reads the current MSB of the PIT counter, and
1917030f27eSBin Meng  * checks if we are running on sufficiently fast and
1927030f27eSBin Meng  * non-virtualized hardware.
1937030f27eSBin Meng  *
1947030f27eSBin Meng  * Our expectations are:
1957030f27eSBin Meng  *
1967030f27eSBin Meng  *  - the PIT is running at roughly 1.19MHz
1977030f27eSBin Meng  *
1987030f27eSBin Meng  *  - each IO is going to take about 1us on real hardware,
1997030f27eSBin Meng  *    but we allow it to be much faster (by a factor of 10) or
2007030f27eSBin Meng  *    _slightly_ slower (ie we allow up to a 2us read+counter
2017030f27eSBin Meng  *    update - anything else implies a unacceptably slow CPU
2027030f27eSBin Meng  *    or PIT for the fast calibration to work.
2037030f27eSBin Meng  *
2047030f27eSBin Meng  *  - with 256 PIT ticks to read the value, we have 214us to
2057030f27eSBin Meng  *    see the same MSB (and overhead like doing a single TSC
2067030f27eSBin Meng  *    read per MSB value etc).
2077030f27eSBin Meng  *
2087030f27eSBin Meng  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
2097030f27eSBin Meng  *    them each to take about a microsecond on real hardware.
2107030f27eSBin Meng  *    So we expect a count value of around 100. But we'll be
2117030f27eSBin Meng  *    generous, and accept anything over 50.
2127030f27eSBin Meng  *
2137030f27eSBin Meng  *  - if the PIT is stuck, and we see *many* more reads, we
2147030f27eSBin Meng  *    return early (and the next caller of pit_expect_msb()
2157030f27eSBin Meng  *    then consider it a failure when they don't see the
2167030f27eSBin Meng  *    next expected value).
2177030f27eSBin Meng  *
2187030f27eSBin Meng  * These expectations mean that we know that we have seen the
2197030f27eSBin Meng  * transition from one expected value to another with a fairly
2207030f27eSBin Meng  * high accuracy, and we didn't miss any events. We can thus
2217030f27eSBin Meng  * use the TSC value at the transitions to calculate a pretty
2227030f27eSBin Meng  * good value for the TSC frequencty.
2237030f27eSBin Meng  */
pit_verify_msb(unsigned char val)2247030f27eSBin Meng static inline int pit_verify_msb(unsigned char val)
2257030f27eSBin Meng {
2267030f27eSBin Meng 	/* Ignore LSB */
2277030f27eSBin Meng 	inb(0x42);
2287030f27eSBin Meng 	return inb(0x42) == val;
2297030f27eSBin Meng }
2307030f27eSBin Meng 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)2317030f27eSBin Meng static inline int pit_expect_msb(unsigned char val, u64 *tscp,
2327030f27eSBin Meng 				 unsigned long *deltap)
2337030f27eSBin Meng {
2347030f27eSBin Meng 	int count;
2357030f27eSBin Meng 	u64 tsc = 0, prev_tsc = 0;
2367030f27eSBin Meng 
2377030f27eSBin Meng 	for (count = 0; count < 50000; count++) {
2387030f27eSBin Meng 		if (!pit_verify_msb(val))
2397030f27eSBin Meng 			break;
2407030f27eSBin Meng 		prev_tsc = tsc;
2417030f27eSBin Meng 		tsc = rdtsc();
2427030f27eSBin Meng 	}
2437030f27eSBin Meng 	*deltap = rdtsc() - prev_tsc;
2447030f27eSBin Meng 	*tscp = tsc;
2457030f27eSBin Meng 
2467030f27eSBin Meng 	/*
2477030f27eSBin Meng 	 * We require _some_ success, but the quality control
2487030f27eSBin Meng 	 * will be based on the error terms on the TSC values.
2497030f27eSBin Meng 	 */
2507030f27eSBin Meng 	return count > 5;
2517030f27eSBin Meng }
2527030f27eSBin Meng 
2537030f27eSBin Meng /*
2547030f27eSBin Meng  * How many MSB values do we want to see? We aim for
2557030f27eSBin Meng  * a maximum error rate of 500ppm (in practice the
2567030f27eSBin Meng  * real error is much smaller), but refuse to spend
2577030f27eSBin Meng  * more than 50ms on it.
2587030f27eSBin Meng  */
2597030f27eSBin Meng #define MAX_QUICK_PIT_MS 50
2607030f27eSBin Meng #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
2617030f27eSBin Meng 
quick_pit_calibrate(void)2627030f27eSBin Meng static unsigned long __maybe_unused quick_pit_calibrate(void)
2637030f27eSBin Meng {
2647030f27eSBin Meng 	int i;
2657030f27eSBin Meng 	u64 tsc, delta;
2667030f27eSBin Meng 	unsigned long d1, d2;
2677030f27eSBin Meng 
2687030f27eSBin Meng 	/* Set the Gate high, disable speaker */
2697030f27eSBin Meng 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
2707030f27eSBin Meng 
2717030f27eSBin Meng 	/*
2727030f27eSBin Meng 	 * Counter 2, mode 0 (one-shot), binary count
2737030f27eSBin Meng 	 *
2747030f27eSBin Meng 	 * NOTE! Mode 2 decrements by two (and then the
2757030f27eSBin Meng 	 * output is flipped each time, giving the same
2767030f27eSBin Meng 	 * final output frequency as a decrement-by-one),
2777030f27eSBin Meng 	 * so mode 0 is much better when looking at the
2787030f27eSBin Meng 	 * individual counts.
2797030f27eSBin Meng 	 */
2807030f27eSBin Meng 	outb(0xb0, 0x43);
2817030f27eSBin Meng 
2827030f27eSBin Meng 	/* Start at 0xffff */
2837030f27eSBin Meng 	outb(0xff, 0x42);
2847030f27eSBin Meng 	outb(0xff, 0x42);
2857030f27eSBin Meng 
2867030f27eSBin Meng 	/*
2877030f27eSBin Meng 	 * The PIT starts counting at the next edge, so we
2887030f27eSBin Meng 	 * need to delay for a microsecond. The easiest way
2897030f27eSBin Meng 	 * to do that is to just read back the 16-bit counter
2907030f27eSBin Meng 	 * once from the PIT.
2917030f27eSBin Meng 	 */
2927030f27eSBin Meng 	pit_verify_msb(0);
2937030f27eSBin Meng 
2947030f27eSBin Meng 	if (pit_expect_msb(0xff, &tsc, &d1)) {
2957030f27eSBin Meng 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
2967030f27eSBin Meng 			if (!pit_expect_msb(0xff-i, &delta, &d2))
2977030f27eSBin Meng 				break;
2987030f27eSBin Meng 
2997030f27eSBin Meng 			/*
3007030f27eSBin Meng 			 * Iterate until the error is less than 500 ppm
3017030f27eSBin Meng 			 */
3027030f27eSBin Meng 			delta -= tsc;
3037030f27eSBin Meng 			if (d1+d2 >= delta >> 11)
3047030f27eSBin Meng 				continue;
3057030f27eSBin Meng 
3067030f27eSBin Meng 			/*
3077030f27eSBin Meng 			 * Check the PIT one more time to verify that
3087030f27eSBin Meng 			 * all TSC reads were stable wrt the PIT.
3097030f27eSBin Meng 			 *
3107030f27eSBin Meng 			 * This also guarantees serialization of the
3117030f27eSBin Meng 			 * last cycle read ('d2') in pit_expect_msb.
3127030f27eSBin Meng 			 */
3137030f27eSBin Meng 			if (!pit_verify_msb(0xfe - i))
3147030f27eSBin Meng 				break;
3157030f27eSBin Meng 			goto success;
3167030f27eSBin Meng 		}
3177030f27eSBin Meng 	}
3187030f27eSBin Meng 	debug("Fast TSC calibration failed\n");
3197030f27eSBin Meng 	return 0;
3207030f27eSBin Meng 
3217030f27eSBin Meng success:
3227030f27eSBin Meng 	/*
3237030f27eSBin Meng 	 * Ok, if we get here, then we've seen the
3247030f27eSBin Meng 	 * MSB of the PIT decrement 'i' times, and the
3257030f27eSBin Meng 	 * error has shrunk to less than 500 ppm.
3267030f27eSBin Meng 	 *
3277030f27eSBin Meng 	 * As a result, we can depend on there not being
3287030f27eSBin Meng 	 * any odd delays anywhere, and the TSC reads are
3297030f27eSBin Meng 	 * reliable (within the error).
3307030f27eSBin Meng 	 *
3317030f27eSBin Meng 	 * kHz = ticks / time-in-seconds / 1000;
3327030f27eSBin Meng 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
3337030f27eSBin Meng 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
3347030f27eSBin Meng 	 */
3357030f27eSBin Meng 	delta *= PIT_TICK_RATE;
3367030f27eSBin Meng 	delta /= (i*256*1000);
3377030f27eSBin Meng 	debug("Fast TSC calibration using PIT\n");
3387030f27eSBin Meng 	return delta / 1000;
3397030f27eSBin Meng }
3407030f27eSBin Meng 
3417030f27eSBin Meng /* Get the speed of the TSC timer in MHz */
get_tbclk_mhz(void)3427030f27eSBin Meng unsigned notrace long get_tbclk_mhz(void)
3437030f27eSBin Meng {
3447030f27eSBin Meng 	return get_tbclk() / 1000000;
3457030f27eSBin Meng }
3467030f27eSBin Meng 
get_ms_timer(void)3477030f27eSBin Meng static ulong get_ms_timer(void)
3487030f27eSBin Meng {
3497030f27eSBin Meng 	return (get_ticks() * 1000) / get_tbclk();
3507030f27eSBin Meng }
3517030f27eSBin Meng 
get_timer(ulong base)3527030f27eSBin Meng ulong get_timer(ulong base)
3537030f27eSBin Meng {
3547030f27eSBin Meng 	return get_ms_timer() - base;
3557030f27eSBin Meng }
3567030f27eSBin Meng 
timer_get_us(void)3577030f27eSBin Meng ulong notrace timer_get_us(void)
3587030f27eSBin Meng {
3597030f27eSBin Meng 	return get_ticks() / get_tbclk_mhz();
3607030f27eSBin Meng }
3617030f27eSBin Meng 
timer_get_boot_us(void)3627030f27eSBin Meng ulong timer_get_boot_us(void)
3637030f27eSBin Meng {
3647030f27eSBin Meng 	return timer_get_us();
3657030f27eSBin Meng }
3667030f27eSBin Meng 
__udelay(unsigned long usec)3677030f27eSBin Meng void __udelay(unsigned long usec)
3687030f27eSBin Meng {
3697030f27eSBin Meng 	u64 now = get_ticks();
3707030f27eSBin Meng 	u64 stop;
3717030f27eSBin Meng 
3727030f27eSBin Meng 	stop = now + usec * get_tbclk_mhz();
3737030f27eSBin Meng 
3747030f27eSBin Meng 	while ((int64_t)(stop - get_ticks()) > 0)
3757030f27eSBin Meng #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
3767030f27eSBin Meng 		/*
3777030f27eSBin Meng 		 * Add a 'pause' instruction on qemu target,
3787030f27eSBin Meng 		 * to give other VCPUs a chance to run.
3797030f27eSBin Meng 		 */
3807030f27eSBin Meng 		asm volatile("pause");
3817030f27eSBin Meng #else
3827030f27eSBin Meng 		;
3837030f27eSBin Meng #endif
3847030f27eSBin Meng }
3857030f27eSBin Meng 
tsc_timer_get_count(struct udevice * dev,u64 * count)3867030f27eSBin Meng static int tsc_timer_get_count(struct udevice *dev, u64 *count)
3877030f27eSBin Meng {
3887030f27eSBin Meng 	u64 now_tick = rdtsc();
3897030f27eSBin Meng 
3907030f27eSBin Meng 	*count = now_tick - gd->arch.tsc_base;
3917030f27eSBin Meng 
3927030f27eSBin Meng 	return 0;
3937030f27eSBin Meng }
3947030f27eSBin Meng 
tsc_timer_ensure_setup(bool early)3956ce38364SBin Meng static void tsc_timer_ensure_setup(bool early)
3967030f27eSBin Meng {
3972ff50f5fSSimon Glass 	if (gd->arch.tsc_base)
3982ff50f5fSSimon Glass 		return;
3997030f27eSBin Meng 	gd->arch.tsc_base = rdtsc();
4007030f27eSBin Meng 
4012ff50f5fSSimon Glass 	if (!gd->arch.clock_rate) {
4027030f27eSBin Meng 		unsigned long fast_calibrate;
4037030f27eSBin Meng 
404*ca7db866SBernhard Messerklinger 		fast_calibrate = native_calibrate_tsc();
405*ca7db866SBernhard Messerklinger 		if (fast_calibrate)
406*ca7db866SBernhard Messerklinger 			goto done;
407*ca7db866SBernhard Messerklinger 
408acc2482fSChristian Gmeiner 		fast_calibrate = cpu_mhz_from_cpuid();
409acc2482fSChristian Gmeiner 		if (fast_calibrate)
410acc2482fSChristian Gmeiner 			goto done;
4117030f27eSBin Meng 
412acc2482fSChristian Gmeiner 		fast_calibrate = cpu_mhz_from_msr();
413acc2482fSChristian Gmeiner 		if (fast_calibrate)
414acc2482fSChristian Gmeiner 			goto done;
415acc2482fSChristian Gmeiner 
416acc2482fSChristian Gmeiner 		fast_calibrate = quick_pit_calibrate();
417acc2482fSChristian Gmeiner 		if (fast_calibrate)
418acc2482fSChristian Gmeiner 			goto done;
419acc2482fSChristian Gmeiner 
4206ce38364SBin Meng 		if (early)
4216ce38364SBin Meng 			fast_calibrate = CONFIG_X86_TSC_TIMER_EARLY_FREQ;
422165db7c4SBin Meng 		else
423165db7c4SBin Meng 			return;
424acc2482fSChristian Gmeiner 
425acc2482fSChristian Gmeiner done:
4262ff50f5fSSimon Glass 		gd->arch.clock_rate = fast_calibrate * 1000000;
4272ff50f5fSSimon Glass 	}
4287030f27eSBin Meng }
4297030f27eSBin Meng 
tsc_timer_probe(struct udevice * dev)4302ff50f5fSSimon Glass static int tsc_timer_probe(struct udevice *dev)
4312ff50f5fSSimon Glass {
4322ff50f5fSSimon Glass 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
4332ff50f5fSSimon Glass 
434165db7c4SBin Meng 	/* Try hardware calibration first */
435165db7c4SBin Meng 	tsc_timer_ensure_setup(false);
436165db7c4SBin Meng 	if (!gd->arch.clock_rate) {
437165db7c4SBin Meng 		/*
438165db7c4SBin Meng 		 * Use the clock frequency specified in the
439165db7c4SBin Meng 		 * device tree as last resort
440165db7c4SBin Meng 		 */
441165db7c4SBin Meng 		if (!uc_priv->clock_rate)
442165db7c4SBin Meng 			panic("TSC frequency is ZERO");
44394e72a6bSBin Meng 	} else {
444165db7c4SBin Meng 		uc_priv->clock_rate = gd->arch.clock_rate;
44594e72a6bSBin Meng 	}
4462ff50f5fSSimon Glass 
4477030f27eSBin Meng 	return 0;
4487030f27eSBin Meng }
4497030f27eSBin Meng 
timer_early_get_rate(void)4502ff50f5fSSimon Glass unsigned long notrace timer_early_get_rate(void)
4512ff50f5fSSimon Glass {
45294e72a6bSBin Meng 	/*
45394e72a6bSBin Meng 	 * When TSC timer is used as the early timer, be warned that the timer
45494e72a6bSBin Meng 	 * clock rate can only be calibrated via some hardware ways. Specifying
45594e72a6bSBin Meng 	 * it in the device tree won't work for the early timer.
45694e72a6bSBin Meng 	 */
457165db7c4SBin Meng 	tsc_timer_ensure_setup(true);
4582ff50f5fSSimon Glass 
4592ff50f5fSSimon Glass 	return gd->arch.clock_rate;
4602ff50f5fSSimon Glass }
4612ff50f5fSSimon Glass 
timer_early_get_count(void)4622ff50f5fSSimon Glass u64 notrace timer_early_get_count(void)
4632ff50f5fSSimon Glass {
4642ff50f5fSSimon Glass 	return rdtsc() - gd->arch.tsc_base;
4652ff50f5fSSimon Glass }
4662ff50f5fSSimon Glass 
4677030f27eSBin Meng static const struct timer_ops tsc_timer_ops = {
4687030f27eSBin Meng 	.get_count = tsc_timer_get_count,
4697030f27eSBin Meng };
4707030f27eSBin Meng 
4717030f27eSBin Meng static const struct udevice_id tsc_timer_ids[] = {
4727030f27eSBin Meng 	{ .compatible = "x86,tsc-timer", },
4737030f27eSBin Meng 	{ }
4747030f27eSBin Meng };
4757030f27eSBin Meng 
4767030f27eSBin Meng U_BOOT_DRIVER(tsc_timer) = {
4777030f27eSBin Meng 	.name	= "tsc_timer",
4787030f27eSBin Meng 	.id	= UCLASS_TIMER,
4797030f27eSBin Meng 	.of_match = tsc_timer_ids,
4807030f27eSBin Meng 	.probe = tsc_timer_probe,
4817030f27eSBin Meng 	.ops	= &tsc_timer_ops,
4827030f27eSBin Meng };
483