xref: /openbmc/u-boot/drivers/spi/tegra114_spi.c (revision b1420c813074d39cd2452d7bc45374561d1cf223)
1 /*
2  * NVIDIA Tegra SPI controller (T114 and later)
3  *
4  * Copyright (c) 2010-2013 NVIDIA Corporation
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This software is licensed under the terms of the GNU General Public
10  * License version 2, as published by the Free Software Foundation, and
11  * may be copied, distributed, and modified under those terms.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <dm.h>
26 #include <asm/io.h>
27 #include <asm/arch/clock.h>
28 #include <asm/arch-tegra/clk_rst.h>
29 #include <spi.h>
30 #include <fdtdec.h>
31 #include "tegra_spi.h"
32 
33 DECLARE_GLOBAL_DATA_PTR;
34 
35 /* COMMAND1 */
36 #define SPI_CMD1_GO			(1 << 31)
37 #define SPI_CMD1_M_S			(1 << 30)
38 #define SPI_CMD1_MODE_MASK		0x3
39 #define SPI_CMD1_MODE_SHIFT		28
40 #define SPI_CMD1_CS_SEL_MASK		0x3
41 #define SPI_CMD1_CS_SEL_SHIFT		26
42 #define SPI_CMD1_CS_POL_INACTIVE3	(1 << 25)
43 #define SPI_CMD1_CS_POL_INACTIVE2	(1 << 24)
44 #define SPI_CMD1_CS_POL_INACTIVE1	(1 << 23)
45 #define SPI_CMD1_CS_POL_INACTIVE0	(1 << 22)
46 #define SPI_CMD1_CS_SW_HW		(1 << 21)
47 #define SPI_CMD1_CS_SW_VAL		(1 << 20)
48 #define SPI_CMD1_IDLE_SDA_MASK		0x3
49 #define SPI_CMD1_IDLE_SDA_SHIFT		18
50 #define SPI_CMD1_BIDIR			(1 << 17)
51 #define SPI_CMD1_LSBI_FE		(1 << 16)
52 #define SPI_CMD1_LSBY_FE		(1 << 15)
53 #define SPI_CMD1_BOTH_EN_BIT		(1 << 14)
54 #define SPI_CMD1_BOTH_EN_BYTE		(1 << 13)
55 #define SPI_CMD1_RX_EN			(1 << 12)
56 #define SPI_CMD1_TX_EN			(1 << 11)
57 #define SPI_CMD1_PACKED			(1 << 5)
58 #define SPI_CMD1_BIT_LEN_MASK		0x1F
59 #define SPI_CMD1_BIT_LEN_SHIFT		0
60 
61 /* COMMAND2 */
62 #define SPI_CMD2_TX_CLK_TAP_DELAY	(1 << 6)
63 #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK	(0x3F << 6)
64 #define SPI_CMD2_RX_CLK_TAP_DELAY	(1 << 0)
65 #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK	(0x3F << 0)
66 
67 /* TRANSFER STATUS */
68 #define SPI_XFER_STS_RDY		(1 << 30)
69 
70 /* FIFO STATUS */
71 #define SPI_FIFO_STS_CS_INACTIVE	(1 << 31)
72 #define SPI_FIFO_STS_FRAME_END		(1 << 30)
73 #define SPI_FIFO_STS_RX_FIFO_FLUSH	(1 << 15)
74 #define SPI_FIFO_STS_TX_FIFO_FLUSH	(1 << 14)
75 #define SPI_FIFO_STS_ERR		(1 << 8)
76 #define SPI_FIFO_STS_TX_FIFO_OVF	(1 << 7)
77 #define SPI_FIFO_STS_TX_FIFO_UNR	(1 << 6)
78 #define SPI_FIFO_STS_RX_FIFO_OVF	(1 << 5)
79 #define SPI_FIFO_STS_RX_FIFO_UNR	(1 << 4)
80 #define SPI_FIFO_STS_TX_FIFO_FULL	(1 << 3)
81 #define SPI_FIFO_STS_TX_FIFO_EMPTY	(1 << 2)
82 #define SPI_FIFO_STS_RX_FIFO_FULL	(1 << 1)
83 #define SPI_FIFO_STS_RX_FIFO_EMPTY	(1 << 0)
84 
85 #define SPI_TIMEOUT		1000
86 #define TEGRA_SPI_MAX_FREQ	52000000
87 
88 struct spi_regs {
89 	u32 command1;	/* 000:SPI_COMMAND1 register */
90 	u32 command2;	/* 004:SPI_COMMAND2 register */
91 	u32 timing1;	/* 008:SPI_CS_TIM1 register */
92 	u32 timing2;	/* 00c:SPI_CS_TIM2 register */
93 	u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
94 	u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
95 	u32 tx_data;	/* 018:SPI_TX_DATA register */
96 	u32 rx_data;	/* 01c:SPI_RX_DATA register */
97 	u32 dma_ctl;	/* 020:SPI_DMA_CTL register */
98 	u32 dma_blk;	/* 024:SPI_DMA_BLK register */
99 	u32 rsvd[56];	/* 028-107 reserved */
100 	u32 tx_fifo;	/* 108:SPI_FIFO1 register */
101 	u32 rsvd2[31];	/* 10c-187 reserved */
102 	u32 rx_fifo;	/* 188:SPI_FIFO2 register */
103 	u32 spare_ctl;	/* 18c:SPI_SPARE_CTRL register */
104 };
105 
106 struct tegra114_spi_priv {
107 	struct spi_regs *regs;
108 	unsigned int freq;
109 	unsigned int mode;
110 	int periph_id;
111 	int valid;
112 	int last_transaction_us;
113 };
114 
115 static int tegra114_spi_ofdata_to_platdata(struct udevice *bus)
116 {
117 	struct tegra_spi_platdata *plat = bus->platdata;
118 	const void *blob = gd->fdt_blob;
119 	int node = bus->of_offset;
120 
121 	plat->base = fdtdec_get_addr(blob, node, "reg");
122 	plat->periph_id = clock_decode_periph_id(blob, node);
123 
124 	if (plat->periph_id == PERIPH_ID_NONE) {
125 		debug("%s: could not decode periph id %d\n", __func__,
126 		      plat->periph_id);
127 		return -FDT_ERR_NOTFOUND;
128 	}
129 
130 	/* Use 500KHz as a suitable default */
131 	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
132 					500000);
133 	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
134 					"spi-deactivate-delay", 0);
135 	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
136 	      __func__, plat->base, plat->periph_id, plat->frequency,
137 	      plat->deactivate_delay_us);
138 
139 	return 0;
140 }
141 
142 static int tegra114_spi_probe(struct udevice *bus)
143 {
144 	struct tegra_spi_platdata *plat = dev_get_platdata(bus);
145 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
146 
147 	priv->regs = (struct spi_regs *)plat->base;
148 
149 	priv->last_transaction_us = timer_get_us();
150 	priv->freq = plat->frequency;
151 	priv->periph_id = plat->periph_id;
152 
153 	return 0;
154 }
155 
156 static int tegra114_spi_claim_bus(struct udevice *bus)
157 {
158 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
159 	struct spi_regs *regs = priv->regs;
160 
161 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
162 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH, priv->freq);
163 
164 	/* Clear stale status here */
165 	setbits_le32(&regs->fifo_status,
166 		     SPI_FIFO_STS_ERR		|
167 		     SPI_FIFO_STS_TX_FIFO_OVF	|
168 		     SPI_FIFO_STS_TX_FIFO_UNR	|
169 		     SPI_FIFO_STS_RX_FIFO_OVF	|
170 		     SPI_FIFO_STS_RX_FIFO_UNR	|
171 		     SPI_FIFO_STS_TX_FIFO_FULL	|
172 		     SPI_FIFO_STS_TX_FIFO_EMPTY	|
173 		     SPI_FIFO_STS_RX_FIFO_FULL	|
174 		     SPI_FIFO_STS_RX_FIFO_EMPTY);
175 	debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
176 
177 	/* Set master mode and sw controlled CS */
178 	setbits_le32(&regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
179 		     (priv->mode << SPI_CMD1_MODE_SHIFT));
180 	debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
181 
182 	return 0;
183 }
184 
185 /**
186  * Activate the CS by driving it LOW
187  *
188  * @param slave	Pointer to spi_slave to which controller has to
189  *		communicate with
190  */
191 static void spi_cs_activate(struct udevice *dev)
192 {
193 	struct udevice *bus = dev->parent;
194 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
195 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
196 
197 	/* If it's too soon to do another transaction, wait */
198 	if (pdata->deactivate_delay_us &&
199 	    priv->last_transaction_us) {
200 		ulong delay_us;		/* The delay completed so far */
201 		delay_us = timer_get_us() - priv->last_transaction_us;
202 		if (delay_us < pdata->deactivate_delay_us)
203 			udelay(pdata->deactivate_delay_us - delay_us);
204 	}
205 
206 	clrbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
207 }
208 
209 /**
210  * Deactivate the CS by driving it HIGH
211  *
212  * @param slave	Pointer to spi_slave to which controller has to
213  *		communicate with
214  */
215 static void spi_cs_deactivate(struct udevice *dev)
216 {
217 	struct udevice *bus = dev->parent;
218 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
219 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
220 
221 	setbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
222 
223 	/* Remember time of this transaction so we can honour the bus delay */
224 	if (pdata->deactivate_delay_us)
225 		priv->last_transaction_us = timer_get_us();
226 
227 	debug("Deactivate CS, bus '%s'\n", bus->name);
228 }
229 
230 static int tegra114_spi_xfer(struct udevice *dev, unsigned int bitlen,
231 			     const void *data_out, void *data_in,
232 			     unsigned long flags)
233 {
234 	struct udevice *bus = dev->parent;
235 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
236 	struct spi_regs *regs = priv->regs;
237 	u32 reg, tmpdout, tmpdin = 0;
238 	const u8 *dout = data_out;
239 	u8 *din = data_in;
240 	int num_bytes;
241 	int ret;
242 
243 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
244 	      __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
245 	if (bitlen % 8)
246 		return -1;
247 	num_bytes = bitlen / 8;
248 
249 	ret = 0;
250 
251 	/* clear all error status bits */
252 	reg = readl(&regs->fifo_status);
253 	writel(reg, &regs->fifo_status);
254 
255 	clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
256 			SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
257 			(spi_chip_select(dev) << SPI_CMD1_CS_SEL_SHIFT));
258 
259 	/* set xfer size to 1 block (32 bits) */
260 	writel(0, &regs->dma_blk);
261 
262 	if (flags & SPI_XFER_BEGIN)
263 		spi_cs_activate(dev);
264 
265 	/* handle data in 32-bit chunks */
266 	while (num_bytes > 0) {
267 		int bytes;
268 		int tm, i;
269 
270 		tmpdout = 0;
271 		bytes = (num_bytes > 4) ?  4 : num_bytes;
272 
273 		if (dout != NULL) {
274 			for (i = 0; i < bytes; ++i)
275 				tmpdout = (tmpdout << 8) | dout[i];
276 			dout += bytes;
277 		}
278 
279 		num_bytes -= bytes;
280 
281 		/* clear ready bit */
282 		setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
283 
284 		clrsetbits_le32(&regs->command1,
285 				SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
286 				(bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
287 		writel(tmpdout, &regs->tx_fifo);
288 		setbits_le32(&regs->command1, SPI_CMD1_GO);
289 
290 		/*
291 		 * Wait for SPI transmit FIFO to empty, or to time out.
292 		 * The RX FIFO status will be read and cleared last
293 		 */
294 		for (tm = 0; tm < SPI_TIMEOUT; ++tm) {
295 			u32 fifo_status, xfer_status;
296 
297 			xfer_status = readl(&regs->xfer_status);
298 			if (!(xfer_status & SPI_XFER_STS_RDY))
299 				continue;
300 
301 			fifo_status = readl(&regs->fifo_status);
302 			if (fifo_status & SPI_FIFO_STS_ERR) {
303 				debug("%s: got a fifo error: ", __func__);
304 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
305 					debug("tx FIFO overflow ");
306 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
307 					debug("tx FIFO underrun ");
308 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
309 					debug("rx FIFO overflow ");
310 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
311 					debug("rx FIFO underrun ");
312 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
313 					debug("tx FIFO full ");
314 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
315 					debug("tx FIFO empty ");
316 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
317 					debug("rx FIFO full ");
318 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
319 					debug("rx FIFO empty ");
320 				debug("\n");
321 				break;
322 			}
323 
324 			if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
325 				tmpdin = readl(&regs->rx_fifo);
326 
327 				/* swap bytes read in */
328 				if (din != NULL) {
329 					for (i = bytes - 1; i >= 0; --i) {
330 						din[i] = tmpdin & 0xff;
331 						tmpdin >>= 8;
332 					}
333 					din += bytes;
334 				}
335 
336 				/* We can exit when we've had both RX and TX */
337 				break;
338 			}
339 		}
340 
341 		if (tm >= SPI_TIMEOUT)
342 			ret = tm;
343 
344 		/* clear ACK RDY, etc. bits */
345 		writel(readl(&regs->fifo_status), &regs->fifo_status);
346 	}
347 
348 	if (flags & SPI_XFER_END)
349 		spi_cs_deactivate(dev);
350 
351 	debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
352 	      __func__, tmpdin, readl(&regs->fifo_status));
353 
354 	if (ret) {
355 		printf("%s: timeout during SPI transfer, tm %d\n",
356 		       __func__, ret);
357 		return -1;
358 	}
359 
360 	return ret;
361 }
362 
363 static int tegra114_spi_set_speed(struct udevice *bus, uint speed)
364 {
365 	struct tegra_spi_platdata *plat = bus->platdata;
366 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
367 
368 	if (speed > plat->frequency)
369 		speed = plat->frequency;
370 	priv->freq = speed;
371 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
372 
373 	return 0;
374 }
375 
376 static int tegra114_spi_set_mode(struct udevice *bus, uint mode)
377 {
378 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
379 
380 	priv->mode = mode;
381 	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
382 
383 	return 0;
384 }
385 
386 static const struct dm_spi_ops tegra114_spi_ops = {
387 	.claim_bus	= tegra114_spi_claim_bus,
388 	.xfer		= tegra114_spi_xfer,
389 	.set_speed	= tegra114_spi_set_speed,
390 	.set_mode	= tegra114_spi_set_mode,
391 	/*
392 	 * cs_info is not needed, since we require all chip selects to be
393 	 * in the device tree explicitly
394 	 */
395 };
396 
397 static const struct udevice_id tegra114_spi_ids[] = {
398 	{ .compatible = "nvidia,tegra114-spi" },
399 	{ }
400 };
401 
402 U_BOOT_DRIVER(tegra114_spi) = {
403 	.name	= "tegra114_spi",
404 	.id	= UCLASS_SPI,
405 	.of_match = tegra114_spi_ids,
406 	.ops	= &tegra114_spi_ops,
407 	.ofdata_to_platdata = tegra114_spi_ofdata_to_platdata,
408 	.platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
409 	.priv_auto_alloc_size = sizeof(struct tegra114_spi_priv),
410 	.probe	= tegra114_spi_probe,
411 };
412