xref: /openbmc/u-boot/drivers/spi/fsl_qspi.c (revision c72c161bc0af0dc8fdabdebf3812cfeef3915e4c)
1 /*
2  * Copyright 2013-2015 Freescale Semiconductor, Inc.
3  *
4  * Freescale Quad Serial Peripheral Interface (QSPI) driver
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include <spi.h>
12 #include <asm/io.h>
13 #include <linux/sizes.h>
14 #include <dm.h>
15 #include <errno.h>
16 #include <watchdog.h>
17 #include "fsl_qspi.h"
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 #define RX_BUFFER_SIZE		0x80
22 #ifdef CONFIG_MX6SX
23 #define TX_BUFFER_SIZE		0x200
24 #else
25 #define TX_BUFFER_SIZE		0x40
26 #endif
27 
28 #define OFFSET_BITS_MASK	GENMASK(23, 0)
29 
30 #define FLASH_STATUS_WEL	0x02
31 
32 /* SEQID */
33 #define SEQID_WREN		1
34 #define SEQID_FAST_READ		2
35 #define SEQID_RDSR		3
36 #define SEQID_SE		4
37 #define SEQID_CHIP_ERASE	5
38 #define SEQID_PP		6
39 #define SEQID_RDID		7
40 #define SEQID_BE_4K		8
41 #ifdef CONFIG_SPI_FLASH_BAR
42 #define SEQID_BRRD		9
43 #define SEQID_BRWR		10
44 #define SEQID_RDEAR		11
45 #define SEQID_WREAR		12
46 #endif
47 #define SEQID_WRAR		13
48 #define SEQID_RDAR		14
49 
50 /* QSPI CMD */
51 #define QSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
52 #define QSPI_CMD_RDSR		0x05	/* Read status register */
53 #define QSPI_CMD_WREN		0x06	/* Write enable */
54 #define QSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
55 #define QSPI_CMD_BE_4K		0x20    /* 4K erase */
56 #define QSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
57 #define QSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
58 #define QSPI_CMD_RDID		0x9f	/* Read JEDEC ID */
59 
60 /* Used for Micron, winbond and Macronix flashes */
61 #define	QSPI_CMD_WREAR		0xc5	/* EAR register write */
62 #define	QSPI_CMD_RDEAR		0xc8	/* EAR reigster read */
63 
64 /* Used for Spansion flashes only. */
65 #define	QSPI_CMD_BRRD		0x16	/* Bank register read */
66 #define	QSPI_CMD_BRWR		0x17	/* Bank register write */
67 
68 /* Used for Spansion S25FS-S family flash only. */
69 #define QSPI_CMD_RDAR		0x65	/* Read any device register */
70 #define QSPI_CMD_WRAR		0x71	/* Write any device register */
71 
72 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
73 #define QSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
74 #define QSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
75 #define QSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */
76 
77 /* fsl_qspi_platdata flags */
78 #define QSPI_FLAG_REGMAP_ENDIAN_BIG	BIT(0)
79 
80 /* default SCK frequency, unit: HZ */
81 #define FSL_QSPI_DEFAULT_SCK_FREQ	50000000
82 
83 /* QSPI max chipselect signals number */
84 #define FSL_QSPI_MAX_CHIPSELECT_NUM     4
85 
86 #ifdef CONFIG_DM_SPI
87 /**
88  * struct fsl_qspi_platdata - platform data for Freescale QSPI
89  *
90  * @flags: Flags for QSPI QSPI_FLAG_...
91  * @speed_hz: Default SCK frequency
92  * @reg_base: Base address of QSPI registers
93  * @amba_base: Base address of QSPI memory mapping
94  * @amba_total_size: size of QSPI memory mapping
95  * @flash_num: Number of active slave devices
96  * @num_chipselect: Number of QSPI chipselect signals
97  */
98 struct fsl_qspi_platdata {
99 	u32 flags;
100 	u32 speed_hz;
101 	fdt_addr_t reg_base;
102 	fdt_addr_t amba_base;
103 	fdt_size_t amba_total_size;
104 	u32 flash_num;
105 	u32 num_chipselect;
106 };
107 #endif
108 
109 /**
110  * struct fsl_qspi_priv - private data for Freescale QSPI
111  *
112  * @flags: Flags for QSPI QSPI_FLAG_...
113  * @bus_clk: QSPI input clk frequency
114  * @speed_hz: Default SCK frequency
115  * @cur_seqid: current LUT table sequence id
116  * @sf_addr: flash access offset
117  * @amba_base: Base address of QSPI memory mapping of every CS
118  * @amba_total_size: size of QSPI memory mapping
119  * @cur_amba_base: Base address of QSPI memory mapping of current CS
120  * @flash_num: Number of active slave devices
121  * @num_chipselect: Number of QSPI chipselect signals
122  * @regs: Point to QSPI register structure for I/O access
123  */
124 struct fsl_qspi_priv {
125 	u32 flags;
126 	u32 bus_clk;
127 	u32 speed_hz;
128 	u32 cur_seqid;
129 	u32 sf_addr;
130 	u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
131 	u32 amba_total_size;
132 	u32 cur_amba_base;
133 	u32 flash_num;
134 	u32 num_chipselect;
135 	struct fsl_qspi_regs *regs;
136 };
137 
138 #ifndef CONFIG_DM_SPI
139 struct fsl_qspi {
140 	struct spi_slave slave;
141 	struct fsl_qspi_priv priv;
142 };
143 #endif
144 
145 static u32 qspi_read32(u32 flags, u32 *addr)
146 {
147 	return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
148 		in_be32(addr) : in_le32(addr);
149 }
150 
151 static void qspi_write32(u32 flags, u32 *addr, u32 val)
152 {
153 	flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
154 		out_be32(addr, val) : out_le32(addr, val);
155 }
156 
157 /* QSPI support swapping the flash read/write data
158  * in hardware for LS102xA, but not for VF610 */
159 static inline u32 qspi_endian_xchg(u32 data)
160 {
161 #ifdef CONFIG_VF610
162 	return swab32(data);
163 #else
164 	return data;
165 #endif
166 }
167 
168 static void qspi_set_lut(struct fsl_qspi_priv *priv)
169 {
170 	struct fsl_qspi_regs *regs = priv->regs;
171 	u32 lut_base;
172 
173 	/* Unlock the LUT */
174 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
175 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
176 
177 	/* Write Enable */
178 	lut_base = SEQID_WREN * 4;
179 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
180 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
181 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
182 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
183 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
184 
185 	/* Fast Read */
186 	lut_base = SEQID_FAST_READ * 4;
187 #ifdef CONFIG_SPI_FLASH_BAR
188 	qspi_write32(priv->flags, &regs->lut[lut_base],
189 		     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
190 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
191 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
192 #else
193 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
194 		qspi_write32(priv->flags, &regs->lut[lut_base],
195 			     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
196 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
197 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
198 	else
199 		qspi_write32(priv->flags, &regs->lut[lut_base],
200 			     OPRND0(QSPI_CMD_FAST_READ_4B) |
201 			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
202 			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
203 			     INSTR1(LUT_ADDR));
204 #endif
205 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
206 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
207 		     OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
208 		     INSTR1(LUT_READ));
209 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
210 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
211 
212 	/* Read Status */
213 	lut_base = SEQID_RDSR * 4;
214 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
215 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
216 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
217 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
218 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
219 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
220 
221 	/* Erase a sector */
222 	lut_base = SEQID_SE * 4;
223 #ifdef CONFIG_SPI_FLASH_BAR
224 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
225 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
226 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
227 #else
228 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
229 		qspi_write32(priv->flags, &regs->lut[lut_base],
230 			     OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
231 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
232 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
233 	else
234 		qspi_write32(priv->flags, &regs->lut[lut_base],
235 			     OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
236 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
237 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
238 #endif
239 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
240 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
241 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
242 
243 	/* Erase the whole chip */
244 	lut_base = SEQID_CHIP_ERASE * 4;
245 	qspi_write32(priv->flags, &regs->lut[lut_base],
246 		     OPRND0(QSPI_CMD_CHIP_ERASE) |
247 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
248 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
249 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
250 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
251 
252 	/* Page Program */
253 	lut_base = SEQID_PP * 4;
254 #ifdef CONFIG_SPI_FLASH_BAR
255 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
256 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
257 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
258 #else
259 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
260 		qspi_write32(priv->flags, &regs->lut[lut_base],
261 			     OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
262 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
263 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
264 	else
265 		qspi_write32(priv->flags, &regs->lut[lut_base],
266 			     OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
267 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
268 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
269 #endif
270 #ifdef CONFIG_MX6SX
271 	/*
272 	 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
273 	 * So, Use IDATSZ in IPCR to determine the size and here set 0.
274 	 */
275 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
276 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
277 #else
278 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
279 		     OPRND0(TX_BUFFER_SIZE) |
280 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
281 #endif
282 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
283 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
284 
285 	/* READ ID */
286 	lut_base = SEQID_RDID * 4;
287 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
288 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
289 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
290 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
291 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
292 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
293 
294 	/* SUB SECTOR 4K ERASE */
295 	lut_base = SEQID_BE_4K * 4;
296 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
297 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
298 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
299 
300 #ifdef CONFIG_SPI_FLASH_BAR
301 	/*
302 	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
303 	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
304 	 * initialization.
305 	 */
306 	lut_base = SEQID_BRRD * 4;
307 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
308 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
309 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
310 
311 	lut_base = SEQID_BRWR * 4;
312 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
313 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
314 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
315 
316 	lut_base = SEQID_RDEAR * 4;
317 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
318 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
319 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
320 
321 	lut_base = SEQID_WREAR * 4;
322 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
323 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
324 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
325 #endif
326 
327 	/*
328 	 * Read any device register.
329 	 * Used for Spansion S25FS-S family flash only.
330 	 */
331 	lut_base = SEQID_RDAR * 4;
332 	qspi_write32(priv->flags, &regs->lut[lut_base],
333 		     OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
334 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
335 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
336 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
337 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
338 		     OPRND1(1) | PAD1(LUT_PAD1) |
339 		     INSTR1(LUT_READ));
340 
341 	/*
342 	 * Write any device register.
343 	 * Used for Spansion S25FS-S family flash only.
344 	 */
345 	lut_base = SEQID_WRAR * 4;
346 	qspi_write32(priv->flags, &regs->lut[lut_base],
347 		     OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
348 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
349 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
350 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
351 		     OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
352 
353 	/* Lock the LUT */
354 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
355 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
356 }
357 
358 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
359 /*
360  * If we have changed the content of the flash by writing or erasing,
361  * we need to invalidate the AHB buffer. If we do not do so, we may read out
362  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
363  * domain at the same time.
364  */
365 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
366 {
367 	struct fsl_qspi_regs *regs = priv->regs;
368 	u32 reg;
369 
370 	reg = qspi_read32(priv->flags, &regs->mcr);
371 	reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
372 	qspi_write32(priv->flags, &regs->mcr, reg);
373 
374 	/*
375 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
376 	 * Delay 1 us is enough.
377 	 */
378 	udelay(1);
379 
380 	reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
381 	qspi_write32(priv->flags, &regs->mcr, reg);
382 }
383 
384 /* Read out the data from the AHB buffer. */
385 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
386 {
387 	struct fsl_qspi_regs *regs = priv->regs;
388 	u32 mcr_reg;
389 	void *rx_addr = NULL;
390 
391 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
392 
393 	qspi_write32(priv->flags, &regs->mcr,
394 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
395 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
396 
397 	rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
398 	/* Read out the data directly from the AHB buffer. */
399 	memcpy(rxbuf, rx_addr, len);
400 
401 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
402 }
403 
404 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
405 {
406 	u32 reg, reg2;
407 	struct fsl_qspi_regs *regs = priv->regs;
408 
409 	reg = qspi_read32(priv->flags, &regs->mcr);
410 	/* Disable the module */
411 	qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
412 
413 	/* Set the Sampling Register for DDR */
414 	reg2 = qspi_read32(priv->flags, &regs->smpr);
415 	reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
416 	reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
417 	qspi_write32(priv->flags, &regs->smpr, reg2);
418 
419 	/* Enable the module again (enable the DDR too) */
420 	reg |= QSPI_MCR_DDR_EN_MASK;
421 	/* Enable bit 29 for imx6sx */
422 	reg |= BIT(29);
423 
424 	qspi_write32(priv->flags, &regs->mcr, reg);
425 }
426 
427 /*
428  * There are two different ways to read out the data from the flash:
429  *  the "IP Command Read" and the "AHB Command Read".
430  *
431  * The IC guy suggests we use the "AHB Command Read" which is faster
432  * then the "IP Command Read". (What's more is that there is a bug in
433  * the "IP Command Read" in the Vybrid.)
434  *
435  * After we set up the registers for the "AHB Command Read", we can use
436  * the memcpy to read the data directly. A "missed" access to the buffer
437  * causes the controller to clear the buffer, and use the sequence pointed
438  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
439  */
440 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
441 {
442 	struct fsl_qspi_regs *regs = priv->regs;
443 
444 	/* AHB configuration for access buffer 0/1/2 .*/
445 	qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
446 	qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
447 	qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
448 	qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
449 		     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
450 
451 	/* We only use the buffer3 */
452 	qspi_write32(priv->flags, &regs->buf0ind, 0);
453 	qspi_write32(priv->flags, &regs->buf1ind, 0);
454 	qspi_write32(priv->flags, &regs->buf2ind, 0);
455 
456 	/*
457 	 * Set the default lut sequence for AHB Read.
458 	 * Parallel mode is disabled.
459 	 */
460 	qspi_write32(priv->flags, &regs->bfgencr,
461 		     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
462 
463 	/*Enable DDR Mode*/
464 	qspi_enable_ddr_mode(priv);
465 }
466 #endif
467 
468 #ifdef CONFIG_SPI_FLASH_BAR
469 /* Bank register read/write, EAR register read/write */
470 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
471 {
472 	struct fsl_qspi_regs *regs = priv->regs;
473 	u32 reg, mcr_reg, data, seqid;
474 
475 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
476 	qspi_write32(priv->flags, &regs->mcr,
477 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
478 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
479 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
480 
481 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
482 
483 	if (priv->cur_seqid == QSPI_CMD_BRRD)
484 		seqid = SEQID_BRRD;
485 	else
486 		seqid = SEQID_RDEAR;
487 
488 	qspi_write32(priv->flags, &regs->ipcr,
489 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
490 
491 	/* Wait previous command complete */
492 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
493 		;
494 
495 	while (1) {
496 		WATCHDOG_RESET();
497 
498 		reg = qspi_read32(priv->flags, &regs->rbsr);
499 		if (reg & QSPI_RBSR_RDBFL_MASK) {
500 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
501 			data = qspi_endian_xchg(data);
502 			memcpy(rxbuf, &data, len);
503 			qspi_write32(priv->flags, &regs->mcr,
504 				     qspi_read32(priv->flags, &regs->mcr) |
505 				     QSPI_MCR_CLR_RXF_MASK);
506 			break;
507 		}
508 	}
509 
510 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
511 }
512 #endif
513 
514 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
515 {
516 	struct fsl_qspi_regs *regs = priv->regs;
517 	u32 mcr_reg, rbsr_reg, data, size;
518 	int i;
519 
520 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
521 	qspi_write32(priv->flags, &regs->mcr,
522 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
523 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
524 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
525 
526 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
527 
528 	qspi_write32(priv->flags, &regs->ipcr,
529 		     (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
530 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
531 		;
532 
533 	i = 0;
534 	while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
535 		WATCHDOG_RESET();
536 
537 		rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
538 		if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
539 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
540 			data = qspi_endian_xchg(data);
541 			size = (len < 4) ? len : 4;
542 			memcpy(rxbuf, &data, size);
543 			len -= size;
544 			rxbuf++;
545 			i++;
546 		}
547 	}
548 
549 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
550 }
551 
552 /* If not use AHB read, read data from ip interface */
553 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
554 {
555 	struct fsl_qspi_regs *regs = priv->regs;
556 	u32 mcr_reg, data;
557 	int i, size;
558 	u32 to_or_from;
559 	u32 seqid;
560 
561 	if (priv->cur_seqid == QSPI_CMD_RDAR)
562 		seqid = SEQID_RDAR;
563 	else
564 		seqid = SEQID_FAST_READ;
565 
566 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
567 	qspi_write32(priv->flags, &regs->mcr,
568 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
569 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
570 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
571 
572 	to_or_from = priv->sf_addr + priv->cur_amba_base;
573 
574 	while (len > 0) {
575 		WATCHDOG_RESET();
576 
577 		qspi_write32(priv->flags, &regs->sfar, to_or_from);
578 
579 		size = (len > RX_BUFFER_SIZE) ?
580 			RX_BUFFER_SIZE : len;
581 
582 		qspi_write32(priv->flags, &regs->ipcr,
583 			     (seqid << QSPI_IPCR_SEQID_SHIFT) |
584 			     size);
585 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
586 			;
587 
588 		to_or_from += size;
589 		len -= size;
590 
591 		i = 0;
592 		while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
593 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
594 			data = qspi_endian_xchg(data);
595 			if (size < 4)
596 				memcpy(rxbuf, &data, size);
597 			else
598 				memcpy(rxbuf, &data, 4);
599 			rxbuf++;
600 			size -= 4;
601 			i++;
602 		}
603 		qspi_write32(priv->flags, &regs->mcr,
604 			     qspi_read32(priv->flags, &regs->mcr) |
605 			     QSPI_MCR_CLR_RXF_MASK);
606 	}
607 
608 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
609 }
610 
611 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
612 {
613 	struct fsl_qspi_regs *regs = priv->regs;
614 	u32 mcr_reg, data, reg, status_reg, seqid;
615 	int i, size, tx_size;
616 	u32 to_or_from = 0;
617 
618 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
619 	qspi_write32(priv->flags, &regs->mcr,
620 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
621 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
622 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
623 
624 	status_reg = 0;
625 	while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
626 		WATCHDOG_RESET();
627 
628 		qspi_write32(priv->flags, &regs->ipcr,
629 			     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
630 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
631 			;
632 
633 		qspi_write32(priv->flags, &regs->ipcr,
634 			     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
635 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
636 			;
637 
638 		reg = qspi_read32(priv->flags, &regs->rbsr);
639 		if (reg & QSPI_RBSR_RDBFL_MASK) {
640 			status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
641 			status_reg = qspi_endian_xchg(status_reg);
642 		}
643 		qspi_write32(priv->flags, &regs->mcr,
644 			     qspi_read32(priv->flags, &regs->mcr) |
645 			     QSPI_MCR_CLR_RXF_MASK);
646 	}
647 
648 	/* Default is page programming */
649 	seqid = SEQID_PP;
650 	if (priv->cur_seqid == QSPI_CMD_WRAR)
651 		seqid = SEQID_WRAR;
652 #ifdef CONFIG_SPI_FLASH_BAR
653 	if (priv->cur_seqid == QSPI_CMD_BRWR)
654 		seqid = SEQID_BRWR;
655 	else if (priv->cur_seqid == QSPI_CMD_WREAR)
656 		seqid = SEQID_WREAR;
657 #endif
658 
659 	to_or_from = priv->sf_addr + priv->cur_amba_base;
660 
661 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
662 
663 	tx_size = (len > TX_BUFFER_SIZE) ?
664 		TX_BUFFER_SIZE : len;
665 
666 	size = tx_size / 4;
667 	for (i = 0; i < size; i++) {
668 		memcpy(&data, txbuf, 4);
669 		data = qspi_endian_xchg(data);
670 		qspi_write32(priv->flags, &regs->tbdr, data);
671 		txbuf += 4;
672 	}
673 
674 	size = tx_size % 4;
675 	if (size) {
676 		data = 0;
677 		memcpy(&data, txbuf, size);
678 		data = qspi_endian_xchg(data);
679 		qspi_write32(priv->flags, &regs->tbdr, data);
680 	}
681 
682 	qspi_write32(priv->flags, &regs->ipcr,
683 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
684 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
685 		;
686 
687 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
688 }
689 
690 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
691 {
692 	struct fsl_qspi_regs *regs = priv->regs;
693 	u32 mcr_reg, reg, data;
694 
695 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
696 	qspi_write32(priv->flags, &regs->mcr,
697 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
698 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
699 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
700 
701 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
702 
703 	qspi_write32(priv->flags, &regs->ipcr,
704 		     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
705 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
706 		;
707 
708 	while (1) {
709 		WATCHDOG_RESET();
710 
711 		reg = qspi_read32(priv->flags, &regs->rbsr);
712 		if (reg & QSPI_RBSR_RDBFL_MASK) {
713 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
714 			data = qspi_endian_xchg(data);
715 			memcpy(rxbuf, &data, len);
716 			qspi_write32(priv->flags, &regs->mcr,
717 				     qspi_read32(priv->flags, &regs->mcr) |
718 				     QSPI_MCR_CLR_RXF_MASK);
719 			break;
720 		}
721 	}
722 
723 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
724 }
725 
726 static void qspi_op_erase(struct fsl_qspi_priv *priv)
727 {
728 	struct fsl_qspi_regs *regs = priv->regs;
729 	u32 mcr_reg;
730 	u32 to_or_from = 0;
731 
732 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
733 	qspi_write32(priv->flags, &regs->mcr,
734 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
735 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
736 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
737 
738 	to_or_from = priv->sf_addr + priv->cur_amba_base;
739 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
740 
741 	qspi_write32(priv->flags, &regs->ipcr,
742 		     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
743 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
744 		;
745 
746 	if (priv->cur_seqid == QSPI_CMD_SE) {
747 		qspi_write32(priv->flags, &regs->ipcr,
748 			     (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
749 	} else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
750 		qspi_write32(priv->flags, &regs->ipcr,
751 			     (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
752 	}
753 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
754 		;
755 
756 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
757 }
758 
759 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
760 		const void *dout, void *din, unsigned long flags)
761 {
762 	u32 bytes = DIV_ROUND_UP(bitlen, 8);
763 	static u32 wr_sfaddr;
764 	u32 txbuf;
765 
766 	WATCHDOG_RESET();
767 
768 	if (dout) {
769 		if (flags & SPI_XFER_BEGIN) {
770 			priv->cur_seqid = *(u8 *)dout;
771 			memcpy(&txbuf, dout, 4);
772 		}
773 
774 		if (flags == SPI_XFER_END) {
775 			priv->sf_addr = wr_sfaddr;
776 			qspi_op_write(priv, (u8 *)dout, bytes);
777 			return 0;
778 		}
779 
780 		if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
781 		    priv->cur_seqid == QSPI_CMD_RDAR) {
782 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
783 		} else if ((priv->cur_seqid == QSPI_CMD_SE) ||
784 			   (priv->cur_seqid == QSPI_CMD_BE_4K)) {
785 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
786 			qspi_op_erase(priv);
787 		} else if (priv->cur_seqid == QSPI_CMD_PP ||
788 			   priv->cur_seqid == QSPI_CMD_WRAR) {
789 			wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
790 		} else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
791 			 (priv->cur_seqid == QSPI_CMD_WREAR)) {
792 #ifdef CONFIG_SPI_FLASH_BAR
793 			wr_sfaddr = 0;
794 #endif
795 		}
796 	}
797 
798 	if (din) {
799 		if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
800 #ifdef CONFIG_SYS_FSL_QSPI_AHB
801 			qspi_ahb_read(priv, din, bytes);
802 #else
803 			qspi_op_read(priv, din, bytes);
804 #endif
805 		} else if (priv->cur_seqid == QSPI_CMD_RDAR) {
806 			qspi_op_read(priv, din, bytes);
807 		} else if (priv->cur_seqid == QSPI_CMD_RDID)
808 			qspi_op_rdid(priv, din, bytes);
809 		else if (priv->cur_seqid == QSPI_CMD_RDSR)
810 			qspi_op_rdsr(priv, din, bytes);
811 #ifdef CONFIG_SPI_FLASH_BAR
812 		else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
813 			 (priv->cur_seqid == QSPI_CMD_RDEAR)) {
814 			priv->sf_addr = 0;
815 			qspi_op_rdbank(priv, din, bytes);
816 		}
817 #endif
818 	}
819 
820 #ifdef CONFIG_SYS_FSL_QSPI_AHB
821 	if ((priv->cur_seqid == QSPI_CMD_SE) ||
822 	    (priv->cur_seqid == QSPI_CMD_PP) ||
823 	    (priv->cur_seqid == QSPI_CMD_BE_4K) ||
824 	    (priv->cur_seqid == QSPI_CMD_WREAR) ||
825 	    (priv->cur_seqid == QSPI_CMD_BRWR))
826 		qspi_ahb_invalid(priv);
827 #endif
828 
829 	return 0;
830 }
831 
832 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
833 {
834 	u32 mcr_val;
835 
836 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
837 	if (disable)
838 		mcr_val |= QSPI_MCR_MDIS_MASK;
839 	else
840 		mcr_val &= ~QSPI_MCR_MDIS_MASK;
841 	qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
842 }
843 
844 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
845 {
846 	u32 smpr_val;
847 
848 	smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
849 	smpr_val &= ~clear_bits;
850 	smpr_val |= set_bits;
851 	qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
852 }
853 #ifndef CONFIG_DM_SPI
854 static unsigned long spi_bases[] = {
855 	QSPI0_BASE_ADDR,
856 #ifdef CONFIG_MX6SX
857 	QSPI1_BASE_ADDR,
858 #endif
859 };
860 
861 static unsigned long amba_bases[] = {
862 	QSPI0_AMBA_BASE,
863 #ifdef CONFIG_MX6SX
864 	QSPI1_AMBA_BASE,
865 #endif
866 };
867 
868 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
869 {
870 	return container_of(slave, struct fsl_qspi, slave);
871 }
872 
873 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
874 		unsigned int max_hz, unsigned int mode)
875 {
876 	u32 mcr_val;
877 	struct fsl_qspi *qspi;
878 	struct fsl_qspi_regs *regs;
879 	u32 total_size;
880 
881 	if (bus >= ARRAY_SIZE(spi_bases))
882 		return NULL;
883 
884 	if (cs >= FSL_QSPI_FLASH_NUM)
885 		return NULL;
886 
887 	qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
888 	if (!qspi)
889 		return NULL;
890 
891 #ifdef CONFIG_SYS_FSL_QSPI_BE
892 	qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
893 #endif
894 
895 	regs = (struct fsl_qspi_regs *)spi_bases[bus];
896 	qspi->priv.regs = regs;
897 	/*
898 	 * According cs, use different amba_base to choose the
899 	 * corresponding flash devices.
900 	 *
901 	 * If not, only one flash device is used even if passing
902 	 * different cs using `sf probe`
903 	 */
904 	qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
905 
906 	qspi->slave.max_write_size = TX_BUFFER_SIZE;
907 
908 	mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
909 	qspi_write32(qspi->priv.flags, &regs->mcr,
910 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
911 		     (mcr_val & QSPI_MCR_END_CFD_MASK));
912 
913 	qspi_cfg_smpr(&qspi->priv,
914 		      ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
915 		      QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
916 
917 	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
918 	/*
919 	 * Any read access to non-implemented addresses will provide
920 	 * undefined results.
921 	 *
922 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
923 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
924 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
925 	 * setting the size of these devices to 0.  This would ensure
926 	 * that the complete memory map is assigned to only one flash device.
927 	 */
928 	qspi_write32(qspi->priv.flags, &regs->sfa1ad,
929 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
930 	qspi_write32(qspi->priv.flags, &regs->sfa2ad,
931 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
932 	qspi_write32(qspi->priv.flags, &regs->sfb1ad,
933 		     total_size | amba_bases[bus]);
934 	qspi_write32(qspi->priv.flags, &regs->sfb2ad,
935 		     total_size | amba_bases[bus]);
936 
937 	qspi_set_lut(&qspi->priv);
938 
939 #ifdef CONFIG_SYS_FSL_QSPI_AHB
940 	qspi_init_ahb_read(&qspi->priv);
941 #endif
942 
943 	qspi_module_disable(&qspi->priv, 0);
944 
945 	return &qspi->slave;
946 }
947 
948 void spi_free_slave(struct spi_slave *slave)
949 {
950 	struct fsl_qspi *qspi = to_qspi_spi(slave);
951 
952 	free(qspi);
953 }
954 
955 int spi_claim_bus(struct spi_slave *slave)
956 {
957 	return 0;
958 }
959 
960 void spi_release_bus(struct spi_slave *slave)
961 {
962 	/* Nothing to do */
963 }
964 
965 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
966 		const void *dout, void *din, unsigned long flags)
967 {
968 	struct fsl_qspi *qspi = to_qspi_spi(slave);
969 
970 	return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
971 }
972 
973 void spi_init(void)
974 {
975 	/* Nothing to do */
976 }
977 #else
978 static int fsl_qspi_child_pre_probe(struct udevice *dev)
979 {
980 	struct spi_slave *slave = dev_get_parent_priv(dev);
981 
982 	slave->max_write_size = TX_BUFFER_SIZE;
983 
984 	return 0;
985 }
986 
987 static int fsl_qspi_probe(struct udevice *bus)
988 {
989 	u32 mcr_val;
990 	u32 amba_size_per_chip;
991 	struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
992 	struct fsl_qspi_priv *priv = dev_get_priv(bus);
993 	struct dm_spi_bus *dm_spi_bus;
994 	int i;
995 
996 	dm_spi_bus = bus->uclass_priv;
997 
998 	dm_spi_bus->max_hz = plat->speed_hz;
999 
1000 	priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
1001 	priv->flags = plat->flags;
1002 
1003 	priv->speed_hz = plat->speed_hz;
1004 	/*
1005 	 * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
1006 	 * AMBA memory zone should be located on the 0~4GB space
1007 	 * even on a 64bits cpu.
1008 	 */
1009 	priv->amba_base[0] = (u32)plat->amba_base;
1010 	priv->amba_total_size = (u32)plat->amba_total_size;
1011 	priv->flash_num = plat->flash_num;
1012 	priv->num_chipselect = plat->num_chipselect;
1013 
1014 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
1015 	qspi_write32(priv->flags, &priv->regs->mcr,
1016 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
1017 		     (mcr_val & QSPI_MCR_END_CFD_MASK));
1018 
1019 	qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1020 		QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1021 
1022 	/*
1023 	 * Assign AMBA memory zone for every chipselect
1024 	 * QuadSPI has two channels, every channel has two chipselects.
1025 	 * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1026 	 * into two parts and assign to every channel. This indicate that every
1027 	 * channel only has one valid chipselect.
1028 	 * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1029 	 * into four parts and assign to every chipselect.
1030 	 * Every channel will has two valid chipselects.
1031 	 */
1032 	amba_size_per_chip = priv->amba_total_size >>
1033 			     (priv->num_chipselect >> 1);
1034 	for (i = 1 ; i < priv->num_chipselect ; i++)
1035 		priv->amba_base[i] =
1036 			amba_size_per_chip + priv->amba_base[i - 1];
1037 
1038 	/*
1039 	 * Any read access to non-implemented addresses will provide
1040 	 * undefined results.
1041 	 *
1042 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
1043 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
1044 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1045 	 * setting the size of these devices to 0.  This would ensure
1046 	 * that the complete memory map is assigned to only one flash device.
1047 	 */
1048 	qspi_write32(priv->flags, &priv->regs->sfa1ad,
1049 		     priv->amba_base[0] + amba_size_per_chip);
1050 	switch (priv->num_chipselect) {
1051 	case 1:
1052 		break;
1053 	case 2:
1054 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1055 			     priv->amba_base[1]);
1056 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1057 			     priv->amba_base[1] + amba_size_per_chip);
1058 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1059 			     priv->amba_base[1] + amba_size_per_chip);
1060 		break;
1061 	case 4:
1062 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1063 			     priv->amba_base[2]);
1064 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1065 			     priv->amba_base[3]);
1066 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1067 			     priv->amba_base[3] + amba_size_per_chip);
1068 		break;
1069 	default:
1070 		debug("Error: Unsupported chipselect number %u!\n",
1071 		      priv->num_chipselect);
1072 		qspi_module_disable(priv, 1);
1073 		return -EINVAL;
1074 	}
1075 
1076 	qspi_set_lut(priv);
1077 
1078 #ifdef CONFIG_SYS_FSL_QSPI_AHB
1079 	qspi_init_ahb_read(priv);
1080 #endif
1081 
1082 	qspi_module_disable(priv, 0);
1083 
1084 	return 0;
1085 }
1086 
1087 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1088 {
1089 	struct fdt_resource res_regs, res_mem;
1090 	struct fsl_qspi_platdata *plat = bus->platdata;
1091 	const void *blob = gd->fdt_blob;
1092 	int node = dev_of_offset(bus);
1093 	int ret, flash_num = 0, subnode;
1094 
1095 	if (fdtdec_get_bool(blob, node, "big-endian"))
1096 		plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1097 
1098 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1099 				     "QuadSPI", &res_regs);
1100 	if (ret) {
1101 		debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1102 		return -ENOMEM;
1103 	}
1104 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1105 				     "QuadSPI-memory", &res_mem);
1106 	if (ret) {
1107 		debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
1108 		return -ENOMEM;
1109 	}
1110 
1111 	/* Count flash numbers */
1112 	fdt_for_each_subnode(subnode, blob, node)
1113 		++flash_num;
1114 
1115 	if (flash_num == 0) {
1116 		debug("Error: Missing flashes!\n");
1117 		return -ENODEV;
1118 	}
1119 
1120 	plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1121 					FSL_QSPI_DEFAULT_SCK_FREQ);
1122 	plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1123 					      FSL_QSPI_MAX_CHIPSELECT_NUM);
1124 
1125 	plat->reg_base = res_regs.start;
1126 	plat->amba_base = res_mem.start;
1127 	plat->amba_total_size = res_mem.end - res_mem.start + 1;
1128 	plat->flash_num = flash_num;
1129 
1130 	debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
1131 	      __func__,
1132 	      (u64)plat->reg_base,
1133 	      (u64)plat->amba_base,
1134 	      (u64)plat->amba_total_size,
1135 	      plat->speed_hz,
1136 	      plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1137 	      );
1138 
1139 	return 0;
1140 }
1141 
1142 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1143 		const void *dout, void *din, unsigned long flags)
1144 {
1145 	struct fsl_qspi_priv *priv;
1146 	struct udevice *bus;
1147 
1148 	bus = dev->parent;
1149 	priv = dev_get_priv(bus);
1150 
1151 	return qspi_xfer(priv, bitlen, dout, din, flags);
1152 }
1153 
1154 static int fsl_qspi_claim_bus(struct udevice *dev)
1155 {
1156 	struct fsl_qspi_priv *priv;
1157 	struct udevice *bus;
1158 	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1159 
1160 	bus = dev->parent;
1161 	priv = dev_get_priv(bus);
1162 
1163 	priv->cur_amba_base = priv->amba_base[slave_plat->cs];
1164 
1165 	qspi_module_disable(priv, 0);
1166 
1167 	return 0;
1168 }
1169 
1170 static int fsl_qspi_release_bus(struct udevice *dev)
1171 {
1172 	struct fsl_qspi_priv *priv;
1173 	struct udevice *bus;
1174 
1175 	bus = dev->parent;
1176 	priv = dev_get_priv(bus);
1177 
1178 	qspi_module_disable(priv, 1);
1179 
1180 	return 0;
1181 }
1182 
1183 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1184 {
1185 	/* Nothing to do */
1186 	return 0;
1187 }
1188 
1189 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1190 {
1191 	/* Nothing to do */
1192 	return 0;
1193 }
1194 
1195 static const struct dm_spi_ops fsl_qspi_ops = {
1196 	.claim_bus	= fsl_qspi_claim_bus,
1197 	.release_bus	= fsl_qspi_release_bus,
1198 	.xfer		= fsl_qspi_xfer,
1199 	.set_speed	= fsl_qspi_set_speed,
1200 	.set_mode	= fsl_qspi_set_mode,
1201 };
1202 
1203 static const struct udevice_id fsl_qspi_ids[] = {
1204 	{ .compatible = "fsl,vf610-qspi" },
1205 	{ .compatible = "fsl,imx6sx-qspi" },
1206 	{ }
1207 };
1208 
1209 U_BOOT_DRIVER(fsl_qspi) = {
1210 	.name	= "fsl_qspi",
1211 	.id	= UCLASS_SPI,
1212 	.of_match = fsl_qspi_ids,
1213 	.ops	= &fsl_qspi_ops,
1214 	.ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1215 	.platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1216 	.priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1217 	.probe	= fsl_qspi_probe,
1218 	.child_pre_probe = fsl_qspi_child_pre_probe,
1219 };
1220 #endif
1221