xref: /openbmc/u-boot/drivers/spi/fsl_qspi.c (revision 5296cb1d99c1dc52fbfb4f88595c69f097630be8)
1 /*
2  * Copyright 2013-2015 Freescale Semiconductor, Inc.
3  *
4  * Freescale Quad Serial Peripheral Interface (QSPI) driver
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include <spi.h>
12 #include <asm/io.h>
13 #include <linux/sizes.h>
14 #include <dm.h>
15 #include <errno.h>
16 #include "fsl_qspi.h"
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 #define RX_BUFFER_SIZE		0x80
21 #ifdef CONFIG_MX6SX
22 #define TX_BUFFER_SIZE		0x200
23 #else
24 #define TX_BUFFER_SIZE		0x40
25 #endif
26 
27 #define OFFSET_BITS_MASK	0x00ffffff
28 
29 #define FLASH_STATUS_WEL	0x02
30 
31 /* SEQID */
32 #define SEQID_WREN		1
33 #define SEQID_FAST_READ		2
34 #define SEQID_RDSR		3
35 #define SEQID_SE		4
36 #define SEQID_CHIP_ERASE	5
37 #define SEQID_PP		6
38 #define SEQID_RDID		7
39 #define SEQID_BE_4K		8
40 #ifdef CONFIG_SPI_FLASH_BAR
41 #define SEQID_BRRD		9
42 #define SEQID_BRWR		10
43 #define SEQID_RDEAR		11
44 #define SEQID_WREAR		12
45 #endif
46 
47 /* QSPI CMD */
48 #define QSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
49 #define QSPI_CMD_RDSR		0x05	/* Read status register */
50 #define QSPI_CMD_WREN		0x06	/* Write enable */
51 #define QSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
52 #define QSPI_CMD_BE_4K		0x20    /* 4K erase */
53 #define QSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
54 #define QSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
55 #define QSPI_CMD_RDID		0x9f	/* Read JEDEC ID */
56 
57 /* Used for Micron, winbond and Macronix flashes */
58 #define	QSPI_CMD_WREAR		0xc5	/* EAR register write */
59 #define	QSPI_CMD_RDEAR		0xc8	/* EAR reigster read */
60 
61 /* Used for Spansion flashes only. */
62 #define	QSPI_CMD_BRRD		0x16	/* Bank register read */
63 #define	QSPI_CMD_BRWR		0x17	/* Bank register write */
64 
65 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
66 #define QSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
67 #define QSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
68 #define QSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */
69 
70 /* fsl_qspi_platdata flags */
71 #define QSPI_FLAG_REGMAP_ENDIAN_BIG	(1 << 0)
72 
73 /* default SCK frequency, unit: HZ */
74 #define FSL_QSPI_DEFAULT_SCK_FREQ	50000000
75 
76 /* QSPI max chipselect signals number */
77 #define FSL_QSPI_MAX_CHIPSELECT_NUM     4
78 
79 #ifdef CONFIG_DM_SPI
80 /**
81  * struct fsl_qspi_platdata - platform data for Freescale QSPI
82  *
83  * @flags: Flags for QSPI QSPI_FLAG_...
84  * @speed_hz: Default SCK frequency
85  * @reg_base: Base address of QSPI registers
86  * @amba_base: Base address of QSPI memory mapping
87  * @amba_total_size: size of QSPI memory mapping
88  * @flash_num: Number of active slave devices
89  * @num_chipselect: Number of QSPI chipselect signals
90  */
91 struct fsl_qspi_platdata {
92 	u32 flags;
93 	u32 speed_hz;
94 	u32 reg_base;
95 	u32 amba_base;
96 	u32 amba_total_size;
97 	u32 flash_num;
98 	u32 num_chipselect;
99 };
100 #endif
101 
102 /**
103  * struct fsl_qspi_priv - private data for Freescale QSPI
104  *
105  * @flags: Flags for QSPI QSPI_FLAG_...
106  * @bus_clk: QSPI input clk frequency
107  * @speed_hz: Default SCK frequency
108  * @cur_seqid: current LUT table sequence id
109  * @sf_addr: flash access offset
110  * @amba_base: Base address of QSPI memory mapping of every CS
111  * @amba_total_size: size of QSPI memory mapping
112  * @cur_amba_base: Base address of QSPI memory mapping of current CS
113  * @flash_num: Number of active slave devices
114  * @num_chipselect: Number of QSPI chipselect signals
115  * @regs: Point to QSPI register structure for I/O access
116  */
117 struct fsl_qspi_priv {
118 	u32 flags;
119 	u32 bus_clk;
120 	u32 speed_hz;
121 	u32 cur_seqid;
122 	u32 sf_addr;
123 	u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
124 	u32 amba_total_size;
125 	u32 cur_amba_base;
126 	u32 flash_num;
127 	u32 num_chipselect;
128 	struct fsl_qspi_regs *regs;
129 };
130 
131 #ifndef CONFIG_DM_SPI
132 struct fsl_qspi {
133 	struct spi_slave slave;
134 	struct fsl_qspi_priv priv;
135 };
136 #endif
137 
138 static u32 qspi_read32(u32 flags, u32 *addr)
139 {
140 	return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
141 		in_be32(addr) : in_le32(addr);
142 }
143 
144 static void qspi_write32(u32 flags, u32 *addr, u32 val)
145 {
146 	flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
147 		out_be32(addr, val) : out_le32(addr, val);
148 }
149 
150 /* QSPI support swapping the flash read/write data
151  * in hardware for LS102xA, but not for VF610 */
152 static inline u32 qspi_endian_xchg(u32 data)
153 {
154 #ifdef CONFIG_VF610
155 	return swab32(data);
156 #else
157 	return data;
158 #endif
159 }
160 
161 static void qspi_set_lut(struct fsl_qspi_priv *priv)
162 {
163 	struct fsl_qspi_regs *regs = priv->regs;
164 	u32 lut_base;
165 
166 	/* Unlock the LUT */
167 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
168 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
169 
170 	/* Write Enable */
171 	lut_base = SEQID_WREN * 4;
172 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
173 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
174 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
175 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
176 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
177 
178 	/* Fast Read */
179 	lut_base = SEQID_FAST_READ * 4;
180 #ifdef CONFIG_SPI_FLASH_BAR
181 	qspi_write32(priv->flags, &regs->lut[lut_base],
182 		     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
183 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
184 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
185 #else
186 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
187 		qspi_write32(priv->flags, &regs->lut[lut_base],
188 			     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
189 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
190 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
191 	else
192 		qspi_write32(priv->flags, &regs->lut[lut_base],
193 			     OPRND0(QSPI_CMD_FAST_READ_4B) |
194 			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
195 			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
196 			     INSTR1(LUT_ADDR));
197 #endif
198 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
199 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
200 		     OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
201 		     INSTR1(LUT_READ));
202 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
203 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
204 
205 	/* Read Status */
206 	lut_base = SEQID_RDSR * 4;
207 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
208 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
209 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
210 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
211 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
212 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
213 
214 	/* Erase a sector */
215 	lut_base = SEQID_SE * 4;
216 #ifdef CONFIG_SPI_FLASH_BAR
217 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
218 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
219 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
220 #else
221 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
222 		qspi_write32(priv->flags, &regs->lut[lut_base],
223 			     OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
224 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
225 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
226 	else
227 		qspi_write32(priv->flags, &regs->lut[lut_base],
228 			     OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
229 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
230 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
231 #endif
232 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
233 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
234 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
235 
236 	/* Erase the whole chip */
237 	lut_base = SEQID_CHIP_ERASE * 4;
238 	qspi_write32(priv->flags, &regs->lut[lut_base],
239 		     OPRND0(QSPI_CMD_CHIP_ERASE) |
240 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
241 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
242 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
243 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
244 
245 	/* Page Program */
246 	lut_base = SEQID_PP * 4;
247 #ifdef CONFIG_SPI_FLASH_BAR
248 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
249 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
250 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
251 #else
252 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
253 		qspi_write32(priv->flags, &regs->lut[lut_base],
254 			     OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
255 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
256 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
257 	else
258 		qspi_write32(priv->flags, &regs->lut[lut_base],
259 			     OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
260 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
261 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
262 #endif
263 #ifdef CONFIG_MX6SX
264 	/*
265 	 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
266 	 * So, Use IDATSZ in IPCR to determine the size and here set 0.
267 	 */
268 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
269 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
270 #else
271 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
272 		     OPRND0(TX_BUFFER_SIZE) |
273 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
274 #endif
275 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
276 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
277 
278 	/* READ ID */
279 	lut_base = SEQID_RDID * 4;
280 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
281 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
282 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
283 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
284 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
285 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
286 
287 	/* SUB SECTOR 4K ERASE */
288 	lut_base = SEQID_BE_4K * 4;
289 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
290 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
291 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
292 
293 #ifdef CONFIG_SPI_FLASH_BAR
294 	/*
295 	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
296 	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
297 	 * initialization.
298 	 */
299 	lut_base = SEQID_BRRD * 4;
300 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
301 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
302 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
303 
304 	lut_base = SEQID_BRWR * 4;
305 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
306 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
307 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
308 
309 	lut_base = SEQID_RDEAR * 4;
310 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
311 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
312 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
313 
314 	lut_base = SEQID_WREAR * 4;
315 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
316 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
317 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
318 #endif
319 	/* Lock the LUT */
320 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
321 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
322 }
323 
324 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
325 /*
326  * If we have changed the content of the flash by writing or erasing,
327  * we need to invalidate the AHB buffer. If we do not do so, we may read out
328  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
329  * domain at the same time.
330  */
331 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
332 {
333 	struct fsl_qspi_regs *regs = priv->regs;
334 	u32 reg;
335 
336 	reg = qspi_read32(priv->flags, &regs->mcr);
337 	reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
338 	qspi_write32(priv->flags, &regs->mcr, reg);
339 
340 	/*
341 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
342 	 * Delay 1 us is enough.
343 	 */
344 	udelay(1);
345 
346 	reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
347 	qspi_write32(priv->flags, &regs->mcr, reg);
348 }
349 
350 /* Read out the data from the AHB buffer. */
351 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
352 {
353 	struct fsl_qspi_regs *regs = priv->regs;
354 	u32 mcr_reg;
355 
356 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
357 
358 	qspi_write32(priv->flags, &regs->mcr,
359 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
360 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
361 
362 	/* Read out the data directly from the AHB buffer. */
363 	memcpy(rxbuf, (u8 *)(priv->cur_amba_base + priv->sf_addr), len);
364 
365 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
366 }
367 
368 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
369 {
370 	u32 reg, reg2;
371 	struct fsl_qspi_regs *regs = priv->regs;
372 
373 	reg = qspi_read32(priv->flags, &regs->mcr);
374 	/* Disable the module */
375 	qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
376 
377 	/* Set the Sampling Register for DDR */
378 	reg2 = qspi_read32(priv->flags, &regs->smpr);
379 	reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
380 	reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
381 	qspi_write32(priv->flags, &regs->smpr, reg2);
382 
383 	/* Enable the module again (enable the DDR too) */
384 	reg |= QSPI_MCR_DDR_EN_MASK;
385 	/* Enable bit 29 for imx6sx */
386 	reg |= (1 << 29);
387 
388 	qspi_write32(priv->flags, &regs->mcr, reg);
389 }
390 
391 /*
392  * There are two different ways to read out the data from the flash:
393  *  the "IP Command Read" and the "AHB Command Read".
394  *
395  * The IC guy suggests we use the "AHB Command Read" which is faster
396  * then the "IP Command Read". (What's more is that there is a bug in
397  * the "IP Command Read" in the Vybrid.)
398  *
399  * After we set up the registers for the "AHB Command Read", we can use
400  * the memcpy to read the data directly. A "missed" access to the buffer
401  * causes the controller to clear the buffer, and use the sequence pointed
402  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
403  */
404 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
405 {
406 	struct fsl_qspi_regs *regs = priv->regs;
407 
408 	/* AHB configuration for access buffer 0/1/2 .*/
409 	qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
410 	qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
411 	qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
412 	qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
413 		     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
414 
415 	/* We only use the buffer3 */
416 	qspi_write32(priv->flags, &regs->buf0ind, 0);
417 	qspi_write32(priv->flags, &regs->buf1ind, 0);
418 	qspi_write32(priv->flags, &regs->buf2ind, 0);
419 
420 	/*
421 	 * Set the default lut sequence for AHB Read.
422 	 * Parallel mode is disabled.
423 	 */
424 	qspi_write32(priv->flags, &regs->bfgencr,
425 		     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
426 
427 	/*Enable DDR Mode*/
428 	qspi_enable_ddr_mode(priv);
429 }
430 #endif
431 
432 #ifdef CONFIG_SPI_FLASH_BAR
433 /* Bank register read/write, EAR register read/write */
434 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
435 {
436 	struct fsl_qspi_regs *regs = priv->regs;
437 	u32 reg, mcr_reg, data, seqid;
438 
439 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
440 	qspi_write32(priv->flags, &regs->mcr,
441 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
442 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
443 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
444 
445 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
446 
447 	if (priv->cur_seqid == QSPI_CMD_BRRD)
448 		seqid = SEQID_BRRD;
449 	else
450 		seqid = SEQID_RDEAR;
451 
452 	qspi_write32(priv->flags, &regs->ipcr,
453 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
454 
455 	/* Wait previous command complete */
456 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
457 		;
458 
459 	while (1) {
460 		reg = qspi_read32(priv->flags, &regs->rbsr);
461 		if (reg & QSPI_RBSR_RDBFL_MASK) {
462 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
463 			data = qspi_endian_xchg(data);
464 			memcpy(rxbuf, &data, len);
465 			qspi_write32(priv->flags, &regs->mcr,
466 				     qspi_read32(priv->flags, &regs->mcr) |
467 				     QSPI_MCR_CLR_RXF_MASK);
468 			break;
469 		}
470 	}
471 
472 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
473 }
474 #endif
475 
476 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
477 {
478 	struct fsl_qspi_regs *regs = priv->regs;
479 	u32 mcr_reg, rbsr_reg, data;
480 	int i, size;
481 
482 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
483 	qspi_write32(priv->flags, &regs->mcr,
484 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
485 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
486 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
487 
488 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
489 
490 	qspi_write32(priv->flags, &regs->ipcr,
491 		     (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
492 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
493 		;
494 
495 	i = 0;
496 	size = len;
497 	while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
498 		rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
499 		if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
500 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
501 			data = qspi_endian_xchg(data);
502 			memcpy(rxbuf, &data, 4);
503 			rxbuf++;
504 			size -= 4;
505 			i++;
506 		}
507 	}
508 
509 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
510 }
511 
512 #ifndef CONFIG_SYS_FSL_QSPI_AHB
513 /* If not use AHB read, read data from ip interface */
514 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
515 {
516 	struct fsl_qspi_regs *regs = priv->regs;
517 	u32 mcr_reg, data;
518 	int i, size;
519 	u32 to_or_from;
520 
521 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
522 	qspi_write32(priv->flags, &regs->mcr,
523 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
524 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
525 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
526 
527 	to_or_from = priv->sf_addr + priv->cur_amba_base;
528 
529 	while (len > 0) {
530 		qspi_write32(priv->flags, &regs->sfar, to_or_from);
531 
532 		size = (len > RX_BUFFER_SIZE) ?
533 			RX_BUFFER_SIZE : len;
534 
535 		qspi_write32(priv->flags, &regs->ipcr,
536 			     (SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) |
537 			     size);
538 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
539 			;
540 
541 		to_or_from += size;
542 		len -= size;
543 
544 		i = 0;
545 		while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
546 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
547 			data = qspi_endian_xchg(data);
548 			memcpy(rxbuf, &data, 4);
549 			rxbuf++;
550 			size -= 4;
551 			i++;
552 		}
553 		qspi_write32(priv->flags, &regs->mcr,
554 			     qspi_read32(priv->flags, &regs->mcr) |
555 			     QSPI_MCR_CLR_RXF_MASK);
556 	}
557 
558 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
559 }
560 #endif
561 
562 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
563 {
564 	struct fsl_qspi_regs *regs = priv->regs;
565 	u32 mcr_reg, data, reg, status_reg, seqid;
566 	int i, size, tx_size;
567 	u32 to_or_from = 0;
568 
569 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
570 	qspi_write32(priv->flags, &regs->mcr,
571 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
572 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
573 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
574 
575 	status_reg = 0;
576 	while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
577 		qspi_write32(priv->flags, &regs->ipcr,
578 			     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
579 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
580 			;
581 
582 		qspi_write32(priv->flags, &regs->ipcr,
583 			     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
584 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
585 			;
586 
587 		reg = qspi_read32(priv->flags, &regs->rbsr);
588 		if (reg & QSPI_RBSR_RDBFL_MASK) {
589 			status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
590 			status_reg = qspi_endian_xchg(status_reg);
591 		}
592 		qspi_write32(priv->flags, &regs->mcr,
593 			     qspi_read32(priv->flags, &regs->mcr) |
594 			     QSPI_MCR_CLR_RXF_MASK);
595 	}
596 
597 	/* Default is page programming */
598 	seqid = SEQID_PP;
599 #ifdef CONFIG_SPI_FLASH_BAR
600 	if (priv->cur_seqid == QSPI_CMD_BRWR)
601 		seqid = SEQID_BRWR;
602 	else if (priv->cur_seqid == QSPI_CMD_WREAR)
603 		seqid = SEQID_WREAR;
604 #endif
605 
606 	to_or_from = priv->sf_addr + priv->cur_amba_base;
607 
608 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
609 
610 	tx_size = (len > TX_BUFFER_SIZE) ?
611 		TX_BUFFER_SIZE : len;
612 
613 	size = tx_size / 4;
614 	for (i = 0; i < size; i++) {
615 		memcpy(&data, txbuf, 4);
616 		data = qspi_endian_xchg(data);
617 		qspi_write32(priv->flags, &regs->tbdr, data);
618 		txbuf += 4;
619 	}
620 
621 	size = tx_size % 4;
622 	if (size) {
623 		data = 0;
624 		memcpy(&data, txbuf, size);
625 		data = qspi_endian_xchg(data);
626 		qspi_write32(priv->flags, &regs->tbdr, data);
627 	}
628 
629 	qspi_write32(priv->flags, &regs->ipcr,
630 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
631 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
632 		;
633 
634 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
635 }
636 
637 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, u32 *rxbuf)
638 {
639 	struct fsl_qspi_regs *regs = priv->regs;
640 	u32 mcr_reg, reg, data;
641 
642 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
643 	qspi_write32(priv->flags, &regs->mcr,
644 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
645 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
646 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
647 
648 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
649 
650 	qspi_write32(priv->flags, &regs->ipcr,
651 		     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
652 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
653 		;
654 
655 	while (1) {
656 		reg = qspi_read32(priv->flags, &regs->rbsr);
657 		if (reg & QSPI_RBSR_RDBFL_MASK) {
658 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
659 			data = qspi_endian_xchg(data);
660 			memcpy(rxbuf, &data, 4);
661 			qspi_write32(priv->flags, &regs->mcr,
662 				     qspi_read32(priv->flags, &regs->mcr) |
663 				     QSPI_MCR_CLR_RXF_MASK);
664 			break;
665 		}
666 	}
667 
668 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
669 }
670 
671 static void qspi_op_erase(struct fsl_qspi_priv *priv)
672 {
673 	struct fsl_qspi_regs *regs = priv->regs;
674 	u32 mcr_reg;
675 	u32 to_or_from = 0;
676 
677 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
678 	qspi_write32(priv->flags, &regs->mcr,
679 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
680 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
681 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
682 
683 	to_or_from = priv->sf_addr + priv->cur_amba_base;
684 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
685 
686 	qspi_write32(priv->flags, &regs->ipcr,
687 		     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
688 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
689 		;
690 
691 	if (priv->cur_seqid == QSPI_CMD_SE) {
692 		qspi_write32(priv->flags, &regs->ipcr,
693 			     (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
694 	} else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
695 		qspi_write32(priv->flags, &regs->ipcr,
696 			     (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
697 	}
698 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
699 		;
700 
701 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
702 }
703 
704 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
705 		const void *dout, void *din, unsigned long flags)
706 {
707 	u32 bytes = DIV_ROUND_UP(bitlen, 8);
708 	static u32 wr_sfaddr;
709 	u32 txbuf;
710 
711 	if (dout) {
712 		if (flags & SPI_XFER_BEGIN) {
713 			priv->cur_seqid = *(u8 *)dout;
714 			memcpy(&txbuf, dout, 4);
715 		}
716 
717 		if (flags == SPI_XFER_END) {
718 			priv->sf_addr = wr_sfaddr;
719 			qspi_op_write(priv, (u8 *)dout, bytes);
720 			return 0;
721 		}
722 
723 		if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
724 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
725 		} else if ((priv->cur_seqid == QSPI_CMD_SE) ||
726 			   (priv->cur_seqid == QSPI_CMD_BE_4K)) {
727 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
728 			qspi_op_erase(priv);
729 		} else if (priv->cur_seqid == QSPI_CMD_PP) {
730 			wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
731 		} else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
732 			 (priv->cur_seqid == QSPI_CMD_WREAR)) {
733 #ifdef CONFIG_SPI_FLASH_BAR
734 			wr_sfaddr = 0;
735 #endif
736 		}
737 	}
738 
739 	if (din) {
740 		if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
741 #ifdef CONFIG_SYS_FSL_QSPI_AHB
742 			qspi_ahb_read(priv, din, bytes);
743 #else
744 			qspi_op_read(priv, din, bytes);
745 #endif
746 		} else if (priv->cur_seqid == QSPI_CMD_RDID)
747 			qspi_op_rdid(priv, din, bytes);
748 		else if (priv->cur_seqid == QSPI_CMD_RDSR)
749 			qspi_op_rdsr(priv, din);
750 #ifdef CONFIG_SPI_FLASH_BAR
751 		else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
752 			 (priv->cur_seqid == QSPI_CMD_RDEAR)) {
753 			priv->sf_addr = 0;
754 			qspi_op_rdbank(priv, din, bytes);
755 		}
756 #endif
757 	}
758 
759 #ifdef CONFIG_SYS_FSL_QSPI_AHB
760 	if ((priv->cur_seqid == QSPI_CMD_SE) ||
761 	    (priv->cur_seqid == QSPI_CMD_PP) ||
762 	    (priv->cur_seqid == QSPI_CMD_BE_4K) ||
763 	    (priv->cur_seqid == QSPI_CMD_WREAR) ||
764 	    (priv->cur_seqid == QSPI_CMD_BRWR))
765 		qspi_ahb_invalid(priv);
766 #endif
767 
768 	return 0;
769 }
770 
771 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
772 {
773 	u32 mcr_val;
774 
775 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
776 	if (disable)
777 		mcr_val |= QSPI_MCR_MDIS_MASK;
778 	else
779 		mcr_val &= ~QSPI_MCR_MDIS_MASK;
780 	qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
781 }
782 
783 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
784 {
785 	u32 smpr_val;
786 
787 	smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
788 	smpr_val &= ~clear_bits;
789 	smpr_val |= set_bits;
790 	qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
791 }
792 #ifndef CONFIG_DM_SPI
793 static unsigned long spi_bases[] = {
794 	QSPI0_BASE_ADDR,
795 #ifdef CONFIG_MX6SX
796 	QSPI1_BASE_ADDR,
797 #endif
798 };
799 
800 static unsigned long amba_bases[] = {
801 	QSPI0_AMBA_BASE,
802 #ifdef CONFIG_MX6SX
803 	QSPI1_AMBA_BASE,
804 #endif
805 };
806 
807 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
808 {
809 	return container_of(slave, struct fsl_qspi, slave);
810 }
811 
812 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
813 		unsigned int max_hz, unsigned int mode)
814 {
815 	struct fsl_qspi *qspi;
816 	struct fsl_qspi_regs *regs;
817 	u32 total_size;
818 
819 	if (bus >= ARRAY_SIZE(spi_bases))
820 		return NULL;
821 
822 	if (cs >= FSL_QSPI_FLASH_NUM)
823 		return NULL;
824 
825 	qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
826 	if (!qspi)
827 		return NULL;
828 
829 #ifdef CONFIG_SYS_FSL_QSPI_BE
830 	qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
831 #endif
832 
833 	regs = (struct fsl_qspi_regs *)spi_bases[bus];
834 	qspi->priv.regs = regs;
835 	/*
836 	 * According cs, use different amba_base to choose the
837 	 * corresponding flash devices.
838 	 *
839 	 * If not, only one flash device is used even if passing
840 	 * different cs using `sf probe`
841 	 */
842 	qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
843 
844 	qspi->slave.max_write_size = TX_BUFFER_SIZE;
845 
846 	qspi_write32(qspi->priv.flags, &regs->mcr,
847 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
848 
849 	qspi_cfg_smpr(&qspi->priv,
850 		      ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
851 		      QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
852 
853 	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
854 	/*
855 	 * Any read access to non-implemented addresses will provide
856 	 * undefined results.
857 	 *
858 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
859 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
860 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
861 	 * setting the size of these devices to 0.  This would ensure
862 	 * that the complete memory map is assigned to only one flash device.
863 	 */
864 	qspi_write32(qspi->priv.flags, &regs->sfa1ad,
865 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
866 	qspi_write32(qspi->priv.flags, &regs->sfa2ad,
867 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
868 	qspi_write32(qspi->priv.flags, &regs->sfb1ad,
869 		     total_size | amba_bases[bus]);
870 	qspi_write32(qspi->priv.flags, &regs->sfb2ad,
871 		     total_size | amba_bases[bus]);
872 
873 	qspi_set_lut(&qspi->priv);
874 
875 #ifdef CONFIG_SYS_FSL_QSPI_AHB
876 	qspi_init_ahb_read(&qspi->priv);
877 #endif
878 
879 	qspi_module_disable(&qspi->priv, 0);
880 
881 	return &qspi->slave;
882 }
883 
884 void spi_free_slave(struct spi_slave *slave)
885 {
886 	struct fsl_qspi *qspi = to_qspi_spi(slave);
887 
888 	free(qspi);
889 }
890 
891 int spi_claim_bus(struct spi_slave *slave)
892 {
893 	return 0;
894 }
895 
896 void spi_release_bus(struct spi_slave *slave)
897 {
898 	/* Nothing to do */
899 }
900 
901 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
902 		const void *dout, void *din, unsigned long flags)
903 {
904 	struct fsl_qspi *qspi = to_qspi_spi(slave);
905 
906 	return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
907 }
908 
909 void spi_init(void)
910 {
911 	/* Nothing to do */
912 }
913 #else
914 static int fsl_qspi_child_pre_probe(struct udevice *dev)
915 {
916 	struct spi_slave *slave = dev_get_parentdata(dev);
917 
918 	slave->max_write_size = TX_BUFFER_SIZE;
919 
920 	return 0;
921 }
922 
923 static int fsl_qspi_probe(struct udevice *bus)
924 {
925 	u32 total_size;
926 	struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
927 	struct fsl_qspi_priv *priv = dev_get_priv(bus);
928 	struct dm_spi_bus *dm_spi_bus;
929 
930 	dm_spi_bus = bus->uclass_priv;
931 
932 	dm_spi_bus->max_hz = plat->speed_hz;
933 
934 	priv->regs = (struct fsl_qspi_regs *)plat->reg_base;
935 	priv->flags = plat->flags;
936 
937 	priv->speed_hz = plat->speed_hz;
938 	priv->amba_base[0] = plat->amba_base;
939 	priv->amba_total_size = plat->amba_total_size;
940 	priv->flash_num = plat->flash_num;
941 	priv->num_chipselect = plat->num_chipselect;
942 
943 	qspi_write32(priv->flags, &priv->regs->mcr,
944 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
945 
946 	qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
947 		QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
948 
949 	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
950 	/*
951 	 * Any read access to non-implemented addresses will provide
952 	 * undefined results.
953 	 *
954 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
955 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
956 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
957 	 * setting the size of these devices to 0.  This would ensure
958 	 * that the complete memory map is assigned to only one flash device.
959 	 */
960 	qspi_write32(priv->flags, &priv->regs->sfa1ad,
961 		     FSL_QSPI_FLASH_SIZE | priv->amba_base[0]);
962 	qspi_write32(priv->flags, &priv->regs->sfa2ad,
963 		     FSL_QSPI_FLASH_SIZE | priv->amba_base[0]);
964 	qspi_write32(priv->flags, &priv->regs->sfb1ad,
965 		     total_size | priv->amba_base[0]);
966 	qspi_write32(priv->flags, &priv->regs->sfb2ad,
967 		     total_size | priv->amba_base[0]);
968 
969 	qspi_set_lut(priv);
970 
971 #ifdef CONFIG_SYS_FSL_QSPI_AHB
972 	qspi_init_ahb_read(priv);
973 #endif
974 
975 	qspi_module_disable(priv, 0);
976 
977 	return 0;
978 }
979 
980 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
981 {
982 	struct reg_data {
983 		u32 addr;
984 		u32 size;
985 	} regs_data[2];
986 	struct fsl_qspi_platdata *plat = bus->platdata;
987 	const void *blob = gd->fdt_blob;
988 	int node = bus->of_offset;
989 	int ret, flash_num = 0, subnode;
990 
991 	if (fdtdec_get_bool(blob, node, "big-endian"))
992 		plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
993 
994 	ret = fdtdec_get_int_array(blob, node, "reg", (u32 *)regs_data,
995 				   sizeof(regs_data)/sizeof(u32));
996 	if (ret) {
997 		debug("Error: can't get base addresses (ret = %d)!\n", ret);
998 		return -ENOMEM;
999 	}
1000 
1001 	/* Count flash numbers */
1002 	fdt_for_each_subnode(blob, subnode, node)
1003 		++flash_num;
1004 
1005 	if (flash_num == 0) {
1006 		debug("Error: Missing flashes!\n");
1007 		return -ENODEV;
1008 	}
1009 
1010 	plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1011 					FSL_QSPI_DEFAULT_SCK_FREQ);
1012 	plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1013 					      FSL_QSPI_MAX_CHIPSELECT_NUM);
1014 
1015 	plat->reg_base = regs_data[0].addr;
1016 	plat->amba_base = regs_data[1].addr;
1017 	plat->amba_total_size = regs_data[1].size;
1018 	plat->flash_num = flash_num;
1019 
1020 	debug("%s: regs=<0x%x> <0x%x, 0x%x>, max-frequency=%d, endianess=%s\n",
1021 	      __func__,
1022 	      plat->reg_base,
1023 	      plat->amba_base,
1024 	      plat->amba_total_size,
1025 	      plat->speed_hz,
1026 	      plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1027 	      );
1028 
1029 	return 0;
1030 }
1031 
1032 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1033 		const void *dout, void *din, unsigned long flags)
1034 {
1035 	struct fsl_qspi_priv *priv;
1036 	struct udevice *bus;
1037 
1038 	bus = dev->parent;
1039 	priv = dev_get_priv(bus);
1040 
1041 	return qspi_xfer(priv, bitlen, dout, din, flags);
1042 }
1043 
1044 static int fsl_qspi_claim_bus(struct udevice *dev)
1045 {
1046 	struct fsl_qspi_priv *priv;
1047 	struct udevice *bus;
1048 	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1049 
1050 	bus = dev->parent;
1051 	priv = dev_get_priv(bus);
1052 
1053 	priv->cur_amba_base =
1054 		priv->amba_base[0] + FSL_QSPI_FLASH_SIZE * slave_plat->cs;
1055 
1056 	qspi_module_disable(priv, 0);
1057 
1058 	return 0;
1059 }
1060 
1061 static int fsl_qspi_release_bus(struct udevice *dev)
1062 {
1063 	struct fsl_qspi_priv *priv;
1064 	struct udevice *bus;
1065 
1066 	bus = dev->parent;
1067 	priv = dev_get_priv(bus);
1068 
1069 	qspi_module_disable(priv, 1);
1070 
1071 	return 0;
1072 }
1073 
1074 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1075 {
1076 	/* Nothing to do */
1077 	return 0;
1078 }
1079 
1080 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1081 {
1082 	/* Nothing to do */
1083 	return 0;
1084 }
1085 
1086 static const struct dm_spi_ops fsl_qspi_ops = {
1087 	.claim_bus	= fsl_qspi_claim_bus,
1088 	.release_bus	= fsl_qspi_release_bus,
1089 	.xfer		= fsl_qspi_xfer,
1090 	.set_speed	= fsl_qspi_set_speed,
1091 	.set_mode	= fsl_qspi_set_mode,
1092 };
1093 
1094 static const struct udevice_id fsl_qspi_ids[] = {
1095 	{ .compatible = "fsl,vf610-qspi" },
1096 	{ .compatible = "fsl,imx6sx-qspi" },
1097 	{ }
1098 };
1099 
1100 U_BOOT_DRIVER(fsl_qspi) = {
1101 	.name	= "fsl_qspi",
1102 	.id	= UCLASS_SPI,
1103 	.of_match = fsl_qspi_ids,
1104 	.ops	= &fsl_qspi_ops,
1105 	.ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1106 	.platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1107 	.priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1108 	.probe	= fsl_qspi_probe,
1109 	.child_pre_probe = fsl_qspi_child_pre_probe,
1110 };
1111 #endif
1112