xref: /openbmc/u-boot/drivers/spi/exynos_spi.c (revision dd84058d24ff54d6b32818ffe44aeb4bba2cfae6)
1 /*
2  * (C) Copyright 2012 SAMSUNG Electronics
3  * Padmavathi Venna <padma.v@samsung.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 #include <malloc.h>
10 #include <spi.h>
11 #include <fdtdec.h>
12 #include <asm/arch/clk.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/cpu.h>
15 #include <asm/arch/gpio.h>
16 #include <asm/arch/pinmux.h>
17 #include <asm/arch-exynos/spi.h>
18 #include <asm/io.h>
19 
20 DECLARE_GLOBAL_DATA_PTR;
21 
22 /* Information about each SPI controller */
23 struct spi_bus {
24 	enum periph_id periph_id;
25 	s32 frequency;		/* Default clock frequency, -1 for none */
26 	struct exynos_spi *regs;
27 	int inited;		/* 1 if this bus is ready for use */
28 	int node;
29 	uint deactivate_delay_us;	/* Delay to wait after deactivate */
30 };
31 
32 /* A list of spi buses that we know about */
33 static struct spi_bus spi_bus[EXYNOS5_SPI_NUM_CONTROLLERS];
34 static unsigned int bus_count;
35 
36 struct exynos_spi_slave {
37 	struct spi_slave slave;
38 	struct exynos_spi *regs;
39 	unsigned int freq;		/* Default frequency */
40 	unsigned int mode;
41 	enum periph_id periph_id;	/* Peripheral ID for this device */
42 	unsigned int fifo_size;
43 	int skip_preamble;
44 	struct spi_bus *bus;		/* Pointer to our SPI bus info */
45 	ulong last_transaction_us;	/* Time of last transaction end */
46 };
47 
48 static struct spi_bus *spi_get_bus(unsigned dev_index)
49 {
50 	if (dev_index < bus_count)
51 		return &spi_bus[dev_index];
52 	debug("%s: invalid bus %d", __func__, dev_index);
53 
54 	return NULL;
55 }
56 
57 static inline struct exynos_spi_slave *to_exynos_spi(struct spi_slave *slave)
58 {
59 	return container_of(slave, struct exynos_spi_slave, slave);
60 }
61 
62 /**
63  * Setup the driver private data
64  *
65  * @param bus		ID of the bus that the slave is attached to
66  * @param cs		ID of the chip select connected to the slave
67  * @param max_hz	Required spi frequency
68  * @param mode		Required spi mode (clk polarity, clk phase and
69  *			master or slave)
70  * @return new device or NULL
71  */
72 struct spi_slave *spi_setup_slave(unsigned int busnum, unsigned int cs,
73 			unsigned int max_hz, unsigned int mode)
74 {
75 	struct exynos_spi_slave *spi_slave;
76 	struct spi_bus *bus;
77 
78 	if (!spi_cs_is_valid(busnum, cs)) {
79 		debug("%s: Invalid bus/chip select %d, %d\n", __func__,
80 		      busnum, cs);
81 		return NULL;
82 	}
83 
84 	spi_slave = spi_alloc_slave(struct exynos_spi_slave, busnum, cs);
85 	if (!spi_slave) {
86 		debug("%s: Could not allocate spi_slave\n", __func__);
87 		return NULL;
88 	}
89 
90 	bus = &spi_bus[busnum];
91 	spi_slave->bus = bus;
92 	spi_slave->regs = bus->regs;
93 	spi_slave->mode = mode;
94 	spi_slave->periph_id = bus->periph_id;
95 	if (bus->periph_id == PERIPH_ID_SPI1 ||
96 	    bus->periph_id == PERIPH_ID_SPI2)
97 		spi_slave->fifo_size = 64;
98 	else
99 		spi_slave->fifo_size = 256;
100 
101 	spi_slave->skip_preamble = 0;
102 	spi_slave->last_transaction_us = timer_get_us();
103 
104 	spi_slave->freq = bus->frequency;
105 	if (max_hz)
106 		spi_slave->freq = min(max_hz, spi_slave->freq);
107 
108 	return &spi_slave->slave;
109 }
110 
111 /**
112  * Free spi controller
113  *
114  * @param slave	Pointer to spi_slave to which controller has to
115  *		communicate with
116  */
117 void spi_free_slave(struct spi_slave *slave)
118 {
119 	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
120 
121 	free(spi_slave);
122 }
123 
124 /**
125  * Flush spi tx, rx fifos and reset the SPI controller
126  *
127  * @param slave	Pointer to spi_slave to which controller has to
128  *		communicate with
129  */
130 static void spi_flush_fifo(struct spi_slave *slave)
131 {
132 	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
133 	struct exynos_spi *regs = spi_slave->regs;
134 
135 	clrsetbits_le32(&regs->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST);
136 	clrbits_le32(&regs->ch_cfg, SPI_CH_RST);
137 	setbits_le32(&regs->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON);
138 }
139 
140 /**
141  * Initialize the spi base registers, set the required clock frequency and
142  * initialize the gpios
143  *
144  * @param slave	Pointer to spi_slave to which controller has to
145  *		communicate with
146  * @return zero on success else a negative value
147  */
148 int spi_claim_bus(struct spi_slave *slave)
149 {
150 	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
151 	struct exynos_spi *regs = spi_slave->regs;
152 	u32 reg = 0;
153 	int ret;
154 
155 	ret = set_spi_clk(spi_slave->periph_id,
156 					spi_slave->freq);
157 	if (ret < 0) {
158 		debug("%s: Failed to setup spi clock\n", __func__);
159 		return ret;
160 	}
161 
162 	exynos_pinmux_config(spi_slave->periph_id, PINMUX_FLAG_NONE);
163 
164 	spi_flush_fifo(slave);
165 
166 	reg = readl(&regs->ch_cfg);
167 	reg &= ~(SPI_CH_CPHA_B | SPI_CH_CPOL_L);
168 
169 	if (spi_slave->mode & SPI_CPHA)
170 		reg |= SPI_CH_CPHA_B;
171 
172 	if (spi_slave->mode & SPI_CPOL)
173 		reg |= SPI_CH_CPOL_L;
174 
175 	writel(reg, &regs->ch_cfg);
176 	writel(SPI_FB_DELAY_180, &regs->fb_clk);
177 
178 	return 0;
179 }
180 
181 /**
182  * Reset the spi H/W and flush the tx and rx fifos
183  *
184  * @param slave	Pointer to spi_slave to which controller has to
185  *		communicate with
186  */
187 void spi_release_bus(struct spi_slave *slave)
188 {
189 	spi_flush_fifo(slave);
190 }
191 
192 static void spi_get_fifo_levels(struct exynos_spi *regs,
193 	int *rx_lvl, int *tx_lvl)
194 {
195 	uint32_t spi_sts = readl(&regs->spi_sts);
196 
197 	*rx_lvl = (spi_sts >> SPI_RX_LVL_OFFSET) & SPI_FIFO_LVL_MASK;
198 	*tx_lvl = (spi_sts >> SPI_TX_LVL_OFFSET) & SPI_FIFO_LVL_MASK;
199 }
200 
201 /**
202  * If there's something to transfer, do a software reset and set a
203  * transaction size.
204  *
205  * @param regs	SPI peripheral registers
206  * @param count	Number of bytes to transfer
207  * @param step	Number of bytes to transfer in each packet (1 or 4)
208  */
209 static void spi_request_bytes(struct exynos_spi *regs, int count, int step)
210 {
211 	/* For word address we need to swap bytes */
212 	if (step == 4) {
213 		setbits_le32(&regs->mode_cfg,
214 			     SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD);
215 		count /= 4;
216 		setbits_le32(&regs->swap_cfg, SPI_TX_SWAP_EN | SPI_RX_SWAP_EN |
217 			SPI_TX_BYTE_SWAP | SPI_RX_BYTE_SWAP |
218 			SPI_TX_HWORD_SWAP | SPI_RX_HWORD_SWAP);
219 	} else {
220 		/* Select byte access and clear the swap configuration */
221 		clrbits_le32(&regs->mode_cfg,
222 			     SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD);
223 		writel(0, &regs->swap_cfg);
224 	}
225 
226 	assert(count && count < (1 << 16));
227 	setbits_le32(&regs->ch_cfg, SPI_CH_RST);
228 	clrbits_le32(&regs->ch_cfg, SPI_CH_RST);
229 
230 	writel(count | SPI_PACKET_CNT_EN, &regs->pkt_cnt);
231 }
232 
233 static int spi_rx_tx(struct exynos_spi_slave *spi_slave, int todo,
234 			void **dinp, void const **doutp, unsigned long flags)
235 {
236 	struct exynos_spi *regs = spi_slave->regs;
237 	uchar *rxp = *dinp;
238 	const uchar *txp = *doutp;
239 	int rx_lvl, tx_lvl;
240 	uint out_bytes, in_bytes;
241 	int toread;
242 	unsigned start = get_timer(0);
243 	int stopping;
244 	int step;
245 
246 	out_bytes = in_bytes = todo;
247 
248 	stopping = spi_slave->skip_preamble && (flags & SPI_XFER_END) &&
249 					!(spi_slave->mode & SPI_SLAVE);
250 
251 	/*
252 	 * Try to transfer words if we can. This helps read performance at
253 	 * SPI clock speeds above about 20MHz.
254 	 */
255 	step = 1;
256 	if (!((todo | (uintptr_t)rxp | (uintptr_t)txp) & 3) &&
257 	    !spi_slave->skip_preamble)
258 		step = 4;
259 
260 	/*
261 	 * If there's something to send, do a software reset and set a
262 	 * transaction size.
263 	 */
264 	spi_request_bytes(regs, todo, step);
265 
266 	/*
267 	 * Bytes are transmitted/received in pairs. Wait to receive all the
268 	 * data because then transmission will be done as well.
269 	 */
270 	toread = in_bytes;
271 
272 	while (in_bytes) {
273 		int temp;
274 
275 		/* Keep the fifos full/empty. */
276 		spi_get_fifo_levels(regs, &rx_lvl, &tx_lvl);
277 
278 		/*
279 		 * Don't completely fill the txfifo, since we don't want our
280 		 * rxfifo to overflow, and it may already contain data.
281 		 */
282 		while (tx_lvl < spi_slave->fifo_size/2 && out_bytes) {
283 			if (!txp)
284 				temp = -1;
285 			else if (step == 4)
286 				temp = *(uint32_t *)txp;
287 			else
288 				temp = *txp;
289 			writel(temp, &regs->tx_data);
290 			out_bytes -= step;
291 			if (txp)
292 				txp += step;
293 			tx_lvl += step;
294 		}
295 		if (rx_lvl >= step) {
296 			while (rx_lvl >= step) {
297 				temp = readl(&regs->rx_data);
298 				if (spi_slave->skip_preamble) {
299 					if (temp == SPI_PREAMBLE_END_BYTE) {
300 						spi_slave->skip_preamble = 0;
301 						stopping = 0;
302 					}
303 				} else {
304 					if (rxp || stopping) {
305 						if (step == 4)
306 							*(uint32_t *)rxp = temp;
307 						else
308 							*rxp = temp;
309 						rxp += step;
310 					}
311 					in_bytes -= step;
312 				}
313 				toread -= step;
314 				rx_lvl -= step;
315 			}
316 		} else if (!toread) {
317 			/*
318 			 * We have run out of input data, but haven't read
319 			 * enough bytes after the preamble yet. Read some more,
320 			 * and make sure that we transmit dummy bytes too, to
321 			 * keep things going.
322 			 */
323 			assert(!out_bytes);
324 			out_bytes = in_bytes;
325 			toread = in_bytes;
326 			txp = NULL;
327 			spi_request_bytes(regs, toread, step);
328 		}
329 		if (spi_slave->skip_preamble && get_timer(start) > 100) {
330 			printf("SPI timeout: in_bytes=%d, out_bytes=%d, ",
331 			       in_bytes, out_bytes);
332 			return -1;
333 		}
334 	}
335 
336 	*dinp = rxp;
337 	*doutp = txp;
338 
339 	return 0;
340 }
341 
342 /**
343  * Transfer and receive data
344  *
345  * @param slave		Pointer to spi_slave to which controller has to
346  *			communicate with
347  * @param bitlen	No of bits to tranfer or receive
348  * @param dout		Pointer to transfer buffer
349  * @param din		Pointer to receive buffer
350  * @param flags		Flags for transfer begin and end
351  * @return zero on success else a negative value
352  */
353 int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
354 	     void *din, unsigned long flags)
355 {
356 	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
357 	int upto, todo;
358 	int bytelen;
359 	int ret = 0;
360 
361 	/* spi core configured to do 8 bit transfers */
362 	if (bitlen % 8) {
363 		debug("Non byte aligned SPI transfer.\n");
364 		return -1;
365 	}
366 
367 	/* Start the transaction, if necessary. */
368 	if ((flags & SPI_XFER_BEGIN))
369 		spi_cs_activate(slave);
370 
371 	/*
372 	 * Exynos SPI limits each transfer to 65535 transfers. To keep
373 	 * things simple, allow a maximum of 65532 bytes. We could allow
374 	 * more in word mode, but the performance difference is small.
375 	 */
376 	bytelen =  bitlen / 8;
377 	for (upto = 0; !ret && upto < bytelen; upto += todo) {
378 		todo = min(bytelen - upto, (1 << 16) - 4);
379 		ret = spi_rx_tx(spi_slave, todo, &din, &dout, flags);
380 		if (ret)
381 			break;
382 	}
383 
384 	/* Stop the transaction, if necessary. */
385 	if ((flags & SPI_XFER_END) && !(spi_slave->mode & SPI_SLAVE)) {
386 		spi_cs_deactivate(slave);
387 		if (spi_slave->skip_preamble) {
388 			assert(!spi_slave->skip_preamble);
389 			debug("Failed to complete premable transaction\n");
390 			ret = -1;
391 		}
392 	}
393 
394 	return ret;
395 }
396 
397 /**
398  * Validates the bus and chip select numbers
399  *
400  * @param bus	ID of the bus that the slave is attached to
401  * @param cs	ID of the chip select connected to the slave
402  * @return one on success else zero
403  */
404 int spi_cs_is_valid(unsigned int bus, unsigned int cs)
405 {
406 	return spi_get_bus(bus) && cs == 0;
407 }
408 
409 /**
410  * Activate the CS by driving it LOW
411  *
412  * @param slave	Pointer to spi_slave to which controller has to
413  *		communicate with
414  */
415 void spi_cs_activate(struct spi_slave *slave)
416 {
417 	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
418 
419 	/* If it's too soon to do another transaction, wait */
420 	if (spi_slave->bus->deactivate_delay_us &&
421 	    spi_slave->last_transaction_us) {
422 		ulong delay_us;		/* The delay completed so far */
423 		delay_us = timer_get_us() - spi_slave->last_transaction_us;
424 		if (delay_us < spi_slave->bus->deactivate_delay_us)
425 			udelay(spi_slave->bus->deactivate_delay_us - delay_us);
426 	}
427 
428 	clrbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT);
429 	debug("Activate CS, bus %d\n", spi_slave->slave.bus);
430 	spi_slave->skip_preamble = spi_slave->mode & SPI_PREAMBLE;
431 
432 	/* Remember time of this transaction so we can honour the bus delay */
433 	if (spi_slave->bus->deactivate_delay_us)
434 		spi_slave->last_transaction_us = timer_get_us();
435 }
436 
437 /**
438  * Deactivate the CS by driving it HIGH
439  *
440  * @param slave	Pointer to spi_slave to which controller has to
441  *		communicate with
442  */
443 void spi_cs_deactivate(struct spi_slave *slave)
444 {
445 	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
446 
447 	setbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT);
448 	debug("Deactivate CS, bus %d\n", spi_slave->slave.bus);
449 }
450 
451 static inline struct exynos_spi *get_spi_base(int dev_index)
452 {
453 	if (dev_index < 3)
454 		return (struct exynos_spi *)samsung_get_base_spi() + dev_index;
455 	else
456 		return (struct exynos_spi *)samsung_get_base_spi_isp() +
457 					(dev_index - 3);
458 }
459 
460 /*
461  * Read the SPI config from the device tree node.
462  *
463  * @param blob  FDT blob to read from
464  * @param node  Node offset to read from
465  * @param bus   SPI bus structure to fill with information
466  * @return 0 if ok, or -FDT_ERR_NOTFOUND if something was missing
467  */
468 #ifdef CONFIG_OF_CONTROL
469 static int spi_get_config(const void *blob, int node, struct spi_bus *bus)
470 {
471 	bus->node = node;
472 	bus->regs = (struct exynos_spi *)fdtdec_get_addr(blob, node, "reg");
473 	bus->periph_id = pinmux_decode_periph_id(blob, node);
474 
475 	if (bus->periph_id == PERIPH_ID_NONE) {
476 		debug("%s: Invalid peripheral ID %d\n", __func__,
477 			bus->periph_id);
478 		return -FDT_ERR_NOTFOUND;
479 	}
480 
481 	/* Use 500KHz as a suitable default */
482 	bus->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
483 					500000);
484 	bus->deactivate_delay_us = fdtdec_get_int(blob, node,
485 					"spi-deactivate-delay", 0);
486 
487 	return 0;
488 }
489 
490 /*
491  * Process a list of nodes, adding them to our list of SPI ports.
492  *
493  * @param blob          fdt blob
494  * @param node_list     list of nodes to process (any <=0 are ignored)
495  * @param count         number of nodes to process
496  * @param is_dvc        1 if these are DVC ports, 0 if standard I2C
497  * @return 0 if ok, -1 on error
498  */
499 static int process_nodes(const void *blob, int node_list[], int count)
500 {
501 	int i;
502 
503 	/* build the i2c_controllers[] for each controller */
504 	for (i = 0; i < count; i++) {
505 		int node = node_list[i];
506 		struct spi_bus *bus;
507 
508 		if (node <= 0)
509 			continue;
510 
511 		bus = &spi_bus[i];
512 		if (spi_get_config(blob, node, bus)) {
513 			printf("exynos spi_init: failed to decode bus %d\n",
514 				i);
515 			return -1;
516 		}
517 
518 		debug("spi: controller bus %d at %p, periph_id %d\n",
519 		      i, bus->regs, bus->periph_id);
520 		bus->inited = 1;
521 		bus_count++;
522 	}
523 
524 	return 0;
525 }
526 #endif
527 
528 /**
529  * Set up a new SPI slave for an fdt node
530  *
531  * @param blob		Device tree blob
532  * @param node		SPI peripheral node to use
533  * @return 0 if ok, -1 on error
534  */
535 struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
536 				      int spi_node)
537 {
538 	struct spi_bus *bus;
539 	unsigned int i;
540 
541 	for (i = 0, bus = spi_bus; i < bus_count; i++, bus++) {
542 		if (bus->node == spi_node)
543 			return spi_base_setup_slave_fdt(blob, i, slave_node);
544 	}
545 
546 	debug("%s: Failed to find bus node %d\n", __func__, spi_node);
547 	return NULL;
548 }
549 
550 /* Sadly there is no error return from this function */
551 void spi_init(void)
552 {
553 	int count;
554 
555 #ifdef CONFIG_OF_CONTROL
556 	int node_list[EXYNOS5_SPI_NUM_CONTROLLERS];
557 	const void *blob = gd->fdt_blob;
558 
559 	count = fdtdec_find_aliases_for_id(blob, "spi",
560 			COMPAT_SAMSUNG_EXYNOS_SPI, node_list,
561 			EXYNOS5_SPI_NUM_CONTROLLERS);
562 	if (process_nodes(blob, node_list, count))
563 		return;
564 
565 #else
566 	struct spi_bus *bus;
567 
568 	for (count = 0; count < EXYNOS5_SPI_NUM_CONTROLLERS; count++) {
569 		bus = &spi_bus[count];
570 		bus->regs = get_spi_base(count);
571 		bus->periph_id = PERIPH_ID_SPI0 + count;
572 
573 		/* Although Exynos5 supports upto 50Mhz speed,
574 		 * we are setting it to 10Mhz for safe side
575 		 */
576 		bus->frequency = 10000000;
577 		bus->inited = 1;
578 		bus->node = 0;
579 		bus_count = EXYNOS5_SPI_NUM_CONTROLLERS;
580 	}
581 #endif
582 }
583