xref: /openbmc/u-boot/drivers/net/phy/mv88e61xx.c (revision 2d2811c230be23d4cc810e60b0582f0b13d70d63)
1 /*
2  * (C) Copyright 2015
3  * Elecsys Corporation <www.elecsyscorp.com>
4  * Kevin Smith <kevin.smith@elecsyscorp.com>
5  *
6  * Original driver:
7  * (C) Copyright 2009
8  * Marvell Semiconductor <www.marvell.com>
9  * Prafulla Wadaskar <prafulla@marvell.com>
10  *
11  * SPDX-License-Identifier:	GPL-2.0+
12  */
13 
14 /*
15  * PHY driver for mv88e61xx ethernet switches.
16  *
17  * This driver configures the mv88e61xx for basic use as a PHY.  The switch
18  * supports a VLAN configuration that determines how traffic will be routed
19  * between the ports.  This driver uses a simple configuration that routes
20  * traffic from each PHY port only to the CPU port, and from the CPU port to
21  * any PHY port.
22  *
23  * The configuration determines which PHY ports to activate using the
24  * CONFIG_MV88E61XX_PHY_PORTS bitmask.  Setting bit 0 will activate port 0, bit
25  * 1 activates port 1, etc.  Do not set the bit for the port the CPU is
26  * connected to unless it is connected over a PHY interface (not MII).
27  *
28  * This driver was written for and tested on the mv88e6176 with an SGMII
29  * connection.  Other configurations should be supported, but some additions or
30  * changes may be required.
31  */
32 
33 #include <common.h>
34 
35 #include <bitfield.h>
36 #include <errno.h>
37 #include <malloc.h>
38 #include <miiphy.h>
39 #include <netdev.h>
40 
41 #define PHY_AUTONEGOTIATE_TIMEOUT	5000
42 
43 #define PORT_COUNT			7
44 #define PORT_MASK			((1 << PORT_COUNT) - 1)
45 
46 /* Device addresses */
47 #define DEVADDR_PHY(p)			(p)
48 #define DEVADDR_PORT(p)			(0x10 + (p))
49 #define DEVADDR_SERDES			0x0F
50 #define DEVADDR_GLOBAL_1		0x1B
51 #define DEVADDR_GLOBAL_2		0x1C
52 
53 /* SMI indirection registers for multichip addressing mode */
54 #define SMI_CMD_REG			0x00
55 #define SMI_DATA_REG			0x01
56 
57 /* Global registers */
58 #define GLOBAL1_STATUS			0x00
59 #define GLOBAL1_CTRL			0x04
60 #define GLOBAL1_MON_CTRL		0x1A
61 
62 /* Global 2 registers */
63 #define GLOBAL2_REG_PHY_CMD		0x18
64 #define GLOBAL2_REG_PHY_DATA		0x19
65 
66 /* Port registers */
67 #define PORT_REG_STATUS			0x00
68 #define PORT_REG_PHYS_CTRL		0x01
69 #define PORT_REG_SWITCH_ID		0x03
70 #define PORT_REG_CTRL			0x04
71 #define PORT_REG_VLAN_MAP		0x06
72 #define PORT_REG_VLAN_ID		0x07
73 
74 /* Phy registers */
75 #define PHY_REG_CTRL1			0x10
76 #define PHY_REG_STATUS1			0x11
77 #define PHY_REG_PAGE			0x16
78 
79 /* Serdes registers */
80 #define SERDES_REG_CTRL_1		0x10
81 
82 /* Phy page numbers */
83 #define PHY_PAGE_COPPER			0
84 #define PHY_PAGE_SERDES			1
85 
86 /* Register fields */
87 #define GLOBAL1_CTRL_SWRESET		BIT(15)
88 
89 #define GLOBAL1_MON_CTRL_CPUDEST_SHIFT	4
90 #define GLOBAL1_MON_CTRL_CPUDEST_WIDTH	4
91 
92 #define PORT_REG_STATUS_LINK		BIT(11)
93 #define PORT_REG_STATUS_DUPLEX		BIT(10)
94 
95 #define PORT_REG_STATUS_SPEED_SHIFT	8
96 #define PORT_REG_STATUS_SPEED_WIDTH	2
97 #define PORT_REG_STATUS_SPEED_10	0
98 #define PORT_REG_STATUS_SPEED_100	1
99 #define PORT_REG_STATUS_SPEED_1000	2
100 
101 #define PORT_REG_STATUS_CMODE_MASK		0xF
102 #define PORT_REG_STATUS_CMODE_100BASE_X		0x8
103 #define PORT_REG_STATUS_CMODE_1000BASE_X	0x9
104 #define PORT_REG_STATUS_CMODE_SGMII		0xa
105 
106 #define PORT_REG_PHYS_CTRL_LINK_VALUE	BIT(5)
107 #define PORT_REG_PHYS_CTRL_LINK_FORCE	BIT(4)
108 
109 #define PORT_REG_CTRL_PSTATE_SHIFT	0
110 #define PORT_REG_CTRL_PSTATE_WIDTH	2
111 
112 #define PORT_REG_VLAN_ID_DEF_VID_SHIFT	0
113 #define PORT_REG_VLAN_ID_DEF_VID_WIDTH	12
114 
115 #define PORT_REG_VLAN_MAP_TABLE_SHIFT	0
116 #define PORT_REG_VLAN_MAP_TABLE_WIDTH	11
117 
118 #define SERDES_REG_CTRL_1_FORCE_LINK	BIT(10)
119 
120 #define PHY_REG_CTRL1_ENERGY_DET_SHIFT	8
121 #define PHY_REG_CTRL1_ENERGY_DET_WIDTH	2
122 
123 /* Field values */
124 #define PORT_REG_CTRL_PSTATE_DISABLED	0
125 #define PORT_REG_CTRL_PSTATE_FORWARD	3
126 
127 #define PHY_REG_CTRL1_ENERGY_DET_OFF	0
128 #define PHY_REG_CTRL1_ENERGY_DET_SENSE_ONLY	2
129 #define PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT	3
130 
131 /* PHY Status Register */
132 #define PHY_REG_STATUS1_SPEED		0xc000
133 #define PHY_REG_STATUS1_GBIT		0x8000
134 #define PHY_REG_STATUS1_100		0x4000
135 #define PHY_REG_STATUS1_DUPLEX		0x2000
136 #define PHY_REG_STATUS1_SPDDONE		0x0800
137 #define PHY_REG_STATUS1_LINK		0x0400
138 #define PHY_REG_STATUS1_ENERGY		0x0010
139 
140 /*
141  * Macros for building commands for indirect addressing modes.  These are valid
142  * for both the indirect multichip addressing mode and the PHY indirection
143  * required for the writes to any PHY register.
144  */
145 #define SMI_BUSY			BIT(15)
146 #define SMI_CMD_CLAUSE_22		BIT(12)
147 #define SMI_CMD_CLAUSE_22_OP_READ	(2 << 10)
148 #define SMI_CMD_CLAUSE_22_OP_WRITE	(1 << 10)
149 
150 #define SMI_CMD_READ			(SMI_BUSY | SMI_CMD_CLAUSE_22 | \
151 					 SMI_CMD_CLAUSE_22_OP_READ)
152 #define SMI_CMD_WRITE			(SMI_BUSY | SMI_CMD_CLAUSE_22 | \
153 					 SMI_CMD_CLAUSE_22_OP_WRITE)
154 
155 #define SMI_CMD_ADDR_SHIFT		5
156 #define SMI_CMD_ADDR_WIDTH		5
157 #define SMI_CMD_REG_SHIFT		0
158 #define SMI_CMD_REG_WIDTH		5
159 
160 /* Check for required macros */
161 #ifndef CONFIG_MV88E61XX_PHY_PORTS
162 #error Define CONFIG_MV88E61XX_PHY_PORTS to indicate which physical ports \
163 	to activate
164 #endif
165 #ifndef CONFIG_MV88E61XX_CPU_PORT
166 #error Define CONFIG_MV88E61XX_CPU_PORT to the port the CPU is attached to
167 #endif
168 
169 /* ID register values for different switch models */
170 #define PORT_SWITCH_ID_6172		0x1720
171 #define PORT_SWITCH_ID_6176		0x1760
172 #define PORT_SWITCH_ID_6240		0x2400
173 #define PORT_SWITCH_ID_6352		0x3520
174 
175 struct mv88e61xx_phy_priv {
176 	struct mii_dev *mdio_bus;
177 	int smi_addr;
178 	int id;
179 };
180 
181 static inline int smi_cmd(int cmd, int addr, int reg)
182 {
183 	cmd = bitfield_replace(cmd, SMI_CMD_ADDR_SHIFT, SMI_CMD_ADDR_WIDTH,
184 			       addr);
185 	cmd = bitfield_replace(cmd, SMI_CMD_REG_SHIFT, SMI_CMD_REG_WIDTH, reg);
186 	return cmd;
187 }
188 
189 static inline int smi_cmd_read(int addr, int reg)
190 {
191 	return smi_cmd(SMI_CMD_READ, addr, reg);
192 }
193 
194 static inline int smi_cmd_write(int addr, int reg)
195 {
196 	return smi_cmd(SMI_CMD_WRITE, addr, reg);
197 }
198 
199 __weak int mv88e61xx_hw_reset(struct phy_device *phydev)
200 {
201 	return 0;
202 }
203 
204 /* Wait for the current SMI indirect command to complete */
205 static int mv88e61xx_smi_wait(struct mii_dev *bus, int smi_addr)
206 {
207 	int val;
208 	u32 timeout = 100;
209 
210 	do {
211 		val = bus->read(bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG);
212 		if (val >= 0 && (val & SMI_BUSY) == 0)
213 			return 0;
214 
215 		mdelay(1);
216 	} while (--timeout);
217 
218 	puts("SMI busy timeout\n");
219 	return -ETIMEDOUT;
220 }
221 
222 /*
223  * The mv88e61xx has three types of addresses: the smi bus address, the device
224  * address, and the register address.  The smi bus address distinguishes it on
225  * the smi bus from other PHYs or switches.  The device address determines
226  * which on-chip register set you are reading/writing (the various PHYs, their
227  * associated ports, or global configuration registers).  The register address
228  * is the offset of the register you are reading/writing.
229  *
230  * When the mv88e61xx is hardware configured to have address zero, it behaves in
231  * single-chip addressing mode, where it responds to all SMI addresses, using
232  * the smi address as its device address.  This obviously only works when this
233  * is the only chip on the SMI bus.  This allows the driver to access device
234  * registers without using indirection.  When the chip is configured to a
235  * non-zero address, it only responds to that SMI address and requires indirect
236  * writes to access the different device addresses.
237  */
238 static int mv88e61xx_reg_read(struct phy_device *phydev, int dev, int reg)
239 {
240 	struct mv88e61xx_phy_priv *priv = phydev->priv;
241 	struct mii_dev *mdio_bus = priv->mdio_bus;
242 	int smi_addr = priv->smi_addr;
243 	int res;
244 
245 	/* In single-chip mode, the device can be addressed directly */
246 	if (smi_addr == 0)
247 		return mdio_bus->read(mdio_bus, dev, MDIO_DEVAD_NONE, reg);
248 
249 	/* Wait for the bus to become free */
250 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
251 	if (res < 0)
252 		return res;
253 
254 	/* Issue the read command */
255 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
256 			 smi_cmd_read(dev, reg));
257 	if (res < 0)
258 		return res;
259 
260 	/* Wait for the read command to complete */
261 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
262 	if (res < 0)
263 		return res;
264 
265 	/* Read the data */
266 	res = mdio_bus->read(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_DATA_REG);
267 	if (res < 0)
268 		return res;
269 
270 	return bitfield_extract(res, 0, 16);
271 }
272 
273 /* See the comment above mv88e61xx_reg_read */
274 static int mv88e61xx_reg_write(struct phy_device *phydev, int dev, int reg,
275 			       u16 val)
276 {
277 	struct mv88e61xx_phy_priv *priv = phydev->priv;
278 	struct mii_dev *mdio_bus = priv->mdio_bus;
279 	int smi_addr = priv->smi_addr;
280 	int res;
281 
282 	/* In single-chip mode, the device can be addressed directly */
283 	if (smi_addr == 0) {
284 		return mdio_bus->write(mdio_bus, dev, MDIO_DEVAD_NONE, reg,
285 				val);
286 	}
287 
288 	/* Wait for the bus to become free */
289 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
290 	if (res < 0)
291 		return res;
292 
293 	/* Set the data to write */
294 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE,
295 				SMI_DATA_REG, val);
296 	if (res < 0)
297 		return res;
298 
299 	/* Issue the write command */
300 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
301 				smi_cmd_write(dev, reg));
302 	if (res < 0)
303 		return res;
304 
305 	/* Wait for the write command to complete */
306 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
307 	if (res < 0)
308 		return res;
309 
310 	return 0;
311 }
312 
313 static int mv88e61xx_phy_wait(struct phy_device *phydev)
314 {
315 	int val;
316 	u32 timeout = 100;
317 
318 	do {
319 		val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
320 					 GLOBAL2_REG_PHY_CMD);
321 		if (val >= 0 && (val & SMI_BUSY) == 0)
322 			return 0;
323 
324 		mdelay(1);
325 	} while (--timeout);
326 
327 	return -ETIMEDOUT;
328 }
329 
330 static int mv88e61xx_phy_read_indirect(struct mii_dev *smi_wrapper, int dev,
331 		int devad, int reg)
332 {
333 	struct phy_device *phydev;
334 	int res;
335 
336 	phydev = (struct phy_device *)smi_wrapper->priv;
337 
338 	/* Issue command to read */
339 	res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
340 				  GLOBAL2_REG_PHY_CMD,
341 				  smi_cmd_read(dev, reg));
342 
343 	/* Wait for data to be read */
344 	res = mv88e61xx_phy_wait(phydev);
345 	if (res < 0)
346 		return res;
347 
348 	/* Read retrieved data */
349 	return mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
350 				  GLOBAL2_REG_PHY_DATA);
351 }
352 
353 static int mv88e61xx_phy_write_indirect(struct mii_dev *smi_wrapper, int dev,
354 		int devad, int reg, u16 data)
355 {
356 	struct phy_device *phydev;
357 	int res;
358 
359 	phydev = (struct phy_device *)smi_wrapper->priv;
360 
361 	/* Set the data to write */
362 	res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
363 				  GLOBAL2_REG_PHY_DATA, data);
364 	if (res < 0)
365 		return res;
366 	/* Issue the write command */
367 	res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
368 				  GLOBAL2_REG_PHY_CMD,
369 				  smi_cmd_write(dev, reg));
370 	if (res < 0)
371 		return res;
372 
373 	/* Wait for command to complete */
374 	return mv88e61xx_phy_wait(phydev);
375 }
376 
377 /* Wrapper function to make calls to phy_read_indirect simpler */
378 static int mv88e61xx_phy_read(struct phy_device *phydev, int phy, int reg)
379 {
380 	return mv88e61xx_phy_read_indirect(phydev->bus, DEVADDR_PHY(phy),
381 					   MDIO_DEVAD_NONE, reg);
382 }
383 
384 /* Wrapper function to make calls to phy_read_indirect simpler */
385 static int mv88e61xx_phy_write(struct phy_device *phydev, int phy,
386 		int reg, u16 val)
387 {
388 	return mv88e61xx_phy_write_indirect(phydev->bus, DEVADDR_PHY(phy),
389 					    MDIO_DEVAD_NONE, reg, val);
390 }
391 
392 static int mv88e61xx_port_read(struct phy_device *phydev, u8 port, u8 reg)
393 {
394 	return mv88e61xx_reg_read(phydev, DEVADDR_PORT(port), reg);
395 }
396 
397 static int mv88e61xx_port_write(struct phy_device *phydev, u8 port, u8 reg,
398 								u16 val)
399 {
400 	return mv88e61xx_reg_write(phydev, DEVADDR_PORT(port), reg, val);
401 }
402 
403 static int mv88e61xx_set_page(struct phy_device *phydev, u8 phy, u8 page)
404 {
405 	return mv88e61xx_phy_write(phydev, phy, PHY_REG_PAGE, page);
406 }
407 
408 static int mv88e61xx_get_switch_id(struct phy_device *phydev)
409 {
410 	int res;
411 
412 	res = mv88e61xx_port_read(phydev, 0, PORT_REG_SWITCH_ID);
413 	if (res < 0)
414 		return res;
415 	return res & 0xfff0;
416 }
417 
418 static bool mv88e61xx_6352_family(struct phy_device *phydev)
419 {
420 	struct mv88e61xx_phy_priv *priv = phydev->priv;
421 
422 	switch (priv->id) {
423 	case PORT_SWITCH_ID_6172:
424 	case PORT_SWITCH_ID_6176:
425 	case PORT_SWITCH_ID_6240:
426 	case PORT_SWITCH_ID_6352:
427 		return true;
428 	}
429 	return false;
430 }
431 
432 static int mv88e61xx_get_cmode(struct phy_device *phydev, u8 port)
433 {
434 	int res;
435 
436 	res = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
437 	if (res < 0)
438 		return res;
439 	return res & PORT_REG_STATUS_CMODE_MASK;
440 }
441 
442 static int mv88e61xx_parse_status(struct phy_device *phydev)
443 {
444 	unsigned int speed;
445 	unsigned int mii_reg;
446 
447 	mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, PHY_REG_STATUS1);
448 
449 	if ((mii_reg & PHY_REG_STATUS1_LINK) &&
450 	    !(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
451 		int i = 0;
452 
453 		puts("Waiting for PHY realtime link");
454 		while (!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
455 			/* Timeout reached ? */
456 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
457 				puts(" TIMEOUT !\n");
458 				phydev->link = 0;
459 				break;
460 			}
461 
462 			if ((i++ % 1000) == 0)
463 				putc('.');
464 			udelay(1000);
465 			mii_reg = phy_read(phydev, MDIO_DEVAD_NONE,
466 					PHY_REG_STATUS1);
467 		}
468 		puts(" done\n");
469 		udelay(500000);	/* another 500 ms (results in faster booting) */
470 	} else {
471 		if (mii_reg & PHY_REG_STATUS1_LINK)
472 			phydev->link = 1;
473 		else
474 			phydev->link = 0;
475 	}
476 
477 	if (mii_reg & PHY_REG_STATUS1_DUPLEX)
478 		phydev->duplex = DUPLEX_FULL;
479 	else
480 		phydev->duplex = DUPLEX_HALF;
481 
482 	speed = mii_reg & PHY_REG_STATUS1_SPEED;
483 
484 	switch (speed) {
485 	case PHY_REG_STATUS1_GBIT:
486 		phydev->speed = SPEED_1000;
487 		break;
488 	case PHY_REG_STATUS1_100:
489 		phydev->speed = SPEED_100;
490 		break;
491 	default:
492 		phydev->speed = SPEED_10;
493 		break;
494 	}
495 
496 	return 0;
497 }
498 
499 static int mv88e61xx_switch_reset(struct phy_device *phydev)
500 {
501 	int time;
502 	int val;
503 	u8 port;
504 
505 	/* Disable all ports */
506 	for (port = 0; port < PORT_COUNT; port++) {
507 		val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
508 		if (val < 0)
509 			return val;
510 		val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
511 				       PORT_REG_CTRL_PSTATE_WIDTH,
512 				       PORT_REG_CTRL_PSTATE_DISABLED);
513 		val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
514 		if (val < 0)
515 			return val;
516 	}
517 
518 	/* Wait 2 ms for queues to drain */
519 	udelay(2000);
520 
521 	/* Reset switch */
522 	val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_CTRL);
523 	if (val < 0)
524 		return val;
525 	val |= GLOBAL1_CTRL_SWRESET;
526 	val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
527 				     GLOBAL1_CTRL, val);
528 	if (val < 0)
529 		return val;
530 
531 	/* Wait up to 1 second for switch reset complete */
532 	for (time = 1000; time; time--) {
533 		val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1,
534 					    GLOBAL1_CTRL);
535 		if (val >= 0 && ((val & GLOBAL1_CTRL_SWRESET) == 0))
536 			break;
537 		udelay(1000);
538 	}
539 	if (!time)
540 		return -ETIMEDOUT;
541 
542 	return 0;
543 }
544 
545 static int mv88e61xx_serdes_init(struct phy_device *phydev)
546 {
547 	int val;
548 
549 	val = mv88e61xx_set_page(phydev, DEVADDR_SERDES, PHY_PAGE_SERDES);
550 	if (val < 0)
551 		return val;
552 
553 	/* Power up serdes module */
554 	val = mv88e61xx_phy_read(phydev, DEVADDR_SERDES, MII_BMCR);
555 	if (val < 0)
556 		return val;
557 	val &= ~(BMCR_PDOWN);
558 	val = mv88e61xx_phy_write(phydev, DEVADDR_SERDES, MII_BMCR, val);
559 	if (val < 0)
560 		return val;
561 
562 	return 0;
563 }
564 
565 static int mv88e61xx_port_enable(struct phy_device *phydev, u8 port)
566 {
567 	int val;
568 
569 	val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
570 	if (val < 0)
571 		return val;
572 	val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
573 			       PORT_REG_CTRL_PSTATE_WIDTH,
574 			       PORT_REG_CTRL_PSTATE_FORWARD);
575 	val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
576 	if (val < 0)
577 		return val;
578 
579 	return 0;
580 }
581 
582 static int mv88e61xx_port_set_vlan(struct phy_device *phydev, u8 port,
583 							u8 mask)
584 {
585 	int val;
586 
587 	/* Set VID to port number plus one */
588 	val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_ID);
589 	if (val < 0)
590 		return val;
591 	val = bitfield_replace(val, PORT_REG_VLAN_ID_DEF_VID_SHIFT,
592 			       PORT_REG_VLAN_ID_DEF_VID_WIDTH,
593 			       port + 1);
594 	val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_ID, val);
595 	if (val < 0)
596 		return val;
597 
598 	/* Set VID mask */
599 	val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_MAP);
600 	if (val < 0)
601 		return val;
602 	val = bitfield_replace(val, PORT_REG_VLAN_MAP_TABLE_SHIFT,
603 			       PORT_REG_VLAN_MAP_TABLE_WIDTH,
604 			       mask);
605 	val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_MAP, val);
606 	if (val < 0)
607 		return val;
608 
609 	return 0;
610 }
611 
612 static int mv88e61xx_read_port_config(struct phy_device *phydev, u8 port)
613 {
614 	int res;
615 	int val;
616 	bool forced = false;
617 
618 	val = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
619 	if (val < 0)
620 		return val;
621 	if (!(val & PORT_REG_STATUS_LINK)) {
622 		/* Temporarily force link to read port configuration */
623 		u32 timeout = 100;
624 		forced = true;
625 
626 		val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
627 		if (val < 0)
628 			return val;
629 		val |= (PORT_REG_PHYS_CTRL_LINK_FORCE |
630 				PORT_REG_PHYS_CTRL_LINK_VALUE);
631 		val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
632 					   val);
633 		if (val < 0)
634 			return val;
635 
636 		/* Wait for status register to reflect forced link */
637 		do {
638 			val = mv88e61xx_port_read(phydev, port,
639 						  PORT_REG_STATUS);
640 			if (val < 0)
641 				goto unforce;
642 			if (val & PORT_REG_STATUS_LINK)
643 				break;
644 		} while (--timeout);
645 
646 		if (timeout == 0) {
647 			res = -ETIMEDOUT;
648 			goto unforce;
649 		}
650 	}
651 
652 	if (val & PORT_REG_STATUS_DUPLEX)
653 		phydev->duplex = DUPLEX_FULL;
654 	else
655 		phydev->duplex = DUPLEX_HALF;
656 
657 	val = bitfield_extract(val, PORT_REG_STATUS_SPEED_SHIFT,
658 			       PORT_REG_STATUS_SPEED_WIDTH);
659 	switch (val) {
660 	case PORT_REG_STATUS_SPEED_1000:
661 		phydev->speed = SPEED_1000;
662 		break;
663 	case PORT_REG_STATUS_SPEED_100:
664 		phydev->speed = SPEED_100;
665 		break;
666 	default:
667 		phydev->speed = SPEED_10;
668 		break;
669 	}
670 
671 	res = 0;
672 
673 unforce:
674 	if (forced) {
675 		val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
676 		if (val < 0)
677 			return val;
678 		val &= ~(PORT_REG_PHYS_CTRL_LINK_FORCE |
679 				PORT_REG_PHYS_CTRL_LINK_VALUE);
680 		val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
681 					   val);
682 		if (val < 0)
683 			return val;
684 	}
685 
686 	return res;
687 }
688 
689 static int mv88e61xx_set_cpu_port(struct phy_device *phydev)
690 {
691 	int val;
692 
693 	/* Set CPUDest */
694 	val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_MON_CTRL);
695 	if (val < 0)
696 		return val;
697 	val = bitfield_replace(val, GLOBAL1_MON_CTRL_CPUDEST_SHIFT,
698 			       GLOBAL1_MON_CTRL_CPUDEST_WIDTH,
699 			       CONFIG_MV88E61XX_CPU_PORT);
700 	val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
701 				     GLOBAL1_MON_CTRL, val);
702 	if (val < 0)
703 		return val;
704 
705 	/* Allow CPU to route to any port */
706 	val = PORT_MASK & ~(1 << CONFIG_MV88E61XX_CPU_PORT);
707 	val = mv88e61xx_port_set_vlan(phydev, CONFIG_MV88E61XX_CPU_PORT, val);
708 	if (val < 0)
709 		return val;
710 
711 	/* Enable CPU port */
712 	val = mv88e61xx_port_enable(phydev, CONFIG_MV88E61XX_CPU_PORT);
713 	if (val < 0)
714 		return val;
715 
716 	val = mv88e61xx_read_port_config(phydev, CONFIG_MV88E61XX_CPU_PORT);
717 	if (val < 0)
718 		return val;
719 
720 	/* If CPU is connected to serdes, initialize serdes */
721 	if (mv88e61xx_6352_family(phydev)) {
722 		val = mv88e61xx_get_cmode(phydev, CONFIG_MV88E61XX_CPU_PORT);
723 		if (val < 0)
724 			return val;
725 		if (val == PORT_REG_STATUS_CMODE_100BASE_X ||
726 		    val == PORT_REG_STATUS_CMODE_1000BASE_X ||
727 		    val == PORT_REG_STATUS_CMODE_SGMII) {
728 			val = mv88e61xx_serdes_init(phydev);
729 			if (val < 0)
730 				return val;
731 		}
732 	}
733 
734 	return 0;
735 }
736 
737 static int mv88e61xx_switch_init(struct phy_device *phydev)
738 {
739 	static int init;
740 	int res;
741 
742 	if (init)
743 		return 0;
744 
745 	res = mv88e61xx_switch_reset(phydev);
746 	if (res < 0)
747 		return res;
748 
749 	res = mv88e61xx_set_cpu_port(phydev);
750 	if (res < 0)
751 		return res;
752 
753 	init = 1;
754 
755 	return 0;
756 }
757 
758 static int mv88e61xx_phy_enable(struct phy_device *phydev, u8 phy)
759 {
760 	int val;
761 
762 	val = mv88e61xx_phy_read(phydev, phy, MII_BMCR);
763 	if (val < 0)
764 		return val;
765 	val &= ~(BMCR_PDOWN);
766 	val = mv88e61xx_phy_write(phydev, phy, MII_BMCR, val);
767 	if (val < 0)
768 		return val;
769 
770 	return 0;
771 }
772 
773 static int mv88e61xx_phy_setup(struct phy_device *phydev, u8 phy)
774 {
775 	int val;
776 
777 	/*
778 	 * Enable energy-detect sensing on PHY, used to determine when a PHY
779 	 * port is physically connected
780 	 */
781 	val = mv88e61xx_phy_read(phydev, phy, PHY_REG_CTRL1);
782 	if (val < 0)
783 		return val;
784 	val = bitfield_replace(val, PHY_REG_CTRL1_ENERGY_DET_SHIFT,
785 			       PHY_REG_CTRL1_ENERGY_DET_WIDTH,
786 			       PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT);
787 	val = mv88e61xx_phy_write(phydev, phy, PHY_REG_CTRL1, val);
788 	if (val < 0)
789 		return val;
790 
791 	return 0;
792 }
793 
794 static int mv88e61xx_phy_config_port(struct phy_device *phydev, u8 phy)
795 {
796 	int val;
797 
798 	val = mv88e61xx_port_enable(phydev, phy);
799 	if (val < 0)
800 		return val;
801 
802 	val = mv88e61xx_port_set_vlan(phydev, phy,
803 			1 << CONFIG_MV88E61XX_CPU_PORT);
804 	if (val < 0)
805 		return val;
806 
807 	return 0;
808 }
809 
810 static int mv88e61xx_probe(struct phy_device *phydev)
811 {
812 	struct mii_dev *smi_wrapper;
813 	struct mv88e61xx_phy_priv *priv;
814 	int res;
815 
816 	res = mv88e61xx_hw_reset(phydev);
817 	if (res < 0)
818 		return res;
819 
820 	priv = malloc(sizeof(*priv));
821 	if (!priv)
822 		return -ENOMEM;
823 
824 	memset(priv, 0, sizeof(*priv));
825 
826 	/*
827 	 * This device requires indirect reads/writes to the PHY registers
828 	 * which the generic PHY code can't handle.  Make a wrapper MII device
829 	 * to handle reads/writes
830 	 */
831 	smi_wrapper = mdio_alloc();
832 	if (!smi_wrapper) {
833 		free(priv);
834 		return -ENOMEM;
835 	}
836 
837 	/*
838 	 * Store the mdio bus in the private data, as we are going to replace
839 	 * the bus with the wrapper bus
840 	 */
841 	priv->mdio_bus = phydev->bus;
842 
843 	/*
844 	 * Store the smi bus address in private data.  This lets us use the
845 	 * phydev addr field for device address instead, as the genphy code
846 	 * expects.
847 	 */
848 	priv->smi_addr = phydev->addr;
849 
850 	/*
851 	 * Store the phy_device in the wrapper mii device. This lets us get it
852 	 * back when genphy functions call phy_read/phy_write.
853 	 */
854 	smi_wrapper->priv = phydev;
855 	strncpy(smi_wrapper->name, "indirect mii", sizeof(smi_wrapper->name));
856 	smi_wrapper->read = mv88e61xx_phy_read_indirect;
857 	smi_wrapper->write = mv88e61xx_phy_write_indirect;
858 
859 	/* Replace the bus with the wrapper device */
860 	phydev->bus = smi_wrapper;
861 
862 	phydev->priv = priv;
863 
864 	priv->id = mv88e61xx_get_switch_id(phydev);
865 
866 	return 0;
867 }
868 
869 static int mv88e61xx_phy_config(struct phy_device *phydev)
870 {
871 	int res;
872 	int i;
873 	int ret = -1;
874 
875 	res = mv88e61xx_switch_init(phydev);
876 	if (res < 0)
877 		return res;
878 
879 	for (i = 0; i < PORT_COUNT; i++) {
880 		if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
881 			phydev->addr = i;
882 
883 			res = mv88e61xx_phy_enable(phydev, i);
884 			if (res < 0) {
885 				printf("Error enabling PHY %i\n", i);
886 				continue;
887 			}
888 			res = mv88e61xx_phy_setup(phydev, i);
889 			if (res < 0) {
890 				printf("Error setting up PHY %i\n", i);
891 				continue;
892 			}
893 			res = mv88e61xx_phy_config_port(phydev, i);
894 			if (res < 0) {
895 				printf("Error configuring PHY %i\n", i);
896 				continue;
897 			}
898 
899 			res = genphy_config_aneg(phydev);
900 			if (res < 0) {
901 				printf("Error setting PHY %i autoneg\n", i);
902 				continue;
903 			}
904 			res = phy_reset(phydev);
905 			if (res < 0) {
906 				printf("Error resetting PHY %i\n", i);
907 				continue;
908 			}
909 
910 			/* Return success if any PHY succeeds */
911 			ret = 0;
912 		}
913 	}
914 
915 	return ret;
916 }
917 
918 static int mv88e61xx_phy_is_connected(struct phy_device *phydev)
919 {
920 	int val;
921 
922 	val = mv88e61xx_phy_read(phydev, phydev->addr, PHY_REG_STATUS1);
923 	if (val < 0)
924 		return 0;
925 
926 	/*
927 	 * After reset, the energy detect signal remains high for a few seconds
928 	 * regardless of whether a cable is connected.  This function will
929 	 * return false positives during this time.
930 	 */
931 	return (val & PHY_REG_STATUS1_ENERGY) == 0;
932 }
933 
934 static int mv88e61xx_phy_startup(struct phy_device *phydev)
935 {
936 	int i;
937 	int link = 0;
938 	int res;
939 	int speed = phydev->speed;
940 	int duplex = phydev->duplex;
941 
942 	for (i = 0; i < PORT_COUNT; i++) {
943 		if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
944 			phydev->addr = i;
945 			if (!mv88e61xx_phy_is_connected(phydev))
946 				continue;
947 			res = genphy_update_link(phydev);
948 			if (res < 0)
949 				continue;
950 			res = mv88e61xx_parse_status(phydev);
951 			if (res < 0)
952 				continue;
953 			link = (link || phydev->link);
954 		}
955 	}
956 	phydev->link = link;
957 
958 	/* Restore CPU interface speed and duplex after it was changed for
959 	 * other ports */
960 	phydev->speed = speed;
961 	phydev->duplex = duplex;
962 
963 	return 0;
964 }
965 
966 static struct phy_driver mv88e61xx_driver = {
967 	.name = "Marvell MV88E61xx",
968 	.uid = 0x01410eb1,
969 	.mask = 0xfffffff0,
970 	.features = PHY_GBIT_FEATURES,
971 	.probe = mv88e61xx_probe,
972 	.config = mv88e61xx_phy_config,
973 	.startup = mv88e61xx_phy_startup,
974 	.shutdown = &genphy_shutdown,
975 };
976 
977 int phy_mv88e61xx_init(void)
978 {
979 	phy_register(&mv88e61xx_driver);
980 
981 	return 0;
982 }
983 
984 /*
985  * Overload weak get_phy_id definition since we need non-standard functions
986  * to read PHY registers
987  */
988 int get_phy_id(struct mii_dev *bus, int smi_addr, int devad, u32 *phy_id)
989 {
990 	struct phy_device temp_phy;
991 	struct mv88e61xx_phy_priv temp_priv;
992 	struct mii_dev temp_mii;
993 	int val;
994 
995 	/*
996 	 * Buid temporary data structures that the chip reading code needs to
997 	 * read the ID
998 	 */
999 	temp_priv.mdio_bus = bus;
1000 	temp_priv.smi_addr = smi_addr;
1001 	temp_phy.priv = &temp_priv;
1002 	temp_mii.priv = &temp_phy;
1003 
1004 	val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID1);
1005 	if (val < 0)
1006 		return -EIO;
1007 
1008 	*phy_id = val << 16;
1009 
1010 	val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID2);
1011 	if (val < 0)
1012 		return -EIO;
1013 
1014 	*phy_id |= (val & 0xffff);
1015 
1016 	return 0;
1017 }
1018