xref: /openbmc/u-boot/drivers/net/ks8851_mll.c (revision 83d290c56fab2d38cd1ab4c4cc7099559c1d5046)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Micrel KS8851_MLL 16bit Network driver
4  * Copyright (c) 2011 Roberto Cerati <roberto.cerati@bticino.it>
5  */
6 
7 #include <asm/io.h>
8 #include <common.h>
9 #include <command.h>
10 #include <malloc.h>
11 #include <net.h>
12 #include <miiphy.h>
13 
14 #include "ks8851_mll.h"
15 
16 #define DRIVERNAME			"ks8851_mll"
17 
18 #define MAX_RECV_FRAMES			32
19 #define MAX_BUF_SIZE			2048
20 #define TX_BUF_SIZE			2000
21 #define RX_BUF_SIZE			2000
22 
23 static const struct chip_id chip_ids[] =  {
24 	{CIDER_ID, "KSZ8851"},
25 	{0, NULL},
26 };
27 
28 /*
29  * union ks_tx_hdr - tx header data
30  * @txb: The header as bytes
31  * @txw: The header as 16bit, little-endian words
32  *
33  * A dual representation of the tx header data to allow
34  * access to individual bytes, and to allow 16bit accesses
35  * with 16bit alignment.
36  */
37 union ks_tx_hdr {
38 	u8      txb[4];
39 	__le16  txw[2];
40 };
41 
42 /*
43  * struct ks_net - KS8851 driver private data
44  * @net_device	: The network device we're bound to
45  * @txh		: temporaly buffer to save status/length.
46  * @frame_head_info	: frame header information for multi-pkt rx.
47  * @statelock	: Lock on this structure for tx list.
48  * @msg_enable	: The message flags controlling driver output (see ethtool).
49  * @frame_cnt	: number of frames received.
50  * @bus_width	: i/o bus width.
51  * @irq		: irq number assigned to this device.
52  * @rc_rxqcr	: Cached copy of KS_RXQCR.
53  * @rc_txcr	: Cached copy of KS_TXCR.
54  * @rc_ier	: Cached copy of KS_IER.
55  * @sharedbus	: Multipex(addr and data bus) mode indicator.
56  * @cmd_reg_cache	: command register cached.
57  * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
58  * @promiscuous	: promiscuous mode indicator.
59  * @all_mcast	: mutlicast indicator.
60  * @mcast_lst_size	: size of multicast list.
61  * @mcast_lst		: multicast list.
62  * @mcast_bits		: multicast enabed.
63  * @mac_addr		: MAC address assigned to this device.
64  * @fid			: frame id.
65  * @extra_byte		: number of extra byte prepended rx pkt.
66  * @enabled		: indicator this device works.
67  */
68 
69 /* Receive multiplex framer header info */
70 struct type_frame_head {
71 	u16	sts;         /* Frame status */
72 	u16	len;         /* Byte count */
73 } fr_h_i[MAX_RECV_FRAMES];
74 
75 struct ks_net {
76 	struct net_device	*netdev;
77 	union ks_tx_hdr		txh;
78 	struct type_frame_head	*frame_head_info;
79 	u32			msg_enable;
80 	u32			frame_cnt;
81 	int			bus_width;
82 	int			irq;
83 	u16			rc_rxqcr;
84 	u16			rc_txcr;
85 	u16			rc_ier;
86 	u16			sharedbus;
87 	u16			cmd_reg_cache;
88 	u16			cmd_reg_cache_int;
89 	u16			promiscuous;
90 	u16			all_mcast;
91 	u16			mcast_lst_size;
92 	u8			mcast_lst[MAX_MCAST_LST][MAC_ADDR_LEN];
93 	u8			mcast_bits[HW_MCAST_SIZE];
94 	u8			mac_addr[6];
95 	u8                      fid;
96 	u8			extra_byte;
97 	u8			enabled;
98 } ks_str, *ks;
99 
100 #define BE3             0x8000      /* Byte Enable 3 */
101 #define BE2             0x4000      /* Byte Enable 2 */
102 #define BE1             0x2000      /* Byte Enable 1 */
103 #define BE0             0x1000      /* Byte Enable 0 */
104 
ks_rdreg8(struct eth_device * dev,u16 offset)105 static u8 ks_rdreg8(struct eth_device *dev, u16 offset)
106 {
107 	u8 shift_bit = offset & 0x03;
108 	u8 shift_data = (offset & 1) << 3;
109 
110 	writew(offset | (BE0 << shift_bit), dev->iobase + 2);
111 
112 	return (u8)(readw(dev->iobase) >> shift_data);
113 }
114 
ks_rdreg16(struct eth_device * dev,u16 offset)115 static u16 ks_rdreg16(struct eth_device *dev, u16 offset)
116 {
117 	writew(offset | ((BE1 | BE0) << (offset & 0x02)), dev->iobase + 2);
118 
119 	return readw(dev->iobase);
120 }
121 
ks_wrreg8(struct eth_device * dev,u16 offset,u8 val)122 static void ks_wrreg8(struct eth_device *dev, u16 offset, u8 val)
123 {
124 	u8 shift_bit = (offset & 0x03);
125 	u16 value_write = (u16)(val << ((offset & 1) << 3));
126 
127 	writew(offset | (BE0 << shift_bit), dev->iobase + 2);
128 	writew(value_write, dev->iobase);
129 }
130 
ks_wrreg16(struct eth_device * dev,u16 offset,u16 val)131 static void ks_wrreg16(struct eth_device *dev, u16 offset, u16 val)
132 {
133 	writew(offset | ((BE1 | BE0) << (offset & 0x02)), dev->iobase + 2);
134 	writew(val, dev->iobase);
135 }
136 
137 /*
138  * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode
139  * enabled.
140  * @ks: The chip state
141  * @wptr: buffer address to save data
142  * @len: length in byte to read
143  */
ks_inblk(struct eth_device * dev,u16 * wptr,u32 len)144 static inline void ks_inblk(struct eth_device *dev, u16 *wptr, u32 len)
145 {
146 	len >>= 1;
147 
148 	while (len--)
149 		*wptr++ = readw(dev->iobase);
150 }
151 
152 /*
153  * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
154  * @ks: The chip information
155  * @wptr: buffer address
156  * @len: length in byte to write
157  */
ks_outblk(struct eth_device * dev,u16 * wptr,u32 len)158 static inline void ks_outblk(struct eth_device *dev, u16 *wptr, u32 len)
159 {
160 	len >>= 1;
161 
162 	while (len--)
163 		writew(*wptr++, dev->iobase);
164 }
165 
ks_enable_int(struct eth_device * dev)166 static void ks_enable_int(struct eth_device *dev)
167 {
168 	ks_wrreg16(dev, KS_IER, ks->rc_ier);
169 }
170 
ks_set_powermode(struct eth_device * dev,unsigned pwrmode)171 static void ks_set_powermode(struct eth_device *dev, unsigned pwrmode)
172 {
173 	unsigned pmecr;
174 
175 	ks_rdreg16(dev, KS_GRR);
176 	pmecr = ks_rdreg16(dev, KS_PMECR);
177 	pmecr &= ~PMECR_PM_MASK;
178 	pmecr |= pwrmode;
179 
180 	ks_wrreg16(dev, KS_PMECR, pmecr);
181 }
182 
183 /*
184  * ks_read_config - read chip configuration of bus width.
185  * @ks: The chip information
186  */
ks_read_config(struct eth_device * dev)187 static void ks_read_config(struct eth_device *dev)
188 {
189 	u16 reg_data = 0;
190 
191 	/* Regardless of bus width, 8 bit read should always work. */
192 	reg_data = ks_rdreg8(dev, KS_CCR) & 0x00FF;
193 	reg_data |= ks_rdreg8(dev, KS_CCR + 1) << 8;
194 
195 	/* addr/data bus are multiplexed */
196 	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
197 
198 	/*
199 	 * There are garbage data when reading data from QMU,
200 	 * depending on bus-width.
201 	 */
202 	if (reg_data & CCR_8BIT) {
203 		ks->bus_width = ENUM_BUS_8BIT;
204 		ks->extra_byte = 1;
205 	} else if (reg_data & CCR_16BIT) {
206 		ks->bus_width = ENUM_BUS_16BIT;
207 		ks->extra_byte = 2;
208 	} else {
209 		ks->bus_width = ENUM_BUS_32BIT;
210 		ks->extra_byte = 4;
211 	}
212 }
213 
214 /*
215  * ks_soft_reset - issue one of the soft reset to the device
216  * @ks: The device state.
217  * @op: The bit(s) to set in the GRR
218  *
219  * Issue the relevant soft-reset command to the device's GRR register
220  * specified by @op.
221  *
222  * Note, the delays are in there as a caution to ensure that the reset
223  * has time to take effect and then complete. Since the datasheet does
224  * not currently specify the exact sequence, we have chosen something
225  * that seems to work with our device.
226  */
ks_soft_reset(struct eth_device * dev,unsigned op)227 static void ks_soft_reset(struct eth_device *dev, unsigned op)
228 {
229 	/* Disable interrupt first */
230 	ks_wrreg16(dev, KS_IER, 0x0000);
231 	ks_wrreg16(dev, KS_GRR, op);
232 	mdelay(10);	/* wait a short time to effect reset */
233 	ks_wrreg16(dev, KS_GRR, 0);
234 	mdelay(1);	/* wait for condition to clear */
235 }
236 
ks_enable_qmu(struct eth_device * dev)237 void ks_enable_qmu(struct eth_device *dev)
238 {
239 	u16 w;
240 
241 	w = ks_rdreg16(dev, KS_TXCR);
242 
243 	/* Enables QMU Transmit (TXCR). */
244 	ks_wrreg16(dev, KS_TXCR, w | TXCR_TXE);
245 
246 	/* Enable RX Frame Count Threshold and Auto-Dequeue RXQ Frame */
247 	w = ks_rdreg16(dev, KS_RXQCR);
248 	ks_wrreg16(dev, KS_RXQCR, w | RXQCR_RXFCTE);
249 
250 	/* Enables QMU Receive (RXCR1). */
251 	w = ks_rdreg16(dev, KS_RXCR1);
252 	ks_wrreg16(dev, KS_RXCR1, w | RXCR1_RXE);
253 }
254 
ks_disable_qmu(struct eth_device * dev)255 static void ks_disable_qmu(struct eth_device *dev)
256 {
257 	u16 w;
258 
259 	w = ks_rdreg16(dev, KS_TXCR);
260 
261 	/* Disables QMU Transmit (TXCR). */
262 	w &= ~TXCR_TXE;
263 	ks_wrreg16(dev, KS_TXCR, w);
264 
265 	/* Disables QMU Receive (RXCR1). */
266 	w = ks_rdreg16(dev, KS_RXCR1);
267 	w &= ~RXCR1_RXE;
268 	ks_wrreg16(dev, KS_RXCR1, w);
269 }
270 
ks_read_qmu(struct eth_device * dev,u16 * buf,u32 len)271 static inline void ks_read_qmu(struct eth_device *dev, u16 *buf, u32 len)
272 {
273 	u32 r = ks->extra_byte & 0x1;
274 	u32 w = ks->extra_byte - r;
275 
276 	/* 1. set sudo DMA mode */
277 	ks_wrreg16(dev, KS_RXFDPR, RXFDPR_RXFPAI);
278 	ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
279 
280 	/*
281 	 * 2. read prepend data
282 	 *
283 	 * read 4 + extra bytes and discard them.
284 	 * extra bytes for dummy, 2 for status, 2 for len
285 	 */
286 
287 	if (r)
288 		ks_rdreg8(dev, 0);
289 
290 	ks_inblk(dev, buf, w + 2 + 2);
291 
292 	/* 3. read pkt data */
293 	ks_inblk(dev, buf, ALIGN(len, 4));
294 
295 	/* 4. reset sudo DMA Mode */
296 	ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr & ~RXQCR_SDA) & 0xff);
297 }
298 
ks_rcv(struct eth_device * dev,uchar ** pv_data)299 static void ks_rcv(struct eth_device *dev, uchar **pv_data)
300 {
301 	struct type_frame_head *frame_hdr = ks->frame_head_info;
302 	int i;
303 
304 	ks->frame_cnt = ks_rdreg16(dev, KS_RXFCTR) >> 8;
305 
306 	/* read all header information */
307 	for (i = 0; i < ks->frame_cnt; i++) {
308 		/* Checking Received packet status */
309 		frame_hdr->sts = ks_rdreg16(dev, KS_RXFHSR);
310 		/* Get packet len from hardware */
311 		frame_hdr->len = ks_rdreg16(dev, KS_RXFHBCR);
312 		frame_hdr++;
313 	}
314 
315 	frame_hdr = ks->frame_head_info;
316 	while (ks->frame_cnt--) {
317 		if ((frame_hdr->sts & RXFSHR_RXFV) &&
318 		    (frame_hdr->len < RX_BUF_SIZE) &&
319 		    frame_hdr->len) {
320 			/* read data block including CRC 4 bytes */
321 			ks_read_qmu(dev, (u16 *)(*pv_data), frame_hdr->len);
322 
323 			/* net_rx_packets buffer size is ok (*pv_data) */
324 			net_process_received_packet(*pv_data, frame_hdr->len);
325 			pv_data++;
326 		} else {
327 			ks_wrreg16(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
328 			printf(DRIVERNAME ": bad packet\n");
329 		}
330 		frame_hdr++;
331 	}
332 }
333 
334 /*
335  * ks_read_selftest - read the selftest memory info.
336  * @ks: The device state
337  *
338  * Read and check the TX/RX memory selftest information.
339  */
ks_read_selftest(struct eth_device * dev)340 static int ks_read_selftest(struct eth_device *dev)
341 {
342 	u16 both_done = MBIR_TXMBF | MBIR_RXMBF;
343 	u16 mbir;
344 	int ret = 0;
345 
346 	mbir = ks_rdreg16(dev, KS_MBIR);
347 
348 	if ((mbir & both_done) != both_done) {
349 		printf(DRIVERNAME ": Memory selftest not finished\n");
350 		return 0;
351 	}
352 
353 	if (mbir & MBIR_TXMBFA) {
354 		printf(DRIVERNAME ": TX memory selftest fails\n");
355 		ret |= 1;
356 	}
357 
358 	if (mbir & MBIR_RXMBFA) {
359 		printf(DRIVERNAME ": RX memory selftest fails\n");
360 		ret |= 2;
361 	}
362 
363 	debug(DRIVERNAME ": the selftest passes\n");
364 
365 	return ret;
366 }
367 
ks_setup(struct eth_device * dev)368 static void ks_setup(struct eth_device *dev)
369 {
370 	u16 w;
371 
372 	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
373 	ks_wrreg16(dev, KS_TXFDPR, TXFDPR_TXFPAI);
374 
375 	/* Setup Receive Frame Data Pointer Auto-Increment */
376 	ks_wrreg16(dev, KS_RXFDPR, RXFDPR_RXFPAI);
377 
378 	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
379 	ks_wrreg16(dev, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
380 
381 	/* Setup RxQ Command Control (RXQCR) */
382 	ks->rc_rxqcr = RXQCR_CMD_CNTL;
383 	ks_wrreg16(dev, KS_RXQCR, ks->rc_rxqcr);
384 
385 	/*
386 	 * set the force mode to half duplex, default is full duplex
387 	 * because if the auto-negotiation fails, most switch uses
388 	 * half-duplex.
389 	 */
390 	w = ks_rdreg16(dev, KS_P1MBCR);
391 	w &= ~P1MBCR_FORCE_FDX;
392 	ks_wrreg16(dev, KS_P1MBCR, w);
393 
394 	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
395 	ks_wrreg16(dev, KS_TXCR, w);
396 
397 	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
398 
399 	/* Normal mode */
400 	w |= RXCR1_RXPAFMA;
401 
402 	ks_wrreg16(dev, KS_RXCR1, w);
403 }
404 
ks_setup_int(struct eth_device * dev)405 static void ks_setup_int(struct eth_device *dev)
406 {
407 	ks->rc_ier = 0x00;
408 
409 	/* Clear the interrupts status of the hardware. */
410 	ks_wrreg16(dev, KS_ISR, 0xffff);
411 
412 	/* Enables the interrupts of the hardware. */
413 	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
414 }
415 
ks8851_mll_detect_chip(struct eth_device * dev)416 static int ks8851_mll_detect_chip(struct eth_device *dev)
417 {
418 	unsigned short val, i;
419 
420 	ks_read_config(dev);
421 
422 	val = ks_rdreg16(dev, KS_CIDER);
423 
424 	if (val == 0xffff) {
425 		/* Special case -- no chip present */
426 		printf(DRIVERNAME ":  is chip mounted ?\n");
427 		return -1;
428 	} else if ((val & 0xfff0) != CIDER_ID) {
429 		printf(DRIVERNAME ": Invalid chip id 0x%04x\n", val);
430 		return -1;
431 	}
432 
433 	debug("Read back KS8851 id 0x%x\n", val);
434 
435 	/* only one entry in the table */
436 	val &= 0xfff0;
437 	for (i = 0; chip_ids[i].id != 0; i++) {
438 		if (chip_ids[i].id == val)
439 			break;
440 	}
441 	if (!chip_ids[i].id) {
442 		printf(DRIVERNAME ": Unknown chip ID %04x\n", val);
443 		return -1;
444 	}
445 
446 	dev->priv = (void *)&chip_ids[i];
447 
448 	return 0;
449 }
450 
ks8851_mll_reset(struct eth_device * dev)451 static void ks8851_mll_reset(struct eth_device *dev)
452 {
453 	/* wake up powermode to normal mode */
454 	ks_set_powermode(dev, PMECR_PM_NORMAL);
455 	mdelay(1);	/* wait for normal mode to take effect */
456 
457 	/* Disable interrupt and reset */
458 	ks_soft_reset(dev, GRR_GSR);
459 
460 	/* turn off the IRQs and ack any outstanding */
461 	ks_wrreg16(dev, KS_IER, 0x0000);
462 	ks_wrreg16(dev, KS_ISR, 0xffff);
463 
464 	/* shutdown RX/TX QMU */
465 	ks_disable_qmu(dev);
466 }
467 
ks8851_mll_phy_configure(struct eth_device * dev)468 static void ks8851_mll_phy_configure(struct eth_device *dev)
469 {
470 	u16 data;
471 
472 	ks_setup(dev);
473 	ks_setup_int(dev);
474 
475 	/* Probing the phy */
476 	data = ks_rdreg16(dev, KS_OBCR);
477 	ks_wrreg16(dev, KS_OBCR, data | OBCR_ODS_16MA);
478 
479 	debug(DRIVERNAME ": phy initialized\n");
480 }
481 
ks8851_mll_enable(struct eth_device * dev)482 static void ks8851_mll_enable(struct eth_device *dev)
483 {
484 	ks_wrreg16(dev, KS_ISR, 0xffff);
485 	ks_enable_int(dev);
486 	ks_enable_qmu(dev);
487 }
488 
ks8851_mll_init(struct eth_device * dev,bd_t * bd)489 static int ks8851_mll_init(struct eth_device *dev, bd_t *bd)
490 {
491 	struct chip_id *id = dev->priv;
492 
493 	debug(DRIVERNAME ": detected %s controller\n", id->name);
494 
495 	if (ks_read_selftest(dev)) {
496 		printf(DRIVERNAME ": Selftest failed\n");
497 		return -1;
498 	}
499 
500 	ks8851_mll_reset(dev);
501 
502 	/* Configure the PHY, initialize the link state */
503 	ks8851_mll_phy_configure(dev);
504 
505 	/* static allocation of private informations */
506 	ks->frame_head_info = fr_h_i;
507 
508 	/* Turn on Tx + Rx */
509 	ks8851_mll_enable(dev);
510 
511 	return 0;
512 }
513 
ks_write_qmu(struct eth_device * dev,u8 * pdata,u16 len)514 static void ks_write_qmu(struct eth_device *dev, u8 *pdata, u16 len)
515 {
516 	/* start header at txb[0] to align txw entries */
517 	ks->txh.txw[0] = 0;
518 	ks->txh.txw[1] = cpu_to_le16(len);
519 
520 	/* 1. set sudo-DMA mode */
521 	ks_wrreg16(dev, KS_TXFDPR, TXFDPR_TXFPAI);
522 	ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
523 	/* 2. write status/lenth info */
524 	ks_outblk(dev, ks->txh.txw, 4);
525 	/* 3. write pkt data */
526 	ks_outblk(dev, (u16 *)pdata, ALIGN(len, 4));
527 	/* 4. reset sudo-DMA mode */
528 	ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr & ~RXQCR_SDA) & 0xff);
529 	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
530 	ks_wrreg16(dev, KS_TXQCR, TXQCR_METFE);
531 	/* 6. wait until TXQCR_METFE is auto-cleared */
532 	do { } while (ks_rdreg16(dev, KS_TXQCR) & TXQCR_METFE);
533 }
534 
ks8851_mll_send(struct eth_device * dev,void * packet,int length)535 static int ks8851_mll_send(struct eth_device *dev, void *packet, int length)
536 {
537 	u8 *data = (u8 *)packet;
538 	u16 tmplen = (u16)length;
539 	u16 retv;
540 
541 	/*
542 	 * Extra space are required:
543 	 * 4 byte for alignment, 4 for status/length, 4 for CRC
544 	 */
545 	retv = ks_rdreg16(dev, KS_TXMIR) & 0x1fff;
546 	if (retv >= tmplen + 12) {
547 		ks_write_qmu(dev, data, tmplen);
548 		return 0;
549 	} else {
550 		printf(DRIVERNAME ": failed to send packet: No buffer\n");
551 		return -1;
552 	}
553 }
554 
ks8851_mll_halt(struct eth_device * dev)555 static void ks8851_mll_halt(struct eth_device *dev)
556 {
557 	ks8851_mll_reset(dev);
558 }
559 
560 /*
561  * Maximum receive ring size; that is, the number of packets
562  * we can buffer before overflow happens. Basically, this just
563  * needs to be enough to prevent a packet being discarded while
564  * we are processing the previous one.
565  */
ks8851_mll_recv(struct eth_device * dev)566 static int ks8851_mll_recv(struct eth_device *dev)
567 {
568 	u16 status;
569 
570 	status = ks_rdreg16(dev, KS_ISR);
571 
572 	ks_wrreg16(dev, KS_ISR, status);
573 
574 	if ((status & IRQ_RXI))
575 		ks_rcv(dev, (uchar **)net_rx_packets);
576 
577 	if ((status & IRQ_LDI)) {
578 		u16 pmecr = ks_rdreg16(dev, KS_PMECR);
579 		pmecr &= ~PMECR_WKEVT_MASK;
580 		ks_wrreg16(dev, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
581 	}
582 
583 	return 0;
584 }
585 
ks8851_mll_write_hwaddr(struct eth_device * dev)586 static int ks8851_mll_write_hwaddr(struct eth_device *dev)
587 {
588 	u16 addrl, addrm, addrh;
589 
590 	addrh = (dev->enetaddr[0] << 8) | dev->enetaddr[1];
591 	addrm = (dev->enetaddr[2] << 8) | dev->enetaddr[3];
592 	addrl = (dev->enetaddr[4] << 8) | dev->enetaddr[5];
593 
594 	ks_wrreg16(dev, KS_MARH, addrh);
595 	ks_wrreg16(dev, KS_MARM, addrm);
596 	ks_wrreg16(dev, KS_MARL, addrl);
597 
598 	return 0;
599 }
600 
ks8851_mll_initialize(u8 dev_num,int base_addr)601 int ks8851_mll_initialize(u8 dev_num, int base_addr)
602 {
603 	struct eth_device *dev;
604 
605 	dev = malloc(sizeof(*dev));
606 	if (!dev) {
607 		printf("Error: Failed to allocate memory\n");
608 		return -1;
609 	}
610 	memset(dev, 0, sizeof(*dev));
611 
612 	dev->iobase = base_addr;
613 
614 	ks = &ks_str;
615 
616 	/* Try to detect chip. Will fail if not present. */
617 	if (ks8851_mll_detect_chip(dev)) {
618 		free(dev);
619 		return -1;
620 	}
621 
622 	dev->init = ks8851_mll_init;
623 	dev->halt = ks8851_mll_halt;
624 	dev->send = ks8851_mll_send;
625 	dev->recv = ks8851_mll_recv;
626 	dev->write_hwaddr = ks8851_mll_write_hwaddr;
627 	sprintf(dev->name, "%s-%hu", DRIVERNAME, dev_num);
628 
629 	eth_register(dev);
630 
631 	return 0;
632 }
633