xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 83d290c56fab2d38cd1ab4c4cc7099559c1d5046)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
4  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
5  * (C) Copyright 2008 Armadeus Systems nc
6  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
7  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8  */
9 
10 #include <common.h>
11 #include <dm.h>
12 #include <environment.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <miiphy.h>
16 #include <net.h>
17 #include <netdev.h>
18 #include "fec_mxc.h"
19 
20 #include <asm/io.h>
21 #include <linux/errno.h>
22 #include <linux/compiler.h>
23 
24 #include <asm/arch/clock.h>
25 #include <asm/arch/imx-regs.h>
26 #include <asm/mach-imx/sys_proto.h>
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
30 /*
31  * Timeout the transfer after 5 mS. This is usually a bit more, since
32  * the code in the tightloops this timeout is used in adds some overhead.
33  */
34 #define FEC_XFER_TIMEOUT	5000
35 
36 /*
37  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
38  * 64-byte alignment in the DMA RX FEC buffer.
39  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
40  * satisfies the alignment on other SoCs (32-bytes)
41  */
42 #define FEC_DMA_RX_MINALIGN	64
43 
44 #ifndef CONFIG_MII
45 #error "CONFIG_MII has to be defined!"
46 #endif
47 
48 #ifndef CONFIG_FEC_XCV_TYPE
49 #define CONFIG_FEC_XCV_TYPE MII100
50 #endif
51 
52 /*
53  * The i.MX28 operates with packets in big endian. We need to swap them before
54  * sending and after receiving.
55  */
56 #ifdef CONFIG_MX28
57 #define CONFIG_FEC_MXC_SWAP_PACKET
58 #endif
59 
60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61 
62 /* Check various alignment issues at compile time */
63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
65 #endif
66 
67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
70 #endif
71 
72 #undef DEBUG
73 
74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
75 static void swap_packet(uint32_t *packet, int length)
76 {
77 	int i;
78 
79 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 		packet[i] = __swab32(packet[i]);
81 }
82 #endif
83 
84 /* MII-interface related functions */
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
86 		uint8_t regaddr)
87 {
88 	uint32_t reg;		/* convenient holder for the PHY register */
89 	uint32_t phy;		/* convenient holder for the PHY */
90 	uint32_t start;
91 	int val;
92 
93 	/*
94 	 * reading from any PHY's register is done by properly
95 	 * programming the FEC's MII data register.
96 	 */
97 	writel(FEC_IEVENT_MII, &eth->ievent);
98 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
99 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
100 
101 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 			phy | reg, &eth->mii_data);
103 
104 	/* wait for the related interrupt */
105 	start = get_timer(0);
106 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
107 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
108 			printf("Read MDIO failed...\n");
109 			return -1;
110 		}
111 	}
112 
113 	/* clear mii interrupt bit */
114 	writel(FEC_IEVENT_MII, &eth->ievent);
115 
116 	/* it's now safe to read the PHY's register */
117 	val = (unsigned short)readl(&eth->mii_data);
118 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
119 	      regaddr, val);
120 	return val;
121 }
122 
123 static void fec_mii_setspeed(struct ethernet_regs *eth)
124 {
125 	/*
126 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
127 	 * and do not drop the Preamble.
128 	 *
129 	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
130 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
131 	 * versions are RAZ there, so just ignore the difference and write the
132 	 * register always.
133 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
134 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
135 	 * output.
136 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
137 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
138 	 * holdtime cannot result in a value greater than 3.
139 	 */
140 	u32 pclk = imx_get_fecclk();
141 	u32 speed = DIV_ROUND_UP(pclk, 5000000);
142 	u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
143 #ifdef FEC_QUIRK_ENET_MAC
144 	speed--;
145 #endif
146 	writel(speed << 1 | hold << 8, &eth->mii_speed);
147 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
148 }
149 
150 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
151 		uint8_t regaddr, uint16_t data)
152 {
153 	uint32_t reg;		/* convenient holder for the PHY register */
154 	uint32_t phy;		/* convenient holder for the PHY */
155 	uint32_t start;
156 
157 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
158 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
159 
160 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
161 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
162 
163 	/* wait for the MII interrupt */
164 	start = get_timer(0);
165 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
166 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
167 			printf("Write MDIO failed...\n");
168 			return -1;
169 		}
170 	}
171 
172 	/* clear MII interrupt bit */
173 	writel(FEC_IEVENT_MII, &eth->ievent);
174 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
175 	      regaddr, data);
176 
177 	return 0;
178 }
179 
180 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
181 			int regaddr)
182 {
183 	return fec_mdio_read(bus->priv, phyaddr, regaddr);
184 }
185 
186 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
187 			 int regaddr, u16 data)
188 {
189 	return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
190 }
191 
192 #ifndef CONFIG_PHYLIB
193 static int miiphy_restart_aneg(struct eth_device *dev)
194 {
195 	int ret = 0;
196 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
197 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
198 	struct ethernet_regs *eth = fec->bus->priv;
199 
200 	/*
201 	 * Wake up from sleep if necessary
202 	 * Reset PHY, then delay 300ns
203 	 */
204 #ifdef CONFIG_MX27
205 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
206 #endif
207 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
208 	udelay(1000);
209 
210 	/* Set the auto-negotiation advertisement register bits */
211 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
212 		       LPA_100FULL | LPA_100HALF | LPA_10FULL |
213 		       LPA_10HALF | PHY_ANLPAR_PSB_802_3);
214 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
215 		       BMCR_ANENABLE | BMCR_ANRESTART);
216 
217 	if (fec->mii_postcall)
218 		ret = fec->mii_postcall(fec->phy_id);
219 
220 #endif
221 	return ret;
222 }
223 
224 #ifndef CONFIG_FEC_FIXED_SPEED
225 static int miiphy_wait_aneg(struct eth_device *dev)
226 {
227 	uint32_t start;
228 	int status;
229 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
230 	struct ethernet_regs *eth = fec->bus->priv;
231 
232 	/* Wait for AN completion */
233 	start = get_timer(0);
234 	do {
235 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
236 			printf("%s: Autonegotiation timeout\n", dev->name);
237 			return -1;
238 		}
239 
240 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
241 		if (status < 0) {
242 			printf("%s: Autonegotiation failed. status: %d\n",
243 			       dev->name, status);
244 			return -1;
245 		}
246 	} while (!(status & BMSR_LSTATUS));
247 
248 	return 0;
249 }
250 #endif /* CONFIG_FEC_FIXED_SPEED */
251 #endif
252 
253 static int fec_rx_task_enable(struct fec_priv *fec)
254 {
255 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
256 	return 0;
257 }
258 
259 static int fec_rx_task_disable(struct fec_priv *fec)
260 {
261 	return 0;
262 }
263 
264 static int fec_tx_task_enable(struct fec_priv *fec)
265 {
266 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
267 	return 0;
268 }
269 
270 static int fec_tx_task_disable(struct fec_priv *fec)
271 {
272 	return 0;
273 }
274 
275 /**
276  * Initialize receive task's buffer descriptors
277  * @param[in] fec all we know about the device yet
278  * @param[in] count receive buffer count to be allocated
279  * @param[in] dsize desired size of each receive buffer
280  * @return 0 on success
281  *
282  * Init all RX descriptors to default values.
283  */
284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
285 {
286 	uint32_t size;
287 	ulong data;
288 	int i;
289 
290 	/*
291 	 * Reload the RX descriptors with default values and wipe
292 	 * the RX buffers.
293 	 */
294 	size = roundup(dsize, ARCH_DMA_MINALIGN);
295 	for (i = 0; i < count; i++) {
296 		data = fec->rbd_base[i].data_pointer;
297 		memset((void *)data, 0, dsize);
298 		flush_dcache_range(data, data + size);
299 
300 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
301 		fec->rbd_base[i].data_length = 0;
302 	}
303 
304 	/* Mark the last RBD to close the ring. */
305 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
306 	fec->rbd_index = 0;
307 
308 	flush_dcache_range((ulong)fec->rbd_base,
309 			   (ulong)fec->rbd_base + size);
310 }
311 
312 /**
313  * Initialize transmit task's buffer descriptors
314  * @param[in] fec all we know about the device yet
315  *
316  * Transmit buffers are created externally. We only have to init the BDs here.\n
317  * Note: There is a race condition in the hardware. When only one BD is in
318  * use it must be marked with the WRAP bit to use it for every transmitt.
319  * This bit in combination with the READY bit results into double transmit
320  * of each data buffer. It seems the state machine checks READY earlier then
321  * resetting it after the first transfer.
322  * Using two BDs solves this issue.
323  */
324 static void fec_tbd_init(struct fec_priv *fec)
325 {
326 	ulong addr = (ulong)fec->tbd_base;
327 	unsigned size = roundup(2 * sizeof(struct fec_bd),
328 				ARCH_DMA_MINALIGN);
329 
330 	memset(fec->tbd_base, 0, size);
331 	fec->tbd_base[0].status = 0;
332 	fec->tbd_base[1].status = FEC_TBD_WRAP;
333 	fec->tbd_index = 0;
334 	flush_dcache_range(addr, addr + size);
335 }
336 
337 /**
338  * Mark the given read buffer descriptor as free
339  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
340  * @param[in] prbd buffer descriptor to mark free again
341  */
342 static void fec_rbd_clean(int last, struct fec_bd *prbd)
343 {
344 	unsigned short flags = FEC_RBD_EMPTY;
345 	if (last)
346 		flags |= FEC_RBD_WRAP;
347 	writew(flags, &prbd->status);
348 	writew(0, &prbd->data_length);
349 }
350 
351 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
352 {
353 	imx_get_mac_from_fuse(dev_id, mac);
354 	return !is_valid_ethaddr(mac);
355 }
356 
357 #ifdef CONFIG_DM_ETH
358 static int fecmxc_set_hwaddr(struct udevice *dev)
359 #else
360 static int fec_set_hwaddr(struct eth_device *dev)
361 #endif
362 {
363 #ifdef CONFIG_DM_ETH
364 	struct fec_priv *fec = dev_get_priv(dev);
365 	struct eth_pdata *pdata = dev_get_platdata(dev);
366 	uchar *mac = pdata->enetaddr;
367 #else
368 	uchar *mac = dev->enetaddr;
369 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
370 #endif
371 
372 	writel(0, &fec->eth->iaddr1);
373 	writel(0, &fec->eth->iaddr2);
374 	writel(0, &fec->eth->gaddr1);
375 	writel(0, &fec->eth->gaddr2);
376 
377 	/* Set physical address */
378 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
379 	       &fec->eth->paddr1);
380 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
381 
382 	return 0;
383 }
384 
385 /* Do initial configuration of the FEC registers */
386 static void fec_reg_setup(struct fec_priv *fec)
387 {
388 	uint32_t rcntrl;
389 
390 	/* Set interrupt mask register */
391 	writel(0x00000000, &fec->eth->imask);
392 
393 	/* Clear FEC-Lite interrupt event register(IEVENT) */
394 	writel(0xffffffff, &fec->eth->ievent);
395 
396 	/* Set FEC-Lite receive control register(R_CNTRL): */
397 
398 	/* Start with frame length = 1518, common for all modes. */
399 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
400 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
401 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
402 	if (fec->xcv_type == RGMII)
403 		rcntrl |= FEC_RCNTRL_RGMII;
404 	else if (fec->xcv_type == RMII)
405 		rcntrl |= FEC_RCNTRL_RMII;
406 
407 	writel(rcntrl, &fec->eth->r_cntrl);
408 }
409 
410 /**
411  * Start the FEC engine
412  * @param[in] dev Our device to handle
413  */
414 #ifdef CONFIG_DM_ETH
415 static int fec_open(struct udevice *dev)
416 #else
417 static int fec_open(struct eth_device *edev)
418 #endif
419 {
420 #ifdef CONFIG_DM_ETH
421 	struct fec_priv *fec = dev_get_priv(dev);
422 #else
423 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
424 #endif
425 	int speed;
426 	ulong addr, size;
427 	int i;
428 
429 	debug("fec_open: fec_open(dev)\n");
430 	/* full-duplex, heartbeat disabled */
431 	writel(1 << 2, &fec->eth->x_cntrl);
432 	fec->rbd_index = 0;
433 
434 	/* Invalidate all descriptors */
435 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
436 		fec_rbd_clean(0, &fec->rbd_base[i]);
437 	fec_rbd_clean(1, &fec->rbd_base[i]);
438 
439 	/* Flush the descriptors into RAM */
440 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
441 			ARCH_DMA_MINALIGN);
442 	addr = (ulong)fec->rbd_base;
443 	flush_dcache_range(addr, addr + size);
444 
445 #ifdef FEC_QUIRK_ENET_MAC
446 	/* Enable ENET HW endian SWAP */
447 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
448 	       &fec->eth->ecntrl);
449 	/* Enable ENET store and forward mode */
450 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
451 	       &fec->eth->x_wmrk);
452 #endif
453 	/* Enable FEC-Lite controller */
454 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
455 	       &fec->eth->ecntrl);
456 
457 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
458 	udelay(100);
459 
460 	/* setup the MII gasket for RMII mode */
461 	/* disable the gasket */
462 	writew(0, &fec->eth->miigsk_enr);
463 
464 	/* wait for the gasket to be disabled */
465 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
466 		udelay(2);
467 
468 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
469 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
470 
471 	/* re-enable the gasket */
472 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
473 
474 	/* wait until MII gasket is ready */
475 	int max_loops = 10;
476 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
477 		if (--max_loops <= 0) {
478 			printf("WAIT for MII Gasket ready timed out\n");
479 			break;
480 		}
481 	}
482 #endif
483 
484 #ifdef CONFIG_PHYLIB
485 	{
486 		/* Start up the PHY */
487 		int ret = phy_startup(fec->phydev);
488 
489 		if (ret) {
490 			printf("Could not initialize PHY %s\n",
491 			       fec->phydev->dev->name);
492 			return ret;
493 		}
494 		speed = fec->phydev->speed;
495 	}
496 #elif CONFIG_FEC_FIXED_SPEED
497 	speed = CONFIG_FEC_FIXED_SPEED;
498 #else
499 	miiphy_wait_aneg(edev);
500 	speed = miiphy_speed(edev->name, fec->phy_id);
501 	miiphy_duplex(edev->name, fec->phy_id);
502 #endif
503 
504 #ifdef FEC_QUIRK_ENET_MAC
505 	{
506 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
507 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
508 		if (speed == _1000BASET)
509 			ecr |= FEC_ECNTRL_SPEED;
510 		else if (speed != _100BASET)
511 			rcr |= FEC_RCNTRL_RMII_10T;
512 		writel(ecr, &fec->eth->ecntrl);
513 		writel(rcr, &fec->eth->r_cntrl);
514 	}
515 #endif
516 	debug("%s:Speed=%i\n", __func__, speed);
517 
518 	/* Enable SmartDMA receive task */
519 	fec_rx_task_enable(fec);
520 
521 	udelay(100000);
522 	return 0;
523 }
524 
525 #ifdef CONFIG_DM_ETH
526 static int fecmxc_init(struct udevice *dev)
527 #else
528 static int fec_init(struct eth_device *dev, bd_t *bd)
529 #endif
530 {
531 #ifdef CONFIG_DM_ETH
532 	struct fec_priv *fec = dev_get_priv(dev);
533 #else
534 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
535 #endif
536 	u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
537 	u8 *i;
538 	ulong addr;
539 
540 	/* Initialize MAC address */
541 #ifdef CONFIG_DM_ETH
542 	fecmxc_set_hwaddr(dev);
543 #else
544 	fec_set_hwaddr(dev);
545 #endif
546 
547 	/* Setup transmit descriptors, there are two in total. */
548 	fec_tbd_init(fec);
549 
550 	/* Setup receive descriptors. */
551 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
552 
553 	fec_reg_setup(fec);
554 
555 	if (fec->xcv_type != SEVENWIRE)
556 		fec_mii_setspeed(fec->bus->priv);
557 
558 	/* Set Opcode/Pause Duration Register */
559 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
560 	writel(0x2, &fec->eth->x_wmrk);
561 
562 	/* Set multicast address filter */
563 	writel(0x00000000, &fec->eth->gaddr1);
564 	writel(0x00000000, &fec->eth->gaddr2);
565 
566 	/* Do not access reserved register */
567 	if (!is_mx6ul() && !is_mx6ull() && !is_mx8m()) {
568 		/* clear MIB RAM */
569 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
570 			writel(0, i);
571 
572 		/* FIFO receive start register */
573 		writel(0x520, &fec->eth->r_fstart);
574 	}
575 
576 	/* size and address of each buffer */
577 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
578 
579 	addr = (ulong)fec->tbd_base;
580 	writel((uint32_t)addr, &fec->eth->etdsr);
581 
582 	addr = (ulong)fec->rbd_base;
583 	writel((uint32_t)addr, &fec->eth->erdsr);
584 
585 #ifndef CONFIG_PHYLIB
586 	if (fec->xcv_type != SEVENWIRE)
587 		miiphy_restart_aneg(dev);
588 #endif
589 	fec_open(dev);
590 	return 0;
591 }
592 
593 /**
594  * Halt the FEC engine
595  * @param[in] dev Our device to handle
596  */
597 #ifdef CONFIG_DM_ETH
598 static void fecmxc_halt(struct udevice *dev)
599 #else
600 static void fec_halt(struct eth_device *dev)
601 #endif
602 {
603 #ifdef CONFIG_DM_ETH
604 	struct fec_priv *fec = dev_get_priv(dev);
605 #else
606 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
607 #endif
608 	int counter = 0xffff;
609 
610 	/* issue graceful stop command to the FEC transmitter if necessary */
611 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
612 	       &fec->eth->x_cntrl);
613 
614 	debug("eth_halt: wait for stop regs\n");
615 	/* wait for graceful stop to register */
616 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
617 		udelay(1);
618 
619 	/* Disable SmartDMA tasks */
620 	fec_tx_task_disable(fec);
621 	fec_rx_task_disable(fec);
622 
623 	/*
624 	 * Disable the Ethernet Controller
625 	 * Note: this will also reset the BD index counter!
626 	 */
627 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
628 	       &fec->eth->ecntrl);
629 	fec->rbd_index = 0;
630 	fec->tbd_index = 0;
631 	debug("eth_halt: done\n");
632 }
633 
634 /**
635  * Transmit one frame
636  * @param[in] dev Our ethernet device to handle
637  * @param[in] packet Pointer to the data to be transmitted
638  * @param[in] length Data count in bytes
639  * @return 0 on success
640  */
641 #ifdef CONFIG_DM_ETH
642 static int fecmxc_send(struct udevice *dev, void *packet, int length)
643 #else
644 static int fec_send(struct eth_device *dev, void *packet, int length)
645 #endif
646 {
647 	unsigned int status;
648 	u32 size;
649 	ulong addr, end;
650 	int timeout = FEC_XFER_TIMEOUT;
651 	int ret = 0;
652 
653 	/*
654 	 * This routine transmits one frame.  This routine only accepts
655 	 * 6-byte Ethernet addresses.
656 	 */
657 #ifdef CONFIG_DM_ETH
658 	struct fec_priv *fec = dev_get_priv(dev);
659 #else
660 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
661 #endif
662 
663 	/*
664 	 * Check for valid length of data.
665 	 */
666 	if ((length > 1500) || (length <= 0)) {
667 		printf("Payload (%d) too large\n", length);
668 		return -1;
669 	}
670 
671 	/*
672 	 * Setup the transmit buffer. We are always using the first buffer for
673 	 * transmission, the second will be empty and only used to stop the DMA
674 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
675 	 */
676 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
677 	swap_packet((uint32_t *)packet, length);
678 #endif
679 
680 	addr = (ulong)packet;
681 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
682 	addr &= ~(ARCH_DMA_MINALIGN - 1);
683 	flush_dcache_range(addr, end);
684 
685 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
686 	writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
687 
688 	/*
689 	 * update BD's status now
690 	 * This block:
691 	 * - is always the last in a chain (means no chain)
692 	 * - should transmitt the CRC
693 	 * - might be the last BD in the list, so the address counter should
694 	 *   wrap (-> keep the WRAP flag)
695 	 */
696 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
697 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
698 	writew(status, &fec->tbd_base[fec->tbd_index].status);
699 
700 	/*
701 	 * Flush data cache. This code flushes both TX descriptors to RAM.
702 	 * After this code, the descriptors will be safely in RAM and we
703 	 * can start DMA.
704 	 */
705 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
706 	addr = (ulong)fec->tbd_base;
707 	flush_dcache_range(addr, addr + size);
708 
709 	/*
710 	 * Below we read the DMA descriptor's last four bytes back from the
711 	 * DRAM. This is important in order to make sure that all WRITE
712 	 * operations on the bus that were triggered by previous cache FLUSH
713 	 * have completed.
714 	 *
715 	 * Otherwise, on MX28, it is possible to observe a corruption of the
716 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
717 	 * for the bus structure of MX28. The scenario is as follows:
718 	 *
719 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
720 	 *    to DRAM due to flush_dcache_range()
721 	 * 2) ARM core writes the FEC registers via AHB_ARB2
722 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
723 	 *
724 	 * Note that 2) does sometimes finish before 1) due to reordering of
725 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
726 	 * DMA descriptor is fully written into DRAM. This results in occasional
727 	 * corruption of the DMA descriptor.
728 	 */
729 	readl(addr + size - 4);
730 
731 	/* Enable SmartDMA transmit task */
732 	fec_tx_task_enable(fec);
733 
734 	/*
735 	 * Wait until frame is sent. On each turn of the wait cycle, we must
736 	 * invalidate data cache to see what's really in RAM. Also, we need
737 	 * barrier here.
738 	 */
739 	while (--timeout) {
740 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
741 			break;
742 	}
743 
744 	if (!timeout) {
745 		ret = -EINVAL;
746 		goto out;
747 	}
748 
749 	/*
750 	 * The TDAR bit is cleared when the descriptors are all out from TX
751 	 * but on mx6solox we noticed that the READY bit is still not cleared
752 	 * right after TDAR.
753 	 * These are two distinct signals, and in IC simulation, we found that
754 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
755 	 * cleared.
756 	 * In mx6solox, we use a later version of FEC IP. It looks like that
757 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
758 	 * version.
759 	 *
760 	 * Fix this by polling the READY bit of BD after the TDAR polling,
761 	 * which covers the mx6solox case and does not harm the other SoCs.
762 	 */
763 	timeout = FEC_XFER_TIMEOUT;
764 	while (--timeout) {
765 		invalidate_dcache_range(addr, addr + size);
766 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
767 		    FEC_TBD_READY))
768 			break;
769 	}
770 
771 	if (!timeout)
772 		ret = -EINVAL;
773 
774 out:
775 	debug("fec_send: status 0x%x index %d ret %i\n",
776 	      readw(&fec->tbd_base[fec->tbd_index].status),
777 	      fec->tbd_index, ret);
778 	/* for next transmission use the other buffer */
779 	if (fec->tbd_index)
780 		fec->tbd_index = 0;
781 	else
782 		fec->tbd_index = 1;
783 
784 	return ret;
785 }
786 
787 /**
788  * Pull one frame from the card
789  * @param[in] dev Our ethernet device to handle
790  * @return Length of packet read
791  */
792 #ifdef CONFIG_DM_ETH
793 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
794 #else
795 static int fec_recv(struct eth_device *dev)
796 #endif
797 {
798 #ifdef CONFIG_DM_ETH
799 	struct fec_priv *fec = dev_get_priv(dev);
800 #else
801 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
802 #endif
803 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
804 	unsigned long ievent;
805 	int frame_length, len = 0;
806 	uint16_t bd_status;
807 	ulong addr, size, end;
808 	int i;
809 
810 #ifdef CONFIG_DM_ETH
811 	*packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
812 	if (*packetp == 0) {
813 		printf("%s: error allocating packetp\n", __func__);
814 		return -ENOMEM;
815 	}
816 #else
817 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
818 #endif
819 
820 	/* Check if any critical events have happened */
821 	ievent = readl(&fec->eth->ievent);
822 	writel(ievent, &fec->eth->ievent);
823 	debug("fec_recv: ievent 0x%lx\n", ievent);
824 	if (ievent & FEC_IEVENT_BABR) {
825 #ifdef CONFIG_DM_ETH
826 		fecmxc_halt(dev);
827 		fecmxc_init(dev);
828 #else
829 		fec_halt(dev);
830 		fec_init(dev, fec->bd);
831 #endif
832 		printf("some error: 0x%08lx\n", ievent);
833 		return 0;
834 	}
835 	if (ievent & FEC_IEVENT_HBERR) {
836 		/* Heartbeat error */
837 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
838 		       &fec->eth->x_cntrl);
839 	}
840 	if (ievent & FEC_IEVENT_GRA) {
841 		/* Graceful stop complete */
842 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
843 #ifdef CONFIG_DM_ETH
844 			fecmxc_halt(dev);
845 #else
846 			fec_halt(dev);
847 #endif
848 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
849 			       &fec->eth->x_cntrl);
850 #ifdef CONFIG_DM_ETH
851 			fecmxc_init(dev);
852 #else
853 			fec_init(dev, fec->bd);
854 #endif
855 		}
856 	}
857 
858 	/*
859 	 * Read the buffer status. Before the status can be read, the data cache
860 	 * must be invalidated, because the data in RAM might have been changed
861 	 * by DMA. The descriptors are properly aligned to cachelines so there's
862 	 * no need to worry they'd overlap.
863 	 *
864 	 * WARNING: By invalidating the descriptor here, we also invalidate
865 	 * the descriptors surrounding this one. Therefore we can NOT change the
866 	 * contents of this descriptor nor the surrounding ones. The problem is
867 	 * that in order to mark the descriptor as processed, we need to change
868 	 * the descriptor. The solution is to mark the whole cache line when all
869 	 * descriptors in the cache line are processed.
870 	 */
871 	addr = (ulong)rbd;
872 	addr &= ~(ARCH_DMA_MINALIGN - 1);
873 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
874 	invalidate_dcache_range(addr, addr + size);
875 
876 	bd_status = readw(&rbd->status);
877 	debug("fec_recv: status 0x%x\n", bd_status);
878 
879 	if (!(bd_status & FEC_RBD_EMPTY)) {
880 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
881 		    ((readw(&rbd->data_length) - 4) > 14)) {
882 			/* Get buffer address and size */
883 			addr = readl(&rbd->data_pointer);
884 			frame_length = readw(&rbd->data_length) - 4;
885 			/* Invalidate data cache over the buffer */
886 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
887 			addr &= ~(ARCH_DMA_MINALIGN - 1);
888 			invalidate_dcache_range(addr, end);
889 
890 			/* Fill the buffer and pass it to upper layers */
891 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
892 			swap_packet((uint32_t *)addr, frame_length);
893 #endif
894 
895 #ifdef CONFIG_DM_ETH
896 			memcpy(*packetp, (char *)addr, frame_length);
897 #else
898 			memcpy(buff, (char *)addr, frame_length);
899 			net_process_received_packet(buff, frame_length);
900 #endif
901 			len = frame_length;
902 		} else {
903 			if (bd_status & FEC_RBD_ERR)
904 				debug("error frame: 0x%08lx 0x%08x\n",
905 				      addr, bd_status);
906 		}
907 
908 		/*
909 		 * Free the current buffer, restart the engine and move forward
910 		 * to the next buffer. Here we check if the whole cacheline of
911 		 * descriptors was already processed and if so, we mark it free
912 		 * as whole.
913 		 */
914 		size = RXDESC_PER_CACHELINE - 1;
915 		if ((fec->rbd_index & size) == size) {
916 			i = fec->rbd_index - size;
917 			addr = (ulong)&fec->rbd_base[i];
918 			for (; i <= fec->rbd_index ; i++) {
919 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
920 					      &fec->rbd_base[i]);
921 			}
922 			flush_dcache_range(addr,
923 					   addr + ARCH_DMA_MINALIGN);
924 		}
925 
926 		fec_rx_task_enable(fec);
927 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
928 	}
929 	debug("fec_recv: stop\n");
930 
931 	return len;
932 }
933 
934 static void fec_set_dev_name(char *dest, int dev_id)
935 {
936 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
937 }
938 
939 static int fec_alloc_descs(struct fec_priv *fec)
940 {
941 	unsigned int size;
942 	int i;
943 	uint8_t *data;
944 	ulong addr;
945 
946 	/* Allocate TX descriptors. */
947 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
948 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
949 	if (!fec->tbd_base)
950 		goto err_tx;
951 
952 	/* Allocate RX descriptors. */
953 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
954 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
955 	if (!fec->rbd_base)
956 		goto err_rx;
957 
958 	memset(fec->rbd_base, 0, size);
959 
960 	/* Allocate RX buffers. */
961 
962 	/* Maximum RX buffer size. */
963 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
964 	for (i = 0; i < FEC_RBD_NUM; i++) {
965 		data = memalign(FEC_DMA_RX_MINALIGN, size);
966 		if (!data) {
967 			printf("%s: error allocating rxbuf %d\n", __func__, i);
968 			goto err_ring;
969 		}
970 
971 		memset(data, 0, size);
972 
973 		addr = (ulong)data;
974 		fec->rbd_base[i].data_pointer = (uint32_t)addr;
975 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
976 		fec->rbd_base[i].data_length = 0;
977 		/* Flush the buffer to memory. */
978 		flush_dcache_range(addr, addr + size);
979 	}
980 
981 	/* Mark the last RBD to close the ring. */
982 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
983 
984 	fec->rbd_index = 0;
985 	fec->tbd_index = 0;
986 
987 	return 0;
988 
989 err_ring:
990 	for (; i >= 0; i--) {
991 		addr = fec->rbd_base[i].data_pointer;
992 		free((void *)addr);
993 	}
994 	free(fec->rbd_base);
995 err_rx:
996 	free(fec->tbd_base);
997 err_tx:
998 	return -ENOMEM;
999 }
1000 
1001 static void fec_free_descs(struct fec_priv *fec)
1002 {
1003 	int i;
1004 	ulong addr;
1005 
1006 	for (i = 0; i < FEC_RBD_NUM; i++) {
1007 		addr = fec->rbd_base[i].data_pointer;
1008 		free((void *)addr);
1009 	}
1010 	free(fec->rbd_base);
1011 	free(fec->tbd_base);
1012 }
1013 
1014 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
1015 {
1016 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1017 	struct mii_dev *bus;
1018 	int ret;
1019 
1020 	bus = mdio_alloc();
1021 	if (!bus) {
1022 		printf("mdio_alloc failed\n");
1023 		return NULL;
1024 	}
1025 	bus->read = fec_phy_read;
1026 	bus->write = fec_phy_write;
1027 	bus->priv = eth;
1028 	fec_set_dev_name(bus->name, dev_id);
1029 
1030 	ret = mdio_register(bus);
1031 	if (ret) {
1032 		printf("mdio_register failed\n");
1033 		free(bus);
1034 		return NULL;
1035 	}
1036 	fec_mii_setspeed(eth);
1037 	return bus;
1038 }
1039 
1040 #ifndef CONFIG_DM_ETH
1041 #ifdef CONFIG_PHYLIB
1042 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1043 		struct mii_dev *bus, struct phy_device *phydev)
1044 #else
1045 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1046 		struct mii_dev *bus, int phy_id)
1047 #endif
1048 {
1049 	struct eth_device *edev;
1050 	struct fec_priv *fec;
1051 	unsigned char ethaddr[6];
1052 	char mac[16];
1053 	uint32_t start;
1054 	int ret = 0;
1055 
1056 	/* create and fill edev struct */
1057 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1058 	if (!edev) {
1059 		puts("fec_mxc: not enough malloc memory for eth_device\n");
1060 		ret = -ENOMEM;
1061 		goto err1;
1062 	}
1063 
1064 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1065 	if (!fec) {
1066 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
1067 		ret = -ENOMEM;
1068 		goto err2;
1069 	}
1070 
1071 	memset(edev, 0, sizeof(*edev));
1072 	memset(fec, 0, sizeof(*fec));
1073 
1074 	ret = fec_alloc_descs(fec);
1075 	if (ret)
1076 		goto err3;
1077 
1078 	edev->priv = fec;
1079 	edev->init = fec_init;
1080 	edev->send = fec_send;
1081 	edev->recv = fec_recv;
1082 	edev->halt = fec_halt;
1083 	edev->write_hwaddr = fec_set_hwaddr;
1084 
1085 	fec->eth = (struct ethernet_regs *)(ulong)base_addr;
1086 	fec->bd = bd;
1087 
1088 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1089 
1090 	/* Reset chip. */
1091 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1092 	start = get_timer(0);
1093 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1094 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1095 			printf("FEC MXC: Timeout resetting chip\n");
1096 			goto err4;
1097 		}
1098 		udelay(10);
1099 	}
1100 
1101 	fec_reg_setup(fec);
1102 	fec_set_dev_name(edev->name, dev_id);
1103 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1104 	fec->bus = bus;
1105 	fec_mii_setspeed(bus->priv);
1106 #ifdef CONFIG_PHYLIB
1107 	fec->phydev = phydev;
1108 	phy_connect_dev(phydev, edev);
1109 	/* Configure phy */
1110 	phy_config(phydev);
1111 #else
1112 	fec->phy_id = phy_id;
1113 #endif
1114 	eth_register(edev);
1115 	/* only support one eth device, the index number pointed by dev_id */
1116 	edev->index = fec->dev_id;
1117 
1118 	if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1119 		debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1120 		memcpy(edev->enetaddr, ethaddr, 6);
1121 		if (fec->dev_id)
1122 			sprintf(mac, "eth%daddr", fec->dev_id);
1123 		else
1124 			strcpy(mac, "ethaddr");
1125 		if (!env_get(mac))
1126 			eth_env_set_enetaddr(mac, ethaddr);
1127 	}
1128 	return ret;
1129 err4:
1130 	fec_free_descs(fec);
1131 err3:
1132 	free(fec);
1133 err2:
1134 	free(edev);
1135 err1:
1136 	return ret;
1137 }
1138 
1139 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1140 {
1141 	uint32_t base_mii;
1142 	struct mii_dev *bus = NULL;
1143 #ifdef CONFIG_PHYLIB
1144 	struct phy_device *phydev = NULL;
1145 #endif
1146 	int ret;
1147 
1148 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1149 	/*
1150 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1151 	 * Only the first one can access the MDIO bus.
1152 	 */
1153 	base_mii = CONFIG_FEC_MXC_MDIO_BASE;
1154 #else
1155 	base_mii = addr;
1156 #endif
1157 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1158 	bus = fec_get_miibus(base_mii, dev_id);
1159 	if (!bus)
1160 		return -ENOMEM;
1161 #ifdef CONFIG_PHYLIB
1162 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1163 	if (!phydev) {
1164 		mdio_unregister(bus);
1165 		free(bus);
1166 		return -ENOMEM;
1167 	}
1168 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1169 #else
1170 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1171 #endif
1172 	if (ret) {
1173 #ifdef CONFIG_PHYLIB
1174 		free(phydev);
1175 #endif
1176 		mdio_unregister(bus);
1177 		free(bus);
1178 	}
1179 	return ret;
1180 }
1181 
1182 #ifdef CONFIG_FEC_MXC_PHYADDR
1183 int fecmxc_initialize(bd_t *bd)
1184 {
1185 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1186 			IMX_FEC_BASE);
1187 }
1188 #endif
1189 
1190 #ifndef CONFIG_PHYLIB
1191 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1192 {
1193 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1194 	fec->mii_postcall = cb;
1195 	return 0;
1196 }
1197 #endif
1198 
1199 #else
1200 
1201 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1202 {
1203 	struct fec_priv *priv = dev_get_priv(dev);
1204 	struct eth_pdata *pdata = dev_get_platdata(dev);
1205 
1206 	return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1207 }
1208 
1209 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1210 {
1211 	if (packet)
1212 		free(packet);
1213 
1214 	return 0;
1215 }
1216 
1217 static const struct eth_ops fecmxc_ops = {
1218 	.start			= fecmxc_init,
1219 	.send			= fecmxc_send,
1220 	.recv			= fecmxc_recv,
1221 	.free_pkt		= fecmxc_free_pkt,
1222 	.stop			= fecmxc_halt,
1223 	.write_hwaddr		= fecmxc_set_hwaddr,
1224 	.read_rom_hwaddr	= fecmxc_read_rom_hwaddr,
1225 };
1226 
1227 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1228 {
1229 	struct phy_device *phydev;
1230 	int mask = 0xffffffff;
1231 
1232 #ifdef CONFIG_FEC_MXC_PHYADDR
1233 	mask = 1 << CONFIG_FEC_MXC_PHYADDR;
1234 #endif
1235 
1236 	phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
1237 	if (!phydev)
1238 		return -ENODEV;
1239 
1240 	phy_connect_dev(phydev, dev);
1241 
1242 	priv->phydev = phydev;
1243 	phy_config(phydev);
1244 
1245 	return 0;
1246 }
1247 
1248 static int fecmxc_probe(struct udevice *dev)
1249 {
1250 	struct eth_pdata *pdata = dev_get_platdata(dev);
1251 	struct fec_priv *priv = dev_get_priv(dev);
1252 	struct mii_dev *bus = NULL;
1253 	uint32_t start;
1254 	int ret;
1255 
1256 	ret = fec_alloc_descs(priv);
1257 	if (ret)
1258 		return ret;
1259 
1260 	/* Reset chip. */
1261 	writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1262 	       &priv->eth->ecntrl);
1263 	start = get_timer(0);
1264 	while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1265 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1266 			printf("FEC MXC: Timeout reseting chip\n");
1267 			goto err_timeout;
1268 		}
1269 		udelay(10);
1270 	}
1271 
1272 	fec_reg_setup(priv);
1273 
1274 	priv->dev_id = dev->seq;
1275 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1276 	bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq);
1277 #else
1278 	bus = fec_get_miibus((ulong)priv->eth, dev->seq);
1279 #endif
1280 	if (!bus) {
1281 		ret = -ENOMEM;
1282 		goto err_mii;
1283 	}
1284 
1285 	priv->bus = bus;
1286 	priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1287 	priv->interface = pdata->phy_interface;
1288 	ret = fec_phy_init(priv, dev);
1289 	if (ret)
1290 		goto err_phy;
1291 
1292 	return 0;
1293 
1294 err_phy:
1295 	mdio_unregister(bus);
1296 	free(bus);
1297 err_mii:
1298 err_timeout:
1299 	fec_free_descs(priv);
1300 	return ret;
1301 }
1302 
1303 static int fecmxc_remove(struct udevice *dev)
1304 {
1305 	struct fec_priv *priv = dev_get_priv(dev);
1306 
1307 	free(priv->phydev);
1308 	fec_free_descs(priv);
1309 	mdio_unregister(priv->bus);
1310 	mdio_free(priv->bus);
1311 
1312 	return 0;
1313 }
1314 
1315 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1316 {
1317 	struct eth_pdata *pdata = dev_get_platdata(dev);
1318 	struct fec_priv *priv = dev_get_priv(dev);
1319 	const char *phy_mode;
1320 
1321 	pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1322 	priv->eth = (struct ethernet_regs *)pdata->iobase;
1323 
1324 	pdata->phy_interface = -1;
1325 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1326 			       NULL);
1327 	if (phy_mode)
1328 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1329 	if (pdata->phy_interface == -1) {
1330 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1331 		return -EINVAL;
1332 	}
1333 
1334 	/* TODO
1335 	 * Need to get the reset-gpio and related properties from DT
1336 	 * and implemet the enet reset code on .probe call
1337 	 */
1338 
1339 	return 0;
1340 }
1341 
1342 static const struct udevice_id fecmxc_ids[] = {
1343 	{ .compatible = "fsl,imx6q-fec" },
1344 	{ .compatible = "fsl,imx6sl-fec" },
1345 	{ .compatible = "fsl,imx6sx-fec" },
1346 	{ .compatible = "fsl,imx6ul-fec" },
1347 	{ .compatible = "fsl,imx53-fec" },
1348 	{ }
1349 };
1350 
1351 U_BOOT_DRIVER(fecmxc_gem) = {
1352 	.name	= "fecmxc",
1353 	.id	= UCLASS_ETH,
1354 	.of_match = fecmxc_ids,
1355 	.ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1356 	.probe	= fecmxc_probe,
1357 	.remove	= fecmxc_remove,
1358 	.ops	= &fecmxc_ops,
1359 	.priv_auto_alloc_size = sizeof(struct fec_priv),
1360 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1361 };
1362 #endif
1363