1 /* 2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 4 * (C) Copyright 2008 Armadeus Systems nc 5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #include <common.h> 12 #include <malloc.h> 13 #include <memalign.h> 14 #include <net.h> 15 #include <netdev.h> 16 #include <miiphy.h> 17 #include "fec_mxc.h" 18 19 #include <asm/arch/clock.h> 20 #include <asm/arch/imx-regs.h> 21 #include <asm/imx-common/sys_proto.h> 22 #include <asm/io.h> 23 #include <linux/errno.h> 24 #include <linux/compiler.h> 25 26 DECLARE_GLOBAL_DATA_PTR; 27 28 /* 29 * Timeout the transfer after 5 mS. This is usually a bit more, since 30 * the code in the tightloops this timeout is used in adds some overhead. 31 */ 32 #define FEC_XFER_TIMEOUT 5000 33 34 /* 35 * The standard 32-byte DMA alignment does not work on mx6solox, which requires 36 * 64-byte alignment in the DMA RX FEC buffer. 37 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also 38 * satisfies the alignment on other SoCs (32-bytes) 39 */ 40 #define FEC_DMA_RX_MINALIGN 64 41 42 #ifndef CONFIG_MII 43 #error "CONFIG_MII has to be defined!" 44 #endif 45 46 #ifndef CONFIG_FEC_XCV_TYPE 47 #define CONFIG_FEC_XCV_TYPE MII100 48 #endif 49 50 /* 51 * The i.MX28 operates with packets in big endian. We need to swap them before 52 * sending and after receiving. 53 */ 54 #ifdef CONFIG_MX28 55 #define CONFIG_FEC_MXC_SWAP_PACKET 56 #endif 57 58 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) 59 60 /* Check various alignment issues at compile time */ 61 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) 62 #error "ARCH_DMA_MINALIGN must be multiple of 16!" 63 #endif 64 65 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ 66 (PKTALIGN % ARCH_DMA_MINALIGN != 0)) 67 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" 68 #endif 69 70 #undef DEBUG 71 72 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 73 static void swap_packet(uint32_t *packet, int length) 74 { 75 int i; 76 77 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 78 packet[i] = __swab32(packet[i]); 79 } 80 #endif 81 82 /* 83 * MII-interface related functions 84 */ 85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr, 86 uint8_t regAddr) 87 { 88 uint32_t reg; /* convenient holder for the PHY register */ 89 uint32_t phy; /* convenient holder for the PHY */ 90 uint32_t start; 91 int val; 92 93 /* 94 * reading from any PHY's register is done by properly 95 * programming the FEC's MII data register. 96 */ 97 writel(FEC_IEVENT_MII, ð->ievent); 98 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 99 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 100 101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 102 phy | reg, ð->mii_data); 103 104 /* 105 * wait for the related interrupt 106 */ 107 start = get_timer(0); 108 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 109 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 110 printf("Read MDIO failed...\n"); 111 return -1; 112 } 113 } 114 115 /* 116 * clear mii interrupt bit 117 */ 118 writel(FEC_IEVENT_MII, ð->ievent); 119 120 /* 121 * it's now safe to read the PHY's register 122 */ 123 val = (unsigned short)readl(ð->mii_data); 124 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 125 regAddr, val); 126 return val; 127 } 128 129 static void fec_mii_setspeed(struct ethernet_regs *eth) 130 { 131 /* 132 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 133 * and do not drop the Preamble. 134 * 135 * The i.MX28 and i.MX6 types have another field in the MSCR (aka 136 * MII_SPEED) register that defines the MDIO output hold time. Earlier 137 * versions are RAZ there, so just ignore the difference and write the 138 * register always. 139 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 140 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 141 * output. 142 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 143 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 144 * holdtime cannot result in a value greater than 3. 145 */ 146 u32 pclk = imx_get_fecclk(); 147 u32 speed = DIV_ROUND_UP(pclk, 5000000); 148 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1; 149 #ifdef FEC_QUIRK_ENET_MAC 150 speed--; 151 #endif 152 writel(speed << 1 | hold << 8, ð->mii_speed); 153 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); 154 } 155 156 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr, 157 uint8_t regAddr, uint16_t data) 158 { 159 uint32_t reg; /* convenient holder for the PHY register */ 160 uint32_t phy; /* convenient holder for the PHY */ 161 uint32_t start; 162 163 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 164 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 165 166 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 167 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 168 169 /* 170 * wait for the MII interrupt 171 */ 172 start = get_timer(0); 173 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 174 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 175 printf("Write MDIO failed...\n"); 176 return -1; 177 } 178 } 179 180 /* 181 * clear MII interrupt bit 182 */ 183 writel(FEC_IEVENT_MII, ð->ievent); 184 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 185 regAddr, data); 186 187 return 0; 188 } 189 190 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, 191 int regAddr) 192 { 193 return fec_mdio_read(bus->priv, phyAddr, regAddr); 194 } 195 196 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, 197 int regAddr, u16 data) 198 { 199 return fec_mdio_write(bus->priv, phyAddr, regAddr, data); 200 } 201 202 #ifndef CONFIG_PHYLIB 203 static int miiphy_restart_aneg(struct eth_device *dev) 204 { 205 int ret = 0; 206 #if !defined(CONFIG_FEC_MXC_NO_ANEG) 207 struct fec_priv *fec = (struct fec_priv *)dev->priv; 208 struct ethernet_regs *eth = fec->bus->priv; 209 210 /* 211 * Wake up from sleep if necessary 212 * Reset PHY, then delay 300ns 213 */ 214 #ifdef CONFIG_MX27 215 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); 216 #endif 217 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); 218 udelay(1000); 219 220 /* 221 * Set the auto-negotiation advertisement register bits 222 */ 223 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, 224 LPA_100FULL | LPA_100HALF | LPA_10FULL | 225 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 226 fec_mdio_write(eth, fec->phy_id, MII_BMCR, 227 BMCR_ANENABLE | BMCR_ANRESTART); 228 229 if (fec->mii_postcall) 230 ret = fec->mii_postcall(fec->phy_id); 231 232 #endif 233 return ret; 234 } 235 236 #ifndef CONFIG_FEC_FIXED_SPEED 237 static int miiphy_wait_aneg(struct eth_device *dev) 238 { 239 uint32_t start; 240 int status; 241 struct fec_priv *fec = (struct fec_priv *)dev->priv; 242 struct ethernet_regs *eth = fec->bus->priv; 243 244 /* 245 * Wait for AN completion 246 */ 247 start = get_timer(0); 248 do { 249 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 250 printf("%s: Autonegotiation timeout\n", dev->name); 251 return -1; 252 } 253 254 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); 255 if (status < 0) { 256 printf("%s: Autonegotiation failed. status: %d\n", 257 dev->name, status); 258 return -1; 259 } 260 } while (!(status & BMSR_LSTATUS)); 261 262 return 0; 263 } 264 #endif /* CONFIG_FEC_FIXED_SPEED */ 265 #endif 266 267 static int fec_rx_task_enable(struct fec_priv *fec) 268 { 269 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); 270 return 0; 271 } 272 273 static int fec_rx_task_disable(struct fec_priv *fec) 274 { 275 return 0; 276 } 277 278 static int fec_tx_task_enable(struct fec_priv *fec) 279 { 280 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); 281 return 0; 282 } 283 284 static int fec_tx_task_disable(struct fec_priv *fec) 285 { 286 return 0; 287 } 288 289 /** 290 * Initialize receive task's buffer descriptors 291 * @param[in] fec all we know about the device yet 292 * @param[in] count receive buffer count to be allocated 293 * @param[in] dsize desired size of each receive buffer 294 * @return 0 on success 295 * 296 * Init all RX descriptors to default values. 297 */ 298 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) 299 { 300 uint32_t size; 301 uint8_t *data; 302 int i; 303 304 /* 305 * Reload the RX descriptors with default values and wipe 306 * the RX buffers. 307 */ 308 size = roundup(dsize, ARCH_DMA_MINALIGN); 309 for (i = 0; i < count; i++) { 310 data = (uint8_t *)fec->rbd_base[i].data_pointer; 311 memset(data, 0, dsize); 312 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 313 314 fec->rbd_base[i].status = FEC_RBD_EMPTY; 315 fec->rbd_base[i].data_length = 0; 316 } 317 318 /* Mark the last RBD to close the ring. */ 319 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 320 fec->rbd_index = 0; 321 322 flush_dcache_range((unsigned)fec->rbd_base, 323 (unsigned)fec->rbd_base + size); 324 } 325 326 /** 327 * Initialize transmit task's buffer descriptors 328 * @param[in] fec all we know about the device yet 329 * 330 * Transmit buffers are created externally. We only have to init the BDs here.\n 331 * Note: There is a race condition in the hardware. When only one BD is in 332 * use it must be marked with the WRAP bit to use it for every transmitt. 333 * This bit in combination with the READY bit results into double transmit 334 * of each data buffer. It seems the state machine checks READY earlier then 335 * resetting it after the first transfer. 336 * Using two BDs solves this issue. 337 */ 338 static void fec_tbd_init(struct fec_priv *fec) 339 { 340 unsigned addr = (unsigned)fec->tbd_base; 341 unsigned size = roundup(2 * sizeof(struct fec_bd), 342 ARCH_DMA_MINALIGN); 343 344 memset(fec->tbd_base, 0, size); 345 fec->tbd_base[0].status = 0; 346 fec->tbd_base[1].status = FEC_TBD_WRAP; 347 fec->tbd_index = 0; 348 flush_dcache_range(addr, addr + size); 349 } 350 351 /** 352 * Mark the given read buffer descriptor as free 353 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 354 * @param[in] pRbd buffer descriptor to mark free again 355 */ 356 static void fec_rbd_clean(int last, struct fec_bd *pRbd) 357 { 358 unsigned short flags = FEC_RBD_EMPTY; 359 if (last) 360 flags |= FEC_RBD_WRAP; 361 writew(flags, &pRbd->status); 362 writew(0, &pRbd->data_length); 363 } 364 365 static int fec_get_hwaddr(struct eth_device *dev, int dev_id, 366 unsigned char *mac) 367 { 368 imx_get_mac_from_fuse(dev_id, mac); 369 return !is_valid_ethaddr(mac); 370 } 371 372 static int fec_set_hwaddr(struct eth_device *dev) 373 { 374 uchar *mac = dev->enetaddr; 375 struct fec_priv *fec = (struct fec_priv *)dev->priv; 376 377 writel(0, &fec->eth->iaddr1); 378 writel(0, &fec->eth->iaddr2); 379 writel(0, &fec->eth->gaddr1); 380 writel(0, &fec->eth->gaddr2); 381 382 /* 383 * Set physical address 384 */ 385 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 386 &fec->eth->paddr1); 387 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 388 389 return 0; 390 } 391 392 /* 393 * Do initial configuration of the FEC registers 394 */ 395 static void fec_reg_setup(struct fec_priv *fec) 396 { 397 uint32_t rcntrl; 398 399 /* 400 * Set interrupt mask register 401 */ 402 writel(0x00000000, &fec->eth->imask); 403 404 /* 405 * Clear FEC-Lite interrupt event register(IEVENT) 406 */ 407 writel(0xffffffff, &fec->eth->ievent); 408 409 410 /* 411 * Set FEC-Lite receive control register(R_CNTRL): 412 */ 413 414 /* Start with frame length = 1518, common for all modes. */ 415 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 416 if (fec->xcv_type != SEVENWIRE) /* xMII modes */ 417 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 418 if (fec->xcv_type == RGMII) 419 rcntrl |= FEC_RCNTRL_RGMII; 420 else if (fec->xcv_type == RMII) 421 rcntrl |= FEC_RCNTRL_RMII; 422 423 writel(rcntrl, &fec->eth->r_cntrl); 424 } 425 426 /** 427 * Start the FEC engine 428 * @param[in] dev Our device to handle 429 */ 430 static int fec_open(struct eth_device *edev) 431 { 432 struct fec_priv *fec = (struct fec_priv *)edev->priv; 433 int speed; 434 uint32_t addr, size; 435 int i; 436 437 debug("fec_open: fec_open(dev)\n"); 438 /* full-duplex, heartbeat disabled */ 439 writel(1 << 2, &fec->eth->x_cntrl); 440 fec->rbd_index = 0; 441 442 /* Invalidate all descriptors */ 443 for (i = 0; i < FEC_RBD_NUM - 1; i++) 444 fec_rbd_clean(0, &fec->rbd_base[i]); 445 fec_rbd_clean(1, &fec->rbd_base[i]); 446 447 /* Flush the descriptors into RAM */ 448 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), 449 ARCH_DMA_MINALIGN); 450 addr = (uint32_t)fec->rbd_base; 451 flush_dcache_range(addr, addr + size); 452 453 #ifdef FEC_QUIRK_ENET_MAC 454 /* Enable ENET HW endian SWAP */ 455 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 456 &fec->eth->ecntrl); 457 /* Enable ENET store and forward mode */ 458 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 459 &fec->eth->x_wmrk); 460 #endif 461 /* 462 * Enable FEC-Lite controller 463 */ 464 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 465 &fec->eth->ecntrl); 466 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) 467 udelay(100); 468 /* 469 * setup the MII gasket for RMII mode 470 */ 471 472 /* disable the gasket */ 473 writew(0, &fec->eth->miigsk_enr); 474 475 /* wait for the gasket to be disabled */ 476 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 477 udelay(2); 478 479 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 480 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 481 482 /* re-enable the gasket */ 483 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 484 485 /* wait until MII gasket is ready */ 486 int max_loops = 10; 487 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 488 if (--max_loops <= 0) { 489 printf("WAIT for MII Gasket ready timed out\n"); 490 break; 491 } 492 } 493 #endif 494 495 #ifdef CONFIG_PHYLIB 496 { 497 /* Start up the PHY */ 498 int ret = phy_startup(fec->phydev); 499 500 if (ret) { 501 printf("Could not initialize PHY %s\n", 502 fec->phydev->dev->name); 503 return ret; 504 } 505 speed = fec->phydev->speed; 506 } 507 #elif CONFIG_FEC_FIXED_SPEED 508 speed = CONFIG_FEC_FIXED_SPEED; 509 #else 510 miiphy_wait_aneg(edev); 511 speed = miiphy_speed(edev->name, fec->phy_id); 512 miiphy_duplex(edev->name, fec->phy_id); 513 #endif 514 515 #ifdef FEC_QUIRK_ENET_MAC 516 { 517 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; 518 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; 519 if (speed == _1000BASET) 520 ecr |= FEC_ECNTRL_SPEED; 521 else if (speed != _100BASET) 522 rcr |= FEC_RCNTRL_RMII_10T; 523 writel(ecr, &fec->eth->ecntrl); 524 writel(rcr, &fec->eth->r_cntrl); 525 } 526 #endif 527 debug("%s:Speed=%i\n", __func__, speed); 528 529 /* 530 * Enable SmartDMA receive task 531 */ 532 fec_rx_task_enable(fec); 533 534 udelay(100000); 535 return 0; 536 } 537 538 static int fec_init(struct eth_device *dev, bd_t* bd) 539 { 540 struct fec_priv *fec = (struct fec_priv *)dev->priv; 541 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; 542 int i; 543 544 /* Initialize MAC address */ 545 fec_set_hwaddr(dev); 546 547 /* 548 * Setup transmit descriptors, there are two in total. 549 */ 550 fec_tbd_init(fec); 551 552 /* Setup receive descriptors. */ 553 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); 554 555 fec_reg_setup(fec); 556 557 if (fec->xcv_type != SEVENWIRE) 558 fec_mii_setspeed(fec->bus->priv); 559 560 /* 561 * Set Opcode/Pause Duration Register 562 */ 563 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 564 writel(0x2, &fec->eth->x_wmrk); 565 /* 566 * Set multicast address filter 567 */ 568 writel(0x00000000, &fec->eth->gaddr1); 569 writel(0x00000000, &fec->eth->gaddr2); 570 571 572 /* Do not access reserved register for i.MX6UL */ 573 if (!is_mx6ul()) { 574 /* clear MIB RAM */ 575 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 576 writel(0, i); 577 578 /* FIFO receive start register */ 579 writel(0x520, &fec->eth->r_fstart); 580 } 581 582 /* size and address of each buffer */ 583 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 584 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); 585 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); 586 587 #ifndef CONFIG_PHYLIB 588 if (fec->xcv_type != SEVENWIRE) 589 miiphy_restart_aneg(dev); 590 #endif 591 fec_open(dev); 592 return 0; 593 } 594 595 /** 596 * Halt the FEC engine 597 * @param[in] dev Our device to handle 598 */ 599 static void fec_halt(struct eth_device *dev) 600 { 601 struct fec_priv *fec = (struct fec_priv *)dev->priv; 602 int counter = 0xffff; 603 604 /* 605 * issue graceful stop command to the FEC transmitter if necessary 606 */ 607 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 608 &fec->eth->x_cntrl); 609 610 debug("eth_halt: wait for stop regs\n"); 611 /* 612 * wait for graceful stop to register 613 */ 614 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 615 udelay(1); 616 617 /* 618 * Disable SmartDMA tasks 619 */ 620 fec_tx_task_disable(fec); 621 fec_rx_task_disable(fec); 622 623 /* 624 * Disable the Ethernet Controller 625 * Note: this will also reset the BD index counter! 626 */ 627 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 628 &fec->eth->ecntrl); 629 fec->rbd_index = 0; 630 fec->tbd_index = 0; 631 debug("eth_halt: done\n"); 632 } 633 634 /** 635 * Transmit one frame 636 * @param[in] dev Our ethernet device to handle 637 * @param[in] packet Pointer to the data to be transmitted 638 * @param[in] length Data count in bytes 639 * @return 0 on success 640 */ 641 static int fec_send(struct eth_device *dev, void *packet, int length) 642 { 643 unsigned int status; 644 uint32_t size, end; 645 uint32_t addr; 646 int timeout = FEC_XFER_TIMEOUT; 647 int ret = 0; 648 649 /* 650 * This routine transmits one frame. This routine only accepts 651 * 6-byte Ethernet addresses. 652 */ 653 struct fec_priv *fec = (struct fec_priv *)dev->priv; 654 655 /* 656 * Check for valid length of data. 657 */ 658 if ((length > 1500) || (length <= 0)) { 659 printf("Payload (%d) too large\n", length); 660 return -1; 661 } 662 663 /* 664 * Setup the transmit buffer. We are always using the first buffer for 665 * transmission, the second will be empty and only used to stop the DMA 666 * engine. We also flush the packet to RAM here to avoid cache trouble. 667 */ 668 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 669 swap_packet((uint32_t *)packet, length); 670 #endif 671 672 addr = (uint32_t)packet; 673 end = roundup(addr + length, ARCH_DMA_MINALIGN); 674 addr &= ~(ARCH_DMA_MINALIGN - 1); 675 flush_dcache_range(addr, end); 676 677 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 678 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); 679 680 /* 681 * update BD's status now 682 * This block: 683 * - is always the last in a chain (means no chain) 684 * - should transmitt the CRC 685 * - might be the last BD in the list, so the address counter should 686 * wrap (-> keep the WRAP flag) 687 */ 688 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 689 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 690 writew(status, &fec->tbd_base[fec->tbd_index].status); 691 692 /* 693 * Flush data cache. This code flushes both TX descriptors to RAM. 694 * After this code, the descriptors will be safely in RAM and we 695 * can start DMA. 696 */ 697 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 698 addr = (uint32_t)fec->tbd_base; 699 flush_dcache_range(addr, addr + size); 700 701 /* 702 * Below we read the DMA descriptor's last four bytes back from the 703 * DRAM. This is important in order to make sure that all WRITE 704 * operations on the bus that were triggered by previous cache FLUSH 705 * have completed. 706 * 707 * Otherwise, on MX28, it is possible to observe a corruption of the 708 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM 709 * for the bus structure of MX28. The scenario is as follows: 710 * 711 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going 712 * to DRAM due to flush_dcache_range() 713 * 2) ARM core writes the FEC registers via AHB_ARB2 714 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 715 * 716 * Note that 2) does sometimes finish before 1) due to reordering of 717 * WRITE accesses on the AHB bus, therefore triggering 3) before the 718 * DMA descriptor is fully written into DRAM. This results in occasional 719 * corruption of the DMA descriptor. 720 */ 721 readl(addr + size - 4); 722 723 /* 724 * Enable SmartDMA transmit task 725 */ 726 fec_tx_task_enable(fec); 727 728 /* 729 * Wait until frame is sent. On each turn of the wait cycle, we must 730 * invalidate data cache to see what's really in RAM. Also, we need 731 * barrier here. 732 */ 733 while (--timeout) { 734 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) 735 break; 736 } 737 738 if (!timeout) { 739 ret = -EINVAL; 740 goto out; 741 } 742 743 /* 744 * The TDAR bit is cleared when the descriptors are all out from TX 745 * but on mx6solox we noticed that the READY bit is still not cleared 746 * right after TDAR. 747 * These are two distinct signals, and in IC simulation, we found that 748 * TDAR always gets cleared prior than the READY bit of last BD becomes 749 * cleared. 750 * In mx6solox, we use a later version of FEC IP. It looks like that 751 * this intrinsic behaviour of TDAR bit has changed in this newer FEC 752 * version. 753 * 754 * Fix this by polling the READY bit of BD after the TDAR polling, 755 * which covers the mx6solox case and does not harm the other SoCs. 756 */ 757 timeout = FEC_XFER_TIMEOUT; 758 while (--timeout) { 759 invalidate_dcache_range(addr, addr + size); 760 if (!(readw(&fec->tbd_base[fec->tbd_index].status) & 761 FEC_TBD_READY)) 762 break; 763 } 764 765 if (!timeout) 766 ret = -EINVAL; 767 768 out: 769 debug("fec_send: status 0x%x index %d ret %i\n", 770 readw(&fec->tbd_base[fec->tbd_index].status), 771 fec->tbd_index, ret); 772 /* for next transmission use the other buffer */ 773 if (fec->tbd_index) 774 fec->tbd_index = 0; 775 else 776 fec->tbd_index = 1; 777 778 return ret; 779 } 780 781 /** 782 * Pull one frame from the card 783 * @param[in] dev Our ethernet device to handle 784 * @return Length of packet read 785 */ 786 static int fec_recv(struct eth_device *dev) 787 { 788 struct fec_priv *fec = (struct fec_priv *)dev->priv; 789 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 790 unsigned long ievent; 791 int frame_length, len = 0; 792 uint16_t bd_status; 793 uint32_t addr, size, end; 794 int i; 795 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); 796 797 /* 798 * Check if any critical events have happened 799 */ 800 ievent = readl(&fec->eth->ievent); 801 writel(ievent, &fec->eth->ievent); 802 debug("fec_recv: ievent 0x%lx\n", ievent); 803 if (ievent & FEC_IEVENT_BABR) { 804 fec_halt(dev); 805 fec_init(dev, fec->bd); 806 printf("some error: 0x%08lx\n", ievent); 807 return 0; 808 } 809 if (ievent & FEC_IEVENT_HBERR) { 810 /* Heartbeat error */ 811 writel(0x00000001 | readl(&fec->eth->x_cntrl), 812 &fec->eth->x_cntrl); 813 } 814 if (ievent & FEC_IEVENT_GRA) { 815 /* Graceful stop complete */ 816 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 817 fec_halt(dev); 818 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 819 &fec->eth->x_cntrl); 820 fec_init(dev, fec->bd); 821 } 822 } 823 824 /* 825 * Read the buffer status. Before the status can be read, the data cache 826 * must be invalidated, because the data in RAM might have been changed 827 * by DMA. The descriptors are properly aligned to cachelines so there's 828 * no need to worry they'd overlap. 829 * 830 * WARNING: By invalidating the descriptor here, we also invalidate 831 * the descriptors surrounding this one. Therefore we can NOT change the 832 * contents of this descriptor nor the surrounding ones. The problem is 833 * that in order to mark the descriptor as processed, we need to change 834 * the descriptor. The solution is to mark the whole cache line when all 835 * descriptors in the cache line are processed. 836 */ 837 addr = (uint32_t)rbd; 838 addr &= ~(ARCH_DMA_MINALIGN - 1); 839 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 840 invalidate_dcache_range(addr, addr + size); 841 842 bd_status = readw(&rbd->status); 843 debug("fec_recv: status 0x%x\n", bd_status); 844 845 if (!(bd_status & FEC_RBD_EMPTY)) { 846 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 847 ((readw(&rbd->data_length) - 4) > 14)) { 848 /* 849 * Get buffer address and size 850 */ 851 addr = readl(&rbd->data_pointer); 852 frame_length = readw(&rbd->data_length) - 4; 853 /* 854 * Invalidate data cache over the buffer 855 */ 856 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); 857 addr &= ~(ARCH_DMA_MINALIGN - 1); 858 invalidate_dcache_range(addr, end); 859 860 /* 861 * Fill the buffer and pass it to upper layers 862 */ 863 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 864 swap_packet((uint32_t *)addr, frame_length); 865 #endif 866 memcpy(buff, (char *)addr, frame_length); 867 net_process_received_packet(buff, frame_length); 868 len = frame_length; 869 } else { 870 if (bd_status & FEC_RBD_ERR) 871 printf("error frame: 0x%08x 0x%08x\n", 872 addr, bd_status); 873 } 874 875 /* 876 * Free the current buffer, restart the engine and move forward 877 * to the next buffer. Here we check if the whole cacheline of 878 * descriptors was already processed and if so, we mark it free 879 * as whole. 880 */ 881 size = RXDESC_PER_CACHELINE - 1; 882 if ((fec->rbd_index & size) == size) { 883 i = fec->rbd_index - size; 884 addr = (uint32_t)&fec->rbd_base[i]; 885 for (; i <= fec->rbd_index ; i++) { 886 fec_rbd_clean(i == (FEC_RBD_NUM - 1), 887 &fec->rbd_base[i]); 888 } 889 flush_dcache_range(addr, 890 addr + ARCH_DMA_MINALIGN); 891 } 892 893 fec_rx_task_enable(fec); 894 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 895 } 896 debug("fec_recv: stop\n"); 897 898 return len; 899 } 900 901 static void fec_set_dev_name(char *dest, int dev_id) 902 { 903 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); 904 } 905 906 static int fec_alloc_descs(struct fec_priv *fec) 907 { 908 unsigned int size; 909 int i; 910 uint8_t *data; 911 912 /* Allocate TX descriptors. */ 913 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 914 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); 915 if (!fec->tbd_base) 916 goto err_tx; 917 918 /* Allocate RX descriptors. */ 919 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 920 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); 921 if (!fec->rbd_base) 922 goto err_rx; 923 924 memset(fec->rbd_base, 0, size); 925 926 /* Allocate RX buffers. */ 927 928 /* Maximum RX buffer size. */ 929 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); 930 for (i = 0; i < FEC_RBD_NUM; i++) { 931 data = memalign(FEC_DMA_RX_MINALIGN, size); 932 if (!data) { 933 printf("%s: error allocating rxbuf %d\n", __func__, i); 934 goto err_ring; 935 } 936 937 memset(data, 0, size); 938 939 fec->rbd_base[i].data_pointer = (uint32_t)data; 940 fec->rbd_base[i].status = FEC_RBD_EMPTY; 941 fec->rbd_base[i].data_length = 0; 942 /* Flush the buffer to memory. */ 943 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 944 } 945 946 /* Mark the last RBD to close the ring. */ 947 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 948 949 fec->rbd_index = 0; 950 fec->tbd_index = 0; 951 952 return 0; 953 954 err_ring: 955 for (; i >= 0; i--) 956 free((void *)fec->rbd_base[i].data_pointer); 957 free(fec->rbd_base); 958 err_rx: 959 free(fec->tbd_base); 960 err_tx: 961 return -ENOMEM; 962 } 963 964 static void fec_free_descs(struct fec_priv *fec) 965 { 966 int i; 967 968 for (i = 0; i < FEC_RBD_NUM; i++) 969 free((void *)fec->rbd_base[i].data_pointer); 970 free(fec->rbd_base); 971 free(fec->tbd_base); 972 } 973 974 #ifdef CONFIG_PHYLIB 975 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 976 struct mii_dev *bus, struct phy_device *phydev) 977 #else 978 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 979 struct mii_dev *bus, int phy_id) 980 #endif 981 { 982 struct eth_device *edev; 983 struct fec_priv *fec; 984 unsigned char ethaddr[6]; 985 uint32_t start; 986 int ret = 0; 987 988 /* create and fill edev struct */ 989 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 990 if (!edev) { 991 puts("fec_mxc: not enough malloc memory for eth_device\n"); 992 ret = -ENOMEM; 993 goto err1; 994 } 995 996 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 997 if (!fec) { 998 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 999 ret = -ENOMEM; 1000 goto err2; 1001 } 1002 1003 memset(edev, 0, sizeof(*edev)); 1004 memset(fec, 0, sizeof(*fec)); 1005 1006 ret = fec_alloc_descs(fec); 1007 if (ret) 1008 goto err3; 1009 1010 edev->priv = fec; 1011 edev->init = fec_init; 1012 edev->send = fec_send; 1013 edev->recv = fec_recv; 1014 edev->halt = fec_halt; 1015 edev->write_hwaddr = fec_set_hwaddr; 1016 1017 fec->eth = (struct ethernet_regs *)base_addr; 1018 fec->bd = bd; 1019 1020 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 1021 1022 /* Reset chip. */ 1023 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 1024 start = get_timer(0); 1025 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 1026 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1027 printf("FEC MXC: Timeout reseting chip\n"); 1028 goto err4; 1029 } 1030 udelay(10); 1031 } 1032 1033 fec_reg_setup(fec); 1034 fec_set_dev_name(edev->name, dev_id); 1035 fec->dev_id = (dev_id == -1) ? 0 : dev_id; 1036 fec->bus = bus; 1037 fec_mii_setspeed(bus->priv); 1038 #ifdef CONFIG_PHYLIB 1039 fec->phydev = phydev; 1040 phy_connect_dev(phydev, edev); 1041 /* Configure phy */ 1042 phy_config(phydev); 1043 #else 1044 fec->phy_id = phy_id; 1045 #endif 1046 eth_register(edev); 1047 1048 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { 1049 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); 1050 memcpy(edev->enetaddr, ethaddr, 6); 1051 if (!getenv("ethaddr")) 1052 eth_setenv_enetaddr("ethaddr", ethaddr); 1053 } 1054 return ret; 1055 err4: 1056 fec_free_descs(fec); 1057 err3: 1058 free(fec); 1059 err2: 1060 free(edev); 1061 err1: 1062 return ret; 1063 } 1064 1065 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) 1066 { 1067 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; 1068 struct mii_dev *bus; 1069 int ret; 1070 1071 bus = mdio_alloc(); 1072 if (!bus) { 1073 printf("mdio_alloc failed\n"); 1074 return NULL; 1075 } 1076 bus->read = fec_phy_read; 1077 bus->write = fec_phy_write; 1078 bus->priv = eth; 1079 fec_set_dev_name(bus->name, dev_id); 1080 1081 ret = mdio_register(bus); 1082 if (ret) { 1083 printf("mdio_register failed\n"); 1084 free(bus); 1085 return NULL; 1086 } 1087 fec_mii_setspeed(eth); 1088 return bus; 1089 } 1090 1091 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 1092 { 1093 uint32_t base_mii; 1094 struct mii_dev *bus = NULL; 1095 #ifdef CONFIG_PHYLIB 1096 struct phy_device *phydev = NULL; 1097 #endif 1098 int ret; 1099 1100 #ifdef CONFIG_MX28 1101 /* 1102 * The i.MX28 has two ethernet interfaces, but they are not equal. 1103 * Only the first one can access the MDIO bus. 1104 */ 1105 base_mii = MXS_ENET0_BASE; 1106 #else 1107 base_mii = addr; 1108 #endif 1109 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 1110 bus = fec_get_miibus(base_mii, dev_id); 1111 if (!bus) 1112 return -ENOMEM; 1113 #ifdef CONFIG_PHYLIB 1114 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); 1115 if (!phydev) { 1116 mdio_unregister(bus); 1117 free(bus); 1118 return -ENOMEM; 1119 } 1120 ret = fec_probe(bd, dev_id, addr, bus, phydev); 1121 #else 1122 ret = fec_probe(bd, dev_id, addr, bus, phy_id); 1123 #endif 1124 if (ret) { 1125 #ifdef CONFIG_PHYLIB 1126 free(phydev); 1127 #endif 1128 mdio_unregister(bus); 1129 free(bus); 1130 } 1131 return ret; 1132 } 1133 1134 #ifdef CONFIG_FEC_MXC_PHYADDR 1135 int fecmxc_initialize(bd_t *bd) 1136 { 1137 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, 1138 IMX_FEC_BASE); 1139 } 1140 #endif 1141 1142 #ifndef CONFIG_PHYLIB 1143 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 1144 { 1145 struct fec_priv *fec = (struct fec_priv *)dev->priv; 1146 fec->mii_postcall = cb; 1147 return 0; 1148 } 1149 #endif 1150