xref: /openbmc/u-boot/drivers/net/eepro100.c (revision deb53483df20d3a02bb041624ca91c93adc3ec87)
1 /*
2  * (C) Copyright 2002
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <netdev.h>
28 #include <asm/io.h>
29 #include <pci.h>
30 #include <miiphy.h>
31 
32 #undef DEBUG
33 
34 	/* Ethernet chip registers.
35 	 */
36 #define SCBStatus		0	/* Rx/Command Unit Status *Word* */
37 #define SCBIntAckByte		1	/* Rx/Command Unit STAT/ACK byte */
38 #define SCBCmd			2	/* Rx/Command Unit Command *Word* */
39 #define SCBIntrCtlByte		3	/* Rx/Command Unit Intr.Control Byte */
40 #define SCBPointer		4	/* General purpose pointer. */
41 #define SCBPort			8	/* Misc. commands and operands. */
42 #define SCBflash		12	/* Flash memory control. */
43 #define SCBeeprom		14	/* EEPROM memory control. */
44 #define SCBCtrlMDI		16	/* MDI interface control. */
45 #define SCBEarlyRx		20	/* Early receive byte count. */
46 #define SCBGenControl		28	/* 82559 General Control Register */
47 #define SCBGenStatus		29	/* 82559 General Status register */
48 
49 	/* 82559 SCB status word defnitions
50 	 */
51 #define SCB_STATUS_CX		0x8000	/* CU finished command (transmit) */
52 #define SCB_STATUS_FR		0x4000	/* frame received */
53 #define SCB_STATUS_CNA		0x2000	/* CU left active state */
54 #define SCB_STATUS_RNR		0x1000	/* receiver left ready state */
55 #define SCB_STATUS_MDI		0x0800	/* MDI read/write cycle done */
56 #define SCB_STATUS_SWI		0x0400	/* software generated interrupt */
57 #define SCB_STATUS_FCP		0x0100	/* flow control pause interrupt */
58 
59 #define SCB_INTACK_MASK		0xFD00	/* all the above */
60 
61 #define SCB_INTACK_TX		(SCB_STATUS_CX | SCB_STATUS_CNA)
62 #define SCB_INTACK_RX		(SCB_STATUS_FR | SCB_STATUS_RNR)
63 
64 	/* System control block commands
65 	 */
66 /* CU Commands */
67 #define CU_NOP			0x0000
68 #define CU_START		0x0010
69 #define CU_RESUME		0x0020
70 #define CU_STATSADDR		0x0040	/* Load Dump Statistics ctrs addr */
71 #define CU_SHOWSTATS		0x0050	/* Dump statistics counters. */
72 #define CU_ADDR_LOAD		0x0060	/* Base address to add to CU commands */
73 #define CU_DUMPSTATS		0x0070	/* Dump then reset stats counters. */
74 
75 /* RUC Commands */
76 #define RUC_NOP			0x0000
77 #define RUC_START		0x0001
78 #define RUC_RESUME		0x0002
79 #define RUC_ABORT		0x0004
80 #define RUC_ADDR_LOAD		0x0006	/* (seems not to clear on acceptance) */
81 #define RUC_RESUMENR		0x0007
82 
83 #define CU_CMD_MASK		0x00f0
84 #define RU_CMD_MASK		0x0007
85 
86 #define SCB_M			0x0100	/* 0 = enable interrupt, 1 = disable */
87 #define SCB_SWI			0x0200	/* 1 - cause device to interrupt */
88 
89 #define CU_STATUS_MASK		0x00C0
90 #define RU_STATUS_MASK		0x003C
91 
92 #define RU_STATUS_IDLE		(0<<2)
93 #define RU_STATUS_SUS		(1<<2)
94 #define RU_STATUS_NORES		(2<<2)
95 #define RU_STATUS_READY		(4<<2)
96 #define RU_STATUS_NO_RBDS_SUS	((1<<2)|(8<<2))
97 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
98 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
99 
100 	/* 82559 Port interface commands.
101 	 */
102 #define I82559_RESET		0x00000000	/* Software reset */
103 #define I82559_SELFTEST		0x00000001	/* 82559 Selftest command */
104 #define I82559_SELECTIVE_RESET	0x00000002
105 #define I82559_DUMP		0x00000003
106 #define I82559_DUMP_WAKEUP	0x00000007
107 
108 	/* 82559 Eeprom interface.
109 	 */
110 #define EE_SHIFT_CLK		0x01	/* EEPROM shift clock. */
111 #define EE_CS			0x02	/* EEPROM chip select. */
112 #define EE_DATA_WRITE		0x04	/* EEPROM chip data in. */
113 #define EE_WRITE_0		0x01
114 #define EE_WRITE_1		0x05
115 #define EE_DATA_READ		0x08	/* EEPROM chip data out. */
116 #define EE_ENB			(0x4800 | EE_CS)
117 #define EE_CMD_BITS		3
118 #define EE_DATA_BITS		16
119 
120 	/* The EEPROM commands include the alway-set leading bit.
121 	 */
122 #define EE_EWENB_CMD		(4 << addr_len)
123 #define EE_WRITE_CMD		(5 << addr_len)
124 #define EE_READ_CMD		(6 << addr_len)
125 #define EE_ERASE_CMD		(7 << addr_len)
126 
127 	/* Receive frame descriptors.
128 	 */
129 struct RxFD {
130 	volatile u16 status;
131 	volatile u16 control;
132 	volatile u32 link;		/* struct RxFD * */
133 	volatile u32 rx_buf_addr;	/* void * */
134 	volatile u32 count;
135 
136 	volatile u8 data[PKTSIZE_ALIGN];
137 };
138 
139 #define RFD_STATUS_C		0x8000	/* completion of received frame */
140 #define RFD_STATUS_OK		0x2000	/* frame received with no errors */
141 
142 #define RFD_CONTROL_EL		0x8000	/* 1=last RFD in RFA */
143 #define RFD_CONTROL_S		0x4000	/* 1=suspend RU after receiving frame */
144 #define RFD_CONTROL_H		0x0010	/* 1=RFD is a header RFD */
145 #define RFD_CONTROL_SF		0x0008	/* 0=simplified, 1=flexible mode */
146 
147 #define RFD_COUNT_MASK		0x3fff
148 #define RFD_COUNT_F		0x4000
149 #define RFD_COUNT_EOF		0x8000
150 
151 #define RFD_RX_CRC		0x0800	/* crc error */
152 #define RFD_RX_ALIGNMENT	0x0400	/* alignment error */
153 #define RFD_RX_RESOURCE		0x0200	/* out of space, no resources */
154 #define RFD_RX_DMA_OVER		0x0100	/* DMA overrun */
155 #define RFD_RX_SHORT		0x0080	/* short frame error */
156 #define RFD_RX_LENGTH		0x0020
157 #define RFD_RX_ERROR		0x0010	/* receive error */
158 #define RFD_RX_NO_ADR_MATCH	0x0004	/* no address match */
159 #define RFD_RX_IA_MATCH		0x0002	/* individual address does not match */
160 #define RFD_RX_TCO		0x0001	/* TCO indication */
161 
162 	/* Transmit frame descriptors
163 	 */
164 struct TxFD {				/* Transmit frame descriptor set. */
165 	volatile u16 status;
166 	volatile u16 command;
167 	volatile u32 link;		/* void * */
168 	volatile u32 tx_desc_addr;	/* Always points to the tx_buf_addr element. */
169 	volatile s32 count;
170 
171 	volatile u32 tx_buf_addr0;	/* void *, frame to be transmitted.  */
172 	volatile s32 tx_buf_size0;	/* Length of Tx frame. */
173 	volatile u32 tx_buf_addr1;	/* void *, frame to be transmitted.  */
174 	volatile s32 tx_buf_size1;	/* Length of Tx frame. */
175 };
176 
177 #define TxCB_CMD_TRANSMIT	0x0004	/* transmit command */
178 #define TxCB_CMD_SF		0x0008	/* 0=simplified, 1=flexible mode */
179 #define TxCB_CMD_NC		0x0010	/* 0=CRC insert by controller */
180 #define TxCB_CMD_I		0x2000	/* generate interrupt on completion */
181 #define TxCB_CMD_S		0x4000	/* suspend on completion */
182 #define TxCB_CMD_EL		0x8000	/* last command block in CBL */
183 
184 #define TxCB_COUNT_MASK		0x3fff
185 #define TxCB_COUNT_EOF		0x8000
186 
187 	/* The Speedo3 Rx and Tx frame/buffer descriptors.
188 	 */
189 struct descriptor {			/* A generic descriptor. */
190 	volatile u16 status;
191 	volatile u16 command;
192 	volatile u32 link;		/* struct descriptor *	*/
193 
194 	unsigned char params[0];
195 };
196 
197 #define CONFIG_SYS_CMD_EL		0x8000
198 #define CONFIG_SYS_CMD_SUSPEND		0x4000
199 #define CONFIG_SYS_CMD_INT		0x2000
200 #define CONFIG_SYS_CMD_IAS		0x0001	/* individual address setup */
201 #define CONFIG_SYS_CMD_CONFIGURE	0x0002	/* configure */
202 
203 #define CONFIG_SYS_STATUS_C		0x8000
204 #define CONFIG_SYS_STATUS_OK		0x2000
205 
206 	/* Misc.
207 	 */
208 #define NUM_RX_DESC		PKTBUFSRX
209 #define NUM_TX_DESC		1	/* Number of TX descriptors   */
210 
211 #define TOUT_LOOP		1000000
212 
213 #define ETH_ALEN		6
214 
215 static struct RxFD rx_ring[NUM_RX_DESC];	/* RX descriptor ring	      */
216 static struct TxFD tx_ring[NUM_TX_DESC];	/* TX descriptor ring	      */
217 static int rx_next;			/* RX descriptor ring pointer */
218 static int tx_next;			/* TX descriptor ring pointer */
219 static int tx_threshold;
220 
221 /*
222  * The parameters for a CmdConfigure operation.
223  * There are so many options that it would be difficult to document
224  * each bit. We mostly use the default or recommended settings.
225  */
226 static const char i82557_config_cmd[] = {
227 	22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1,	/* 1=Use MII  0=Use AUI */
228 	0, 0x2E, 0, 0x60, 0,
229 	0xf2, 0x48, 0, 0x40, 0xf2, 0x80,	/* 0x40=Force full-duplex */
230 	0x3f, 0x05,
231 };
232 static const char i82558_config_cmd[] = {
233 	22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1,	/* 1=Use MII  0=Use AUI */
234 	0, 0x2E, 0, 0x60, 0x08, 0x88,
235 	0x68, 0, 0x40, 0xf2, 0x84,		/* Disable FC */
236 	0x31, 0x05,
237 };
238 
239 static void init_rx_ring (struct eth_device *dev);
240 static void purge_tx_ring (struct eth_device *dev);
241 
242 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
243 
244 static int eepro100_init (struct eth_device *dev, bd_t * bis);
245 static int eepro100_send (struct eth_device *dev, volatile void *packet,
246 						  int length);
247 static int eepro100_recv (struct eth_device *dev);
248 static void eepro100_halt (struct eth_device *dev);
249 
250 #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
251 #define bus_to_phys(a) (a)
252 #define phys_to_bus(a) (a)
253 #else
254 #define bus_to_phys(a)	pci_mem_to_phys((pci_dev_t)dev->priv, a)
255 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
256 #endif
257 
258 static inline int INW (struct eth_device *dev, u_long addr)
259 {
260 	return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
261 }
262 
263 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
264 {
265 	*(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
266 }
267 
268 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
269 {
270 	*(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
271 }
272 
273 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
274 static inline int INL (struct eth_device *dev, u_long addr)
275 {
276 	return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
277 }
278 
279 static int get_phyreg (struct eth_device *dev, unsigned char addr,
280 		unsigned char reg, unsigned short *value)
281 {
282 	int cmd;
283 	int timeout = 50;
284 
285 	/* read requested data */
286 	cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
287 	OUTL (dev, cmd, SCBCtrlMDI);
288 
289 	do {
290 		udelay(1000);
291 		cmd = INL (dev, SCBCtrlMDI);
292 	} while (!(cmd & (1 << 28)) && (--timeout));
293 
294 	if (timeout == 0)
295 		return -1;
296 
297 	*value = (unsigned short) (cmd & 0xffff);
298 
299 	return 0;
300 }
301 
302 static int set_phyreg (struct eth_device *dev, unsigned char addr,
303 		unsigned char reg, unsigned short value)
304 {
305 	int cmd;
306 	int timeout = 50;
307 
308 	/* write requested data */
309 	cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
310 	OUTL (dev, cmd | value, SCBCtrlMDI);
311 
312 	while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
313 		udelay(1000);
314 
315 	if (timeout == 0)
316 		return -1;
317 
318 	return 0;
319 }
320 
321 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
322  * Do this by checking model value field from ID2 register.
323  */
324 static struct eth_device* verify_phyaddr (const char *devname,
325 						unsigned char addr)
326 {
327 	struct eth_device *dev;
328 	unsigned short value;
329 	unsigned char model;
330 
331 	dev = eth_get_dev_by_name(devname);
332 	if (dev == NULL) {
333 		printf("%s: no such device\n", devname);
334 		return NULL;
335 	}
336 
337 	/* read id2 register */
338 	if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
339 		printf("%s: mii read timeout!\n", devname);
340 		return NULL;
341 	}
342 
343 	/* get model */
344 	model = (unsigned char)((value >> 4) & 0x003f);
345 
346 	if (model == 0) {
347 		printf("%s: no PHY at address %d\n", devname, addr);
348 		return NULL;
349 	}
350 
351 	return dev;
352 }
353 
354 static int eepro100_miiphy_read(const char *devname, unsigned char addr,
355 		unsigned char reg, unsigned short *value)
356 {
357 	struct eth_device *dev;
358 
359 	dev = verify_phyaddr(devname, addr);
360 	if (dev == NULL)
361 		return -1;
362 
363 	if (get_phyreg(dev, addr, reg, value) != 0) {
364 		printf("%s: mii read timeout!\n", devname);
365 		return -1;
366 	}
367 
368 	return 0;
369 }
370 
371 static int eepro100_miiphy_write(const char *devname, unsigned char addr,
372 		unsigned char reg, unsigned short value)
373 {
374 	struct eth_device *dev;
375 
376 	dev = verify_phyaddr(devname, addr);
377 	if (dev == NULL)
378 		return -1;
379 
380 	if (set_phyreg(dev, addr, reg, value) != 0) {
381 		printf("%s: mii write timeout!\n", devname);
382 		return -1;
383 	}
384 
385 	return 0;
386 }
387 
388 #endif
389 
390 /* Wait for the chip get the command.
391 */
392 static int wait_for_eepro100 (struct eth_device *dev)
393 {
394 	int i;
395 
396 	for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
397 		if (i >= TOUT_LOOP) {
398 			return 0;
399 		}
400 	}
401 
402 	return 1;
403 }
404 
405 static struct pci_device_id supported[] = {
406 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
407 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
408 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
409 	{}
410 };
411 
412 int eepro100_initialize (bd_t * bis)
413 {
414 	pci_dev_t devno;
415 	int card_number = 0;
416 	struct eth_device *dev;
417 	u32 iobase, status;
418 	int idx = 0;
419 
420 	while (1) {
421 		/* Find PCI device
422 		 */
423 		if ((devno = pci_find_devices (supported, idx++)) < 0) {
424 			break;
425 		}
426 
427 		pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
428 		iobase &= ~0xf;
429 
430 #ifdef DEBUG
431 		printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
432 				iobase);
433 #endif
434 
435 		pci_write_config_dword (devno,
436 					PCI_COMMAND,
437 					PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
438 
439 		/* Check if I/O accesses and Bus Mastering are enabled.
440 		 */
441 		pci_read_config_dword (devno, PCI_COMMAND, &status);
442 		if (!(status & PCI_COMMAND_MEMORY)) {
443 			printf ("Error: Can not enable MEM access.\n");
444 			continue;
445 		}
446 
447 		if (!(status & PCI_COMMAND_MASTER)) {
448 			printf ("Error: Can not enable Bus Mastering.\n");
449 			continue;
450 		}
451 
452 		dev = (struct eth_device *) malloc (sizeof *dev);
453 		if (!dev) {
454 			printf("eepro100: Can not allocate memory\n");
455 			break;
456 		}
457 		memset(dev, 0, sizeof(*dev));
458 
459 		sprintf (dev->name, "i82559#%d", card_number);
460 		dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
461 		dev->iobase = bus_to_phys (iobase);
462 		dev->init = eepro100_init;
463 		dev->halt = eepro100_halt;
464 		dev->send = eepro100_send;
465 		dev->recv = eepro100_recv;
466 
467 		eth_register (dev);
468 
469 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
470 		/* register mii command access routines */
471 		miiphy_register(dev->name,
472 				eepro100_miiphy_read, eepro100_miiphy_write);
473 #endif
474 
475 		card_number++;
476 
477 		/* Set the latency timer for value.
478 		 */
479 		pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
480 
481 		udelay (10 * 1000);
482 
483 		read_hw_addr (dev, bis);
484 	}
485 
486 	return card_number;
487 }
488 
489 
490 static int eepro100_init (struct eth_device *dev, bd_t * bis)
491 {
492 	int i, status = -1;
493 	int tx_cur;
494 	struct descriptor *ias_cmd, *cfg_cmd;
495 
496 	/* Reset the ethernet controller
497 	 */
498 	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
499 	udelay (20);
500 
501 	OUTL (dev, I82559_RESET, SCBPort);
502 	udelay (20);
503 
504 	if (!wait_for_eepro100 (dev)) {
505 		printf ("Error: Can not reset ethernet controller.\n");
506 		goto Done;
507 	}
508 	OUTL (dev, 0, SCBPointer);
509 	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
510 
511 	if (!wait_for_eepro100 (dev)) {
512 		printf ("Error: Can not reset ethernet controller.\n");
513 		goto Done;
514 	}
515 	OUTL (dev, 0, SCBPointer);
516 	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
517 
518 	/* Initialize Rx and Tx rings.
519 	 */
520 	init_rx_ring (dev);
521 	purge_tx_ring (dev);
522 
523 	/* Tell the adapter where the RX ring is located.
524 	 */
525 	if (!wait_for_eepro100 (dev)) {
526 		printf ("Error: Can not reset ethernet controller.\n");
527 		goto Done;
528 	}
529 
530 	OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
531 	OUTW (dev, SCB_M | RUC_START, SCBCmd);
532 
533 	/* Send the Configure frame */
534 	tx_cur = tx_next;
535 	tx_next = ((tx_next + 1) % NUM_TX_DESC);
536 
537 	cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
538 	cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
539 	cfg_cmd->status = 0;
540 	cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
541 
542 	memcpy (cfg_cmd->params, i82558_config_cmd,
543 			sizeof (i82558_config_cmd));
544 
545 	if (!wait_for_eepro100 (dev)) {
546 		printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
547 		goto Done;
548 	}
549 
550 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
551 	OUTW (dev, SCB_M | CU_START, SCBCmd);
552 
553 	for (i = 0;
554 	     !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
555 	     i++) {
556 		if (i >= TOUT_LOOP) {
557 			printf ("%s: Tx error buffer not ready\n", dev->name);
558 			goto Done;
559 		}
560 	}
561 
562 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
563 		printf ("TX error status = 0x%08X\n",
564 			le16_to_cpu (tx_ring[tx_cur].status));
565 		goto Done;
566 	}
567 
568 	/* Send the Individual Address Setup frame
569 	 */
570 	tx_cur = tx_next;
571 	tx_next = ((tx_next + 1) % NUM_TX_DESC);
572 
573 	ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
574 	ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
575 	ias_cmd->status = 0;
576 	ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
577 
578 	memcpy (ias_cmd->params, dev->enetaddr, 6);
579 
580 	/* Tell the adapter where the TX ring is located.
581 	 */
582 	if (!wait_for_eepro100 (dev)) {
583 		printf ("Error: Can not reset ethernet controller.\n");
584 		goto Done;
585 	}
586 
587 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
588 	OUTW (dev, SCB_M | CU_START, SCBCmd);
589 
590 	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
591 		 i++) {
592 		if (i >= TOUT_LOOP) {
593 			printf ("%s: Tx error buffer not ready\n",
594 				dev->name);
595 			goto Done;
596 		}
597 	}
598 
599 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
600 		printf ("TX error status = 0x%08X\n",
601 			le16_to_cpu (tx_ring[tx_cur].status));
602 		goto Done;
603 	}
604 
605 	status = 0;
606 
607   Done:
608 	return status;
609 }
610 
611 static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
612 {
613 	int i, status = -1;
614 	int tx_cur;
615 
616 	if (length <= 0) {
617 		printf ("%s: bad packet size: %d\n", dev->name, length);
618 		goto Done;
619 	}
620 
621 	tx_cur = tx_next;
622 	tx_next = (tx_next + 1) % NUM_TX_DESC;
623 
624 	tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
625 						TxCB_CMD_SF	|
626 						TxCB_CMD_S	|
627 						TxCB_CMD_EL );
628 	tx_ring[tx_cur].status = 0;
629 	tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
630 	tx_ring[tx_cur].link =
631 		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
632 	tx_ring[tx_cur].tx_desc_addr =
633 		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
634 	tx_ring[tx_cur].tx_buf_addr0 =
635 		cpu_to_le32 (phys_to_bus ((u_long) packet));
636 	tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
637 
638 	if (!wait_for_eepro100 (dev)) {
639 		printf ("%s: Tx error ethernet controller not ready.\n",
640 				dev->name);
641 		goto Done;
642 	}
643 
644 	/* Send the packet.
645 	 */
646 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
647 	OUTW (dev, SCB_M | CU_START, SCBCmd);
648 
649 	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
650 		 i++) {
651 		if (i >= TOUT_LOOP) {
652 			printf ("%s: Tx error buffer not ready\n", dev->name);
653 			goto Done;
654 		}
655 	}
656 
657 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
658 		printf ("TX error status = 0x%08X\n",
659 			le16_to_cpu (tx_ring[tx_cur].status));
660 		goto Done;
661 	}
662 
663 	status = length;
664 
665   Done:
666 	return status;
667 }
668 
669 static int eepro100_recv (struct eth_device *dev)
670 {
671 	u16 status, stat;
672 	int rx_prev, length = 0;
673 
674 	stat = INW (dev, SCBStatus);
675 	OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
676 
677 	for (;;) {
678 		status = le16_to_cpu (rx_ring[rx_next].status);
679 
680 		if (!(status & RFD_STATUS_C)) {
681 			break;
682 		}
683 
684 		/* Valid frame status.
685 		 */
686 		if ((status & RFD_STATUS_OK)) {
687 			/* A valid frame received.
688 			 */
689 			length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
690 
691 			/* Pass the packet up to the protocol
692 			 * layers.
693 			 */
694 			NetReceive (rx_ring[rx_next].data, length);
695 		} else {
696 			/* There was an error.
697 			 */
698 			printf ("RX error status = 0x%08X\n", status);
699 		}
700 
701 		rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
702 		rx_ring[rx_next].status = 0;
703 		rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
704 
705 		rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
706 		rx_ring[rx_prev].control = 0;
707 
708 		/* Update entry information.
709 		 */
710 		rx_next = (rx_next + 1) % NUM_RX_DESC;
711 	}
712 
713 	if (stat & SCB_STATUS_RNR) {
714 
715 		printf ("%s: Receiver is not ready, restart it !\n", dev->name);
716 
717 		/* Reinitialize Rx ring.
718 		 */
719 		init_rx_ring (dev);
720 
721 		if (!wait_for_eepro100 (dev)) {
722 			printf ("Error: Can not restart ethernet controller.\n");
723 			goto Done;
724 		}
725 
726 		OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
727 		OUTW (dev, SCB_M | RUC_START, SCBCmd);
728 	}
729 
730   Done:
731 	return length;
732 }
733 
734 static void eepro100_halt (struct eth_device *dev)
735 {
736 	/* Reset the ethernet controller
737 	 */
738 	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
739 	udelay (20);
740 
741 	OUTL (dev, I82559_RESET, SCBPort);
742 	udelay (20);
743 
744 	if (!wait_for_eepro100 (dev)) {
745 		printf ("Error: Can not reset ethernet controller.\n");
746 		goto Done;
747 	}
748 	OUTL (dev, 0, SCBPointer);
749 	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
750 
751 	if (!wait_for_eepro100 (dev)) {
752 		printf ("Error: Can not reset ethernet controller.\n");
753 		goto Done;
754 	}
755 	OUTL (dev, 0, SCBPointer);
756 	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
757 
758   Done:
759 	return;
760 }
761 
762 	/* SROM Read.
763 	 */
764 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
765 {
766 	unsigned short retval = 0;
767 	int read_cmd = location | EE_READ_CMD;
768 	int i;
769 
770 	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
771 	OUTW (dev, EE_ENB, SCBeeprom);
772 
773 	/* Shift the read command bits out. */
774 	for (i = 12; i >= 0; i--) {
775 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
776 
777 		OUTW (dev, EE_ENB | dataval, SCBeeprom);
778 		udelay (1);
779 		OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
780 		udelay (1);
781 	}
782 	OUTW (dev, EE_ENB, SCBeeprom);
783 
784 	for (i = 15; i >= 0; i--) {
785 		OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
786 		udelay (1);
787 		retval = (retval << 1) |
788 				((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
789 		OUTW (dev, EE_ENB, SCBeeprom);
790 		udelay (1);
791 	}
792 
793 	/* Terminate the EEPROM access. */
794 	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
795 	return retval;
796 }
797 
798 #ifdef CONFIG_EEPRO100_SROM_WRITE
799 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
800 {
801     unsigned short dataval;
802     int enable_cmd = 0x3f | EE_EWENB_CMD;
803     int write_cmd  = location | EE_WRITE_CMD;
804     int i;
805     unsigned long datalong, tmplong;
806 
807     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
808     udelay(1);
809     OUTW(dev, EE_ENB, SCBeeprom);
810 
811     /* Shift the enable command bits out. */
812     for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
813     {
814 	dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
815 	OUTW(dev, EE_ENB | dataval, SCBeeprom);
816 	udelay(1);
817 	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
818 	udelay(1);
819     }
820 
821     OUTW(dev, EE_ENB, SCBeeprom);
822     udelay(1);
823     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
824     udelay(1);
825     OUTW(dev, EE_ENB, SCBeeprom);
826 
827 
828     /* Shift the write command bits out. */
829     for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
830     {
831 	dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
832 	OUTW(dev, EE_ENB | dataval, SCBeeprom);
833 	udelay(1);
834 	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
835 	udelay(1);
836     }
837 
838     /* Write the data */
839     datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
840 
841     for (i = 0; i< EE_DATA_BITS; i++)
842     {
843     /* Extract and move data bit to bit DI */
844     dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
845 
846     OUTW(dev, EE_ENB | dataval, SCBeeprom);
847     udelay(1);
848     OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
849     udelay(1);
850     OUTW(dev, EE_ENB | dataval, SCBeeprom);
851     udelay(1);
852 
853     datalong = datalong << 1;	/* Adjust significant data bit*/
854     }
855 
856     /* Finish up command  (toggle CS) */
857     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
858     udelay(1);			/* delay for more than 250 ns */
859     OUTW(dev, EE_ENB, SCBeeprom);
860 
861     /* Wait for programming ready (D0 = 1) */
862     tmplong = 10;
863     do
864     {
865 	dataval = INW(dev, SCBeeprom);
866 	if (dataval & EE_DATA_READ)
867 	    break;
868 	udelay(10000);
869     }
870     while (-- tmplong);
871 
872     if (tmplong == 0)
873     {
874 	printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
875 	return -1;
876     }
877 
878     /* Terminate the EEPROM access. */
879     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
880 
881     return 0;
882 }
883 #endif
884 
885 static void init_rx_ring (struct eth_device *dev)
886 {
887 	int i;
888 
889 	for (i = 0; i < NUM_RX_DESC; i++) {
890 		rx_ring[i].status = 0;
891 		rx_ring[i].control =
892 				(i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
893 		rx_ring[i].link =
894 				cpu_to_le32 (phys_to_bus
895 							 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
896 		rx_ring[i].rx_buf_addr = 0xffffffff;
897 		rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
898 	}
899 
900 	rx_next = 0;
901 }
902 
903 static void purge_tx_ring (struct eth_device *dev)
904 {
905 	int i;
906 
907 	tx_next = 0;
908 	tx_threshold = 0x01208000;
909 
910 	for (i = 0; i < NUM_TX_DESC; i++) {
911 		tx_ring[i].status = 0;
912 		tx_ring[i].command = 0;
913 		tx_ring[i].link = 0;
914 		tx_ring[i].tx_desc_addr = 0;
915 		tx_ring[i].count = 0;
916 
917 		tx_ring[i].tx_buf_addr0 = 0;
918 		tx_ring[i].tx_buf_size0 = 0;
919 		tx_ring[i].tx_buf_addr1 = 0;
920 		tx_ring[i].tx_buf_size1 = 0;
921 	}
922 }
923 
924 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
925 {
926 	u16 sum = 0;
927 	int i, j;
928 	int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
929 
930 	for (j = 0, i = 0; i < 0x40; i++) {
931 		u16 value = read_eeprom (dev, i, addr_len);
932 
933 		sum += value;
934 		if (i < 3) {
935 			dev->enetaddr[j++] = value;
936 			dev->enetaddr[j++] = value >> 8;
937 		}
938 	}
939 
940 	if (sum != 0xBABA) {
941 		memset (dev->enetaddr, 0, ETH_ALEN);
942 #ifdef DEBUG
943 		printf ("%s: Invalid EEPROM checksum %#4.4x, "
944 			"check settings before activating this device!\n",
945 			dev->name, sum);
946 #endif
947 	}
948 }
949