xref: /openbmc/u-boot/drivers/net/e1000.c (revision 9925f1dbc38c0ef7220c6fca5968c708b8e48764)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <memalign.h>
36 #include <pci.h>
37 #include "e1000.h"
38 
39 #define TOUT_LOOP   100000
40 
41 #ifdef CONFIG_DM_ETH
42 #define virt_to_bus(devno, v)	dm_pci_virt_to_mem(devno, (void *) (v))
43 #define bus_to_phys(devno, a)	dm_pci_mem_to_phys(devno, a)
44 #else
45 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
46 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
47 #endif
48 
49 #define E1000_DEFAULT_PCI_PBA	0x00000030
50 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
51 
52 /* NIC specific static variables go here */
53 
54 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
55 #define E1000_BUFFER_ALIGN	128
56 
57 /*
58  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
59  * Concurrent receiving on multiple active Ethernet devices will not work.
60  * Normally U-Boot does not support this anyway. To fix it in this driver,
61  * move these buffers and the tx/rx pointers to struct e1000_hw.
62  */
63 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
64 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
65 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
66 
67 static int tx_tail;
68 static int rx_tail, rx_last;
69 #ifdef CONFIG_DM_ETH
70 static int num_cards;	/* Number of E1000 devices seen so far */
71 #endif
72 
73 static struct pci_device_id e1000_supported[] = {
74 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
75 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
76 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
77 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
78 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
79 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
80 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
81 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
82 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
83 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
84 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
85 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
86 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
87 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
88 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
89 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
90 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
91 	/* E1000 PCIe card */
92 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
93 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
94 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
95 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
96 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
97 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
98 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
99 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
100 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
101 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
102 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
103 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
104 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
105 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
106 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
107 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
108 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
109 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
110 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
111 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
112 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
113 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
114 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
115 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
116 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
117 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
118 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
119 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
120 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
121 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
122 
123 	{}
124 };
125 
126 /* Function forward declarations */
127 static int e1000_setup_link(struct e1000_hw *hw);
128 static int e1000_setup_fiber_link(struct e1000_hw *hw);
129 static int e1000_setup_copper_link(struct e1000_hw *hw);
130 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
131 static void e1000_config_collision_dist(struct e1000_hw *hw);
132 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
133 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
134 static int e1000_check_for_link(struct e1000_hw *hw);
135 static int e1000_wait_autoneg(struct e1000_hw *hw);
136 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
137 				       uint16_t * duplex);
138 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
139 			      uint16_t * phy_data);
140 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
141 			       uint16_t phy_data);
142 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
143 static int e1000_phy_reset(struct e1000_hw *hw);
144 static int e1000_detect_gig_phy(struct e1000_hw *hw);
145 static void e1000_set_media_type(struct e1000_hw *hw);
146 
147 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
148 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
149 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
150 
151 #ifndef CONFIG_E1000_NO_NVM
152 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
153 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
154 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
155 		uint16_t words,
156 		uint16_t *data);
157 /******************************************************************************
158  * Raises the EEPROM's clock input.
159  *
160  * hw - Struct containing variables accessed by shared code
161  * eecd - EECD's current value
162  *****************************************************************************/
163 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
164 {
165 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
166 	 * wait 50 microseconds.
167 	 */
168 	*eecd = *eecd | E1000_EECD_SK;
169 	E1000_WRITE_REG(hw, EECD, *eecd);
170 	E1000_WRITE_FLUSH(hw);
171 	udelay(50);
172 }
173 
174 /******************************************************************************
175  * Lowers the EEPROM's clock input.
176  *
177  * hw - Struct containing variables accessed by shared code
178  * eecd - EECD's current value
179  *****************************************************************************/
180 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
181 {
182 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
183 	 * wait 50 microseconds.
184 	 */
185 	*eecd = *eecd & ~E1000_EECD_SK;
186 	E1000_WRITE_REG(hw, EECD, *eecd);
187 	E1000_WRITE_FLUSH(hw);
188 	udelay(50);
189 }
190 
191 /******************************************************************************
192  * Shift data bits out to the EEPROM.
193  *
194  * hw - Struct containing variables accessed by shared code
195  * data - data to send to the EEPROM
196  * count - number of bits to shift out
197  *****************************************************************************/
198 static void
199 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
200 {
201 	uint32_t eecd;
202 	uint32_t mask;
203 
204 	/* We need to shift "count" bits out to the EEPROM. So, value in the
205 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
206 	 * In order to do this, "data" must be broken down into bits.
207 	 */
208 	mask = 0x01 << (count - 1);
209 	eecd = E1000_READ_REG(hw, EECD);
210 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
211 	do {
212 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
213 		 * and then raising and then lowering the clock (the SK bit controls
214 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
215 		 * by setting "DI" to "0" and then raising and then lowering the clock.
216 		 */
217 		eecd &= ~E1000_EECD_DI;
218 
219 		if (data & mask)
220 			eecd |= E1000_EECD_DI;
221 
222 		E1000_WRITE_REG(hw, EECD, eecd);
223 		E1000_WRITE_FLUSH(hw);
224 
225 		udelay(50);
226 
227 		e1000_raise_ee_clk(hw, &eecd);
228 		e1000_lower_ee_clk(hw, &eecd);
229 
230 		mask = mask >> 1;
231 
232 	} while (mask);
233 
234 	/* We leave the "DI" bit set to "0" when we leave this routine. */
235 	eecd &= ~E1000_EECD_DI;
236 	E1000_WRITE_REG(hw, EECD, eecd);
237 }
238 
239 /******************************************************************************
240  * Shift data bits in from the EEPROM
241  *
242  * hw - Struct containing variables accessed by shared code
243  *****************************************************************************/
244 static uint16_t
245 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
246 {
247 	uint32_t eecd;
248 	uint32_t i;
249 	uint16_t data;
250 
251 	/* In order to read a register from the EEPROM, we need to shift 'count'
252 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
253 	 * input to the EEPROM (setting the SK bit), and then reading the
254 	 * value of the "DO" bit.  During this "shifting in" process the
255 	 * "DI" bit should always be clear.
256 	 */
257 
258 	eecd = E1000_READ_REG(hw, EECD);
259 
260 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
261 	data = 0;
262 
263 	for (i = 0; i < count; i++) {
264 		data = data << 1;
265 		e1000_raise_ee_clk(hw, &eecd);
266 
267 		eecd = E1000_READ_REG(hw, EECD);
268 
269 		eecd &= ~(E1000_EECD_DI);
270 		if (eecd & E1000_EECD_DO)
271 			data |= 1;
272 
273 		e1000_lower_ee_clk(hw, &eecd);
274 	}
275 
276 	return data;
277 }
278 
279 /******************************************************************************
280  * Returns EEPROM to a "standby" state
281  *
282  * hw - Struct containing variables accessed by shared code
283  *****************************************************************************/
284 void e1000_standby_eeprom(struct e1000_hw *hw)
285 {
286 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
287 	uint32_t eecd;
288 
289 	eecd = E1000_READ_REG(hw, EECD);
290 
291 	if (eeprom->type == e1000_eeprom_microwire) {
292 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
293 		E1000_WRITE_REG(hw, EECD, eecd);
294 		E1000_WRITE_FLUSH(hw);
295 		udelay(eeprom->delay_usec);
296 
297 		/* Clock high */
298 		eecd |= E1000_EECD_SK;
299 		E1000_WRITE_REG(hw, EECD, eecd);
300 		E1000_WRITE_FLUSH(hw);
301 		udelay(eeprom->delay_usec);
302 
303 		/* Select EEPROM */
304 		eecd |= E1000_EECD_CS;
305 		E1000_WRITE_REG(hw, EECD, eecd);
306 		E1000_WRITE_FLUSH(hw);
307 		udelay(eeprom->delay_usec);
308 
309 		/* Clock low */
310 		eecd &= ~E1000_EECD_SK;
311 		E1000_WRITE_REG(hw, EECD, eecd);
312 		E1000_WRITE_FLUSH(hw);
313 		udelay(eeprom->delay_usec);
314 	} else if (eeprom->type == e1000_eeprom_spi) {
315 		/* Toggle CS to flush commands */
316 		eecd |= E1000_EECD_CS;
317 		E1000_WRITE_REG(hw, EECD, eecd);
318 		E1000_WRITE_FLUSH(hw);
319 		udelay(eeprom->delay_usec);
320 		eecd &= ~E1000_EECD_CS;
321 		E1000_WRITE_REG(hw, EECD, eecd);
322 		E1000_WRITE_FLUSH(hw);
323 		udelay(eeprom->delay_usec);
324 	}
325 }
326 
327 /***************************************************************************
328 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
329 *
330 * hw - Struct containing variables accessed by shared code
331 ****************************************************************************/
332 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
333 {
334 	uint32_t eecd = 0;
335 
336 	DEBUGFUNC();
337 
338 	if (hw->mac_type == e1000_ich8lan)
339 		return false;
340 
341 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
342 		eecd = E1000_READ_REG(hw, EECD);
343 
344 		/* Isolate bits 15 & 16 */
345 		eecd = ((eecd >> 15) & 0x03);
346 
347 		/* If both bits are set, device is Flash type */
348 		if (eecd == 0x03)
349 			return false;
350 	}
351 	return true;
352 }
353 
354 /******************************************************************************
355  * Prepares EEPROM for access
356  *
357  * hw - Struct containing variables accessed by shared code
358  *
359  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
360  * function should be called before issuing a command to the EEPROM.
361  *****************************************************************************/
362 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
363 {
364 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
365 	uint32_t eecd, i = 0;
366 
367 	DEBUGFUNC();
368 
369 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
370 		return -E1000_ERR_SWFW_SYNC;
371 	eecd = E1000_READ_REG(hw, EECD);
372 
373 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
374 		/* Request EEPROM Access */
375 		if (hw->mac_type > e1000_82544) {
376 			eecd |= E1000_EECD_REQ;
377 			E1000_WRITE_REG(hw, EECD, eecd);
378 			eecd = E1000_READ_REG(hw, EECD);
379 			while ((!(eecd & E1000_EECD_GNT)) &&
380 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
381 				i++;
382 				udelay(5);
383 				eecd = E1000_READ_REG(hw, EECD);
384 			}
385 			if (!(eecd & E1000_EECD_GNT)) {
386 				eecd &= ~E1000_EECD_REQ;
387 				E1000_WRITE_REG(hw, EECD, eecd);
388 				DEBUGOUT("Could not acquire EEPROM grant\n");
389 				return -E1000_ERR_EEPROM;
390 			}
391 		}
392 	}
393 
394 	/* Setup EEPROM for Read/Write */
395 
396 	if (eeprom->type == e1000_eeprom_microwire) {
397 		/* Clear SK and DI */
398 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
399 		E1000_WRITE_REG(hw, EECD, eecd);
400 
401 		/* Set CS */
402 		eecd |= E1000_EECD_CS;
403 		E1000_WRITE_REG(hw, EECD, eecd);
404 	} else if (eeprom->type == e1000_eeprom_spi) {
405 		/* Clear SK and CS */
406 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
407 		E1000_WRITE_REG(hw, EECD, eecd);
408 		udelay(1);
409 	}
410 
411 	return E1000_SUCCESS;
412 }
413 
414 /******************************************************************************
415  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
416  * is configured.  Additionally, if this is ICH8, the flash controller GbE
417  * registers must be mapped, or this will crash.
418  *
419  * hw - Struct containing variables accessed by shared code
420  *****************************************************************************/
421 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
422 {
423 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
424 	uint32_t eecd;
425 	int32_t ret_val = E1000_SUCCESS;
426 	uint16_t eeprom_size;
427 
428 	if (hw->mac_type == e1000_igb)
429 		eecd = E1000_READ_REG(hw, I210_EECD);
430 	else
431 		eecd = E1000_READ_REG(hw, EECD);
432 
433 	DEBUGFUNC();
434 
435 	switch (hw->mac_type) {
436 	case e1000_82542_rev2_0:
437 	case e1000_82542_rev2_1:
438 	case e1000_82543:
439 	case e1000_82544:
440 		eeprom->type = e1000_eeprom_microwire;
441 		eeprom->word_size = 64;
442 		eeprom->opcode_bits = 3;
443 		eeprom->address_bits = 6;
444 		eeprom->delay_usec = 50;
445 		eeprom->use_eerd = false;
446 		eeprom->use_eewr = false;
447 	break;
448 	case e1000_82540:
449 	case e1000_82545:
450 	case e1000_82545_rev_3:
451 	case e1000_82546:
452 	case e1000_82546_rev_3:
453 		eeprom->type = e1000_eeprom_microwire;
454 		eeprom->opcode_bits = 3;
455 		eeprom->delay_usec = 50;
456 		if (eecd & E1000_EECD_SIZE) {
457 			eeprom->word_size = 256;
458 			eeprom->address_bits = 8;
459 		} else {
460 			eeprom->word_size = 64;
461 			eeprom->address_bits = 6;
462 		}
463 		eeprom->use_eerd = false;
464 		eeprom->use_eewr = false;
465 		break;
466 	case e1000_82541:
467 	case e1000_82541_rev_2:
468 	case e1000_82547:
469 	case e1000_82547_rev_2:
470 		if (eecd & E1000_EECD_TYPE) {
471 			eeprom->type = e1000_eeprom_spi;
472 			eeprom->opcode_bits = 8;
473 			eeprom->delay_usec = 1;
474 			if (eecd & E1000_EECD_ADDR_BITS) {
475 				eeprom->page_size = 32;
476 				eeprom->address_bits = 16;
477 			} else {
478 				eeprom->page_size = 8;
479 				eeprom->address_bits = 8;
480 			}
481 		} else {
482 			eeprom->type = e1000_eeprom_microwire;
483 			eeprom->opcode_bits = 3;
484 			eeprom->delay_usec = 50;
485 			if (eecd & E1000_EECD_ADDR_BITS) {
486 				eeprom->word_size = 256;
487 				eeprom->address_bits = 8;
488 			} else {
489 				eeprom->word_size = 64;
490 				eeprom->address_bits = 6;
491 			}
492 		}
493 		eeprom->use_eerd = false;
494 		eeprom->use_eewr = false;
495 		break;
496 	case e1000_82571:
497 	case e1000_82572:
498 		eeprom->type = e1000_eeprom_spi;
499 		eeprom->opcode_bits = 8;
500 		eeprom->delay_usec = 1;
501 		if (eecd & E1000_EECD_ADDR_BITS) {
502 			eeprom->page_size = 32;
503 			eeprom->address_bits = 16;
504 		} else {
505 			eeprom->page_size = 8;
506 			eeprom->address_bits = 8;
507 		}
508 		eeprom->use_eerd = false;
509 		eeprom->use_eewr = false;
510 		break;
511 	case e1000_82573:
512 	case e1000_82574:
513 		eeprom->type = e1000_eeprom_spi;
514 		eeprom->opcode_bits = 8;
515 		eeprom->delay_usec = 1;
516 		if (eecd & E1000_EECD_ADDR_BITS) {
517 			eeprom->page_size = 32;
518 			eeprom->address_bits = 16;
519 		} else {
520 			eeprom->page_size = 8;
521 			eeprom->address_bits = 8;
522 		}
523 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
524 			eeprom->use_eerd = true;
525 			eeprom->use_eewr = true;
526 
527 			eeprom->type = e1000_eeprom_flash;
528 			eeprom->word_size = 2048;
529 
530 		/* Ensure that the Autonomous FLASH update bit is cleared due to
531 		 * Flash update issue on parts which use a FLASH for NVM. */
532 			eecd &= ~E1000_EECD_AUPDEN;
533 			E1000_WRITE_REG(hw, EECD, eecd);
534 		}
535 		break;
536 	case e1000_80003es2lan:
537 		eeprom->type = e1000_eeprom_spi;
538 		eeprom->opcode_bits = 8;
539 		eeprom->delay_usec = 1;
540 		if (eecd & E1000_EECD_ADDR_BITS) {
541 			eeprom->page_size = 32;
542 			eeprom->address_bits = 16;
543 		} else {
544 			eeprom->page_size = 8;
545 			eeprom->address_bits = 8;
546 		}
547 		eeprom->use_eerd = true;
548 		eeprom->use_eewr = false;
549 		break;
550 	case e1000_igb:
551 		/* i210 has 4k of iNVM mapped as EEPROM */
552 		eeprom->type = e1000_eeprom_invm;
553 		eeprom->opcode_bits = 8;
554 		eeprom->delay_usec = 1;
555 		eeprom->page_size = 32;
556 		eeprom->address_bits = 16;
557 		eeprom->use_eerd = true;
558 		eeprom->use_eewr = false;
559 		break;
560 	default:
561 		break;
562 	}
563 
564 	if (eeprom->type == e1000_eeprom_spi ||
565 	    eeprom->type == e1000_eeprom_invm) {
566 		/* eeprom_size will be an enum [0..8] that maps
567 		 * to eeprom sizes 128B to
568 		 * 32KB (incremented by powers of 2).
569 		 */
570 		if (hw->mac_type <= e1000_82547_rev_2) {
571 			/* Set to default value for initial eeprom read. */
572 			eeprom->word_size = 64;
573 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
574 					&eeprom_size);
575 			if (ret_val)
576 				return ret_val;
577 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
578 				>> EEPROM_SIZE_SHIFT;
579 			/* 256B eeprom size was not supported in earlier
580 			 * hardware, so we bump eeprom_size up one to
581 			 * ensure that "1" (which maps to 256B) is never
582 			 * the result used in the shifting logic below. */
583 			if (eeprom_size)
584 				eeprom_size++;
585 		} else {
586 			eeprom_size = (uint16_t)((eecd &
587 				E1000_EECD_SIZE_EX_MASK) >>
588 				E1000_EECD_SIZE_EX_SHIFT);
589 		}
590 
591 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
592 	}
593 	return ret_val;
594 }
595 
596 /******************************************************************************
597  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
598  *
599  * hw - Struct containing variables accessed by shared code
600  *****************************************************************************/
601 static int32_t
602 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
603 {
604 	uint32_t attempts = 100000;
605 	uint32_t i, reg = 0;
606 	int32_t done = E1000_ERR_EEPROM;
607 
608 	for (i = 0; i < attempts; i++) {
609 		if (eerd == E1000_EEPROM_POLL_READ) {
610 			if (hw->mac_type == e1000_igb)
611 				reg = E1000_READ_REG(hw, I210_EERD);
612 			else
613 				reg = E1000_READ_REG(hw, EERD);
614 		} else {
615 			if (hw->mac_type == e1000_igb)
616 				reg = E1000_READ_REG(hw, I210_EEWR);
617 			else
618 				reg = E1000_READ_REG(hw, EEWR);
619 		}
620 
621 		if (reg & E1000_EEPROM_RW_REG_DONE) {
622 			done = E1000_SUCCESS;
623 			break;
624 		}
625 		udelay(5);
626 	}
627 
628 	return done;
629 }
630 
631 /******************************************************************************
632  * Reads a 16 bit word from the EEPROM using the EERD register.
633  *
634  * hw - Struct containing variables accessed by shared code
635  * offset - offset of  word in the EEPROM to read
636  * data - word read from the EEPROM
637  * words - number of words to read
638  *****************************************************************************/
639 static int32_t
640 e1000_read_eeprom_eerd(struct e1000_hw *hw,
641 			uint16_t offset,
642 			uint16_t words,
643 			uint16_t *data)
644 {
645 	uint32_t i, eerd = 0;
646 	int32_t error = 0;
647 
648 	for (i = 0; i < words; i++) {
649 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
650 			E1000_EEPROM_RW_REG_START;
651 
652 		if (hw->mac_type == e1000_igb)
653 			E1000_WRITE_REG(hw, I210_EERD, eerd);
654 		else
655 			E1000_WRITE_REG(hw, EERD, eerd);
656 
657 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
658 
659 		if (error)
660 			break;
661 
662 		if (hw->mac_type == e1000_igb) {
663 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
664 				E1000_EEPROM_RW_REG_DATA);
665 		} else {
666 			data[i] = (E1000_READ_REG(hw, EERD) >>
667 				E1000_EEPROM_RW_REG_DATA);
668 		}
669 
670 	}
671 
672 	return error;
673 }
674 
675 void e1000_release_eeprom(struct e1000_hw *hw)
676 {
677 	uint32_t eecd;
678 
679 	DEBUGFUNC();
680 
681 	eecd = E1000_READ_REG(hw, EECD);
682 
683 	if (hw->eeprom.type == e1000_eeprom_spi) {
684 		eecd |= E1000_EECD_CS;  /* Pull CS high */
685 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
686 
687 		E1000_WRITE_REG(hw, EECD, eecd);
688 
689 		udelay(hw->eeprom.delay_usec);
690 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
691 		/* cleanup eeprom */
692 
693 		/* CS on Microwire is active-high */
694 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
695 
696 		E1000_WRITE_REG(hw, EECD, eecd);
697 
698 		/* Rising edge of clock */
699 		eecd |= E1000_EECD_SK;
700 		E1000_WRITE_REG(hw, EECD, eecd);
701 		E1000_WRITE_FLUSH(hw);
702 		udelay(hw->eeprom.delay_usec);
703 
704 		/* Falling edge of clock */
705 		eecd &= ~E1000_EECD_SK;
706 		E1000_WRITE_REG(hw, EECD, eecd);
707 		E1000_WRITE_FLUSH(hw);
708 		udelay(hw->eeprom.delay_usec);
709 	}
710 
711 	/* Stop requesting EEPROM access */
712 	if (hw->mac_type > e1000_82544) {
713 		eecd &= ~E1000_EECD_REQ;
714 		E1000_WRITE_REG(hw, EECD, eecd);
715 	}
716 
717 	e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
718 }
719 
720 /******************************************************************************
721  * Reads a 16 bit word from the EEPROM.
722  *
723  * hw - Struct containing variables accessed by shared code
724  *****************************************************************************/
725 static int32_t
726 e1000_spi_eeprom_ready(struct e1000_hw *hw)
727 {
728 	uint16_t retry_count = 0;
729 	uint8_t spi_stat_reg;
730 
731 	DEBUGFUNC();
732 
733 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
734 	 * EEPROM will signal that the command has been completed by clearing
735 	 * bit 0 of the internal status register.  If it's not cleared within
736 	 * 5 milliseconds, then error out.
737 	 */
738 	retry_count = 0;
739 	do {
740 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
741 			hw->eeprom.opcode_bits);
742 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
743 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
744 			break;
745 
746 		udelay(5);
747 		retry_count += 5;
748 
749 		e1000_standby_eeprom(hw);
750 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
751 
752 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
753 	 * only 0-5mSec on 5V devices)
754 	 */
755 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
756 		DEBUGOUT("SPI EEPROM Status error\n");
757 		return -E1000_ERR_EEPROM;
758 	}
759 
760 	return E1000_SUCCESS;
761 }
762 
763 /******************************************************************************
764  * Reads a 16 bit word from the EEPROM.
765  *
766  * hw - Struct containing variables accessed by shared code
767  * offset - offset of  word in the EEPROM to read
768  * data - word read from the EEPROM
769  *****************************************************************************/
770 static int32_t
771 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
772 		uint16_t words, uint16_t *data)
773 {
774 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
775 	uint32_t i = 0;
776 
777 	DEBUGFUNC();
778 
779 	/* If eeprom is not yet detected, do so now */
780 	if (eeprom->word_size == 0)
781 		e1000_init_eeprom_params(hw);
782 
783 	/* A check for invalid values:  offset too large, too many words,
784 	 * and not enough words.
785 	 */
786 	if ((offset >= eeprom->word_size) ||
787 		(words > eeprom->word_size - offset) ||
788 		(words == 0)) {
789 		DEBUGOUT("\"words\" parameter out of bounds."
790 			"Words = %d, size = %d\n", offset, eeprom->word_size);
791 		return -E1000_ERR_EEPROM;
792 	}
793 
794 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
795 	 * directly. In this case, we need to acquire the EEPROM so that
796 	 * FW or other port software does not interrupt.
797 	 */
798 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
799 		hw->eeprom.use_eerd == false) {
800 
801 		/* Prepare the EEPROM for bit-bang reading */
802 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
803 			return -E1000_ERR_EEPROM;
804 	}
805 
806 	/* Eerd register EEPROM access requires no eeprom aquire/release */
807 	if (eeprom->use_eerd == true)
808 		return e1000_read_eeprom_eerd(hw, offset, words, data);
809 
810 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
811 	 * acquired the EEPROM at this point, so any returns should relase it */
812 	if (eeprom->type == e1000_eeprom_spi) {
813 		uint16_t word_in;
814 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
815 
816 		if (e1000_spi_eeprom_ready(hw)) {
817 			e1000_release_eeprom(hw);
818 			return -E1000_ERR_EEPROM;
819 		}
820 
821 		e1000_standby_eeprom(hw);
822 
823 		/* Some SPI eeproms use the 8th address bit embedded in
824 		 * the opcode */
825 		if ((eeprom->address_bits == 8) && (offset >= 128))
826 			read_opcode |= EEPROM_A8_OPCODE_SPI;
827 
828 		/* Send the READ command (opcode + addr)  */
829 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
830 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
831 				eeprom->address_bits);
832 
833 		/* Read the data.  The address of the eeprom internally
834 		 * increments with each byte (spi) being read, saving on the
835 		 * overhead of eeprom setup and tear-down.  The address
836 		 * counter will roll over if reading beyond the size of
837 		 * the eeprom, thus allowing the entire memory to be read
838 		 * starting from any offset. */
839 		for (i = 0; i < words; i++) {
840 			word_in = e1000_shift_in_ee_bits(hw, 16);
841 			data[i] = (word_in >> 8) | (word_in << 8);
842 		}
843 	} else if (eeprom->type == e1000_eeprom_microwire) {
844 		for (i = 0; i < words; i++) {
845 			/* Send the READ command (opcode + addr)  */
846 			e1000_shift_out_ee_bits(hw,
847 				EEPROM_READ_OPCODE_MICROWIRE,
848 				eeprom->opcode_bits);
849 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
850 				eeprom->address_bits);
851 
852 			/* Read the data.  For microwire, each word requires
853 			 * the overhead of eeprom setup and tear-down. */
854 			data[i] = e1000_shift_in_ee_bits(hw, 16);
855 			e1000_standby_eeprom(hw);
856 		}
857 	}
858 
859 	/* End this read operation */
860 	e1000_release_eeprom(hw);
861 
862 	return E1000_SUCCESS;
863 }
864 
865 #ifndef CONFIG_DM_ETH
866 /******************************************************************************
867  *  e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
868  *  @hw: pointer to the HW structure
869  *  @offset: offset within the Shadow Ram to be written to
870  *  @words: number of words to write
871  *  @data: 16 bit word(s) to be written to the Shadow Ram
872  *
873  *  Writes data to Shadow Ram at offset using EEWR register.
874  *
875  *  If e1000_update_eeprom_checksum_i210 is not called after this function, the
876  *  Shadow Ram will most likely contain an invalid checksum.
877  *****************************************************************************/
878 static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
879 				       uint16_t words, uint16_t *data)
880 {
881 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
882 	uint32_t i, k, eewr = 0;
883 	uint32_t attempts = 100000;
884 	int32_t ret_val = 0;
885 
886 	/* A check for invalid values:  offset too large, too many words,
887 	 * too many words for the offset, and not enough words.
888 	 */
889 	if ((offset >= eeprom->word_size) ||
890 	    (words > (eeprom->word_size - offset)) || (words == 0)) {
891 		DEBUGOUT("nvm parameter(s) out of bounds\n");
892 		ret_val = -E1000_ERR_EEPROM;
893 		goto out;
894 	}
895 
896 	for (i = 0; i < words; i++) {
897 		eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
898 				| (data[i] << E1000_EEPROM_RW_REG_DATA) |
899 				E1000_EEPROM_RW_REG_START;
900 
901 		E1000_WRITE_REG(hw, I210_EEWR, eewr);
902 
903 		for (k = 0; k < attempts; k++) {
904 			if (E1000_EEPROM_RW_REG_DONE &
905 			    E1000_READ_REG(hw, I210_EEWR)) {
906 				ret_val = 0;
907 				break;
908 			}
909 			udelay(5);
910 		}
911 
912 		if (ret_val) {
913 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
914 			break;
915 		}
916 	}
917 
918 out:
919 	return ret_val;
920 }
921 
922 /******************************************************************************
923  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
924  *  @hw: pointer to the HW structure
925  *
926  *****************************************************************************/
927 static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
928 {
929 	int32_t ret_val = -E1000_ERR_EEPROM;
930 	uint32_t i, reg;
931 
932 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
933 		reg = E1000_READ_REG(hw, EECD);
934 		if (reg & E1000_EECD_FLUDONE_I210) {
935 			ret_val = 0;
936 			break;
937 		}
938 		udelay(5);
939 	}
940 
941 	return ret_val;
942 }
943 
944 /******************************************************************************
945  *  e1000_update_flash_i210 - Commit EEPROM to the flash
946  *  @hw: pointer to the HW structure
947  *
948  *****************************************************************************/
949 static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
950 {
951 	int32_t ret_val = 0;
952 	uint32_t flup;
953 
954 	ret_val = e1000_pool_flash_update_done_i210(hw);
955 	if (ret_val == -E1000_ERR_EEPROM) {
956 		DEBUGOUT("Flash update time out\n");
957 		goto out;
958 	}
959 
960 	flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
961 	E1000_WRITE_REG(hw, EECD, flup);
962 
963 	ret_val = e1000_pool_flash_update_done_i210(hw);
964 	if (ret_val)
965 		DEBUGOUT("Flash update time out\n");
966 	else
967 		DEBUGOUT("Flash update complete\n");
968 
969 out:
970 	return ret_val;
971 }
972 
973 /******************************************************************************
974  *  e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
975  *  @hw: pointer to the HW structure
976  *
977  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
978  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
979  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
980  *****************************************************************************/
981 static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
982 {
983 	int32_t ret_val = 0;
984 	uint16_t checksum = 0;
985 	uint16_t i, nvm_data;
986 
987 	/* Read the first word from the EEPROM. If this times out or fails, do
988 	 * not continue or we could be in for a very long wait while every
989 	 * EEPROM read fails
990 	 */
991 	ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
992 	if (ret_val) {
993 		DEBUGOUT("EEPROM read failed\n");
994 		goto out;
995 	}
996 
997 	if (!(e1000_get_hw_eeprom_semaphore(hw))) {
998 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
999 		 * because we do not want to take the synchronization
1000 		 * semaphores twice here.
1001 		 */
1002 
1003 		for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
1004 			ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
1005 			if (ret_val) {
1006 				e1000_put_hw_eeprom_semaphore(hw);
1007 				DEBUGOUT("EEPROM Read Error while updating checksum.\n");
1008 				goto out;
1009 			}
1010 			checksum += nvm_data;
1011 		}
1012 		checksum = (uint16_t)EEPROM_SUM - checksum;
1013 		ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
1014 						  &checksum);
1015 		if (ret_val) {
1016 			e1000_put_hw_eeprom_semaphore(hw);
1017 			DEBUGOUT("EEPROM Write Error while updating checksum.\n");
1018 			goto out;
1019 		}
1020 
1021 		e1000_put_hw_eeprom_semaphore(hw);
1022 
1023 		ret_val = e1000_update_flash_i210(hw);
1024 	} else {
1025 		ret_val = -E1000_ERR_SWFW_SYNC;
1026 	}
1027 
1028 out:
1029 	return ret_val;
1030 }
1031 #endif
1032 
1033 /******************************************************************************
1034  * Verifies that the EEPROM has a valid checksum
1035  *
1036  * hw - Struct containing variables accessed by shared code
1037  *
1038  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
1039  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
1040  * valid.
1041  *****************************************************************************/
1042 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
1043 {
1044 	uint16_t i, checksum, checksum_reg, *buf;
1045 
1046 	DEBUGFUNC();
1047 
1048 	/* Allocate a temporary buffer */
1049 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
1050 	if (!buf) {
1051 		E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
1052 		return -E1000_ERR_EEPROM;
1053 	}
1054 
1055 	/* Read the EEPROM */
1056 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
1057 		E1000_ERR(hw, "Unable to read EEPROM!\n");
1058 		return -E1000_ERR_EEPROM;
1059 	}
1060 
1061 	/* Compute the checksum */
1062 	checksum = 0;
1063 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1064 		checksum += buf[i];
1065 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
1066 	checksum_reg = buf[i];
1067 
1068 	/* Verify it! */
1069 	if (checksum == checksum_reg)
1070 		return 0;
1071 
1072 	/* Hrm, verification failed, print an error */
1073 	E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
1074 	E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
1075 		  checksum_reg, checksum);
1076 
1077 	return -E1000_ERR_EEPROM;
1078 }
1079 #endif /* CONFIG_E1000_NO_NVM */
1080 
1081 /*****************************************************************************
1082  * Set PHY to class A mode
1083  * Assumes the following operations will follow to enable the new class mode.
1084  *  1. Do a PHY soft reset
1085  *  2. Restart auto-negotiation or force link.
1086  *
1087  * hw - Struct containing variables accessed by shared code
1088  ****************************************************************************/
1089 static int32_t
1090 e1000_set_phy_mode(struct e1000_hw *hw)
1091 {
1092 #ifndef CONFIG_E1000_NO_NVM
1093 	int32_t ret_val;
1094 	uint16_t eeprom_data;
1095 
1096 	DEBUGFUNC();
1097 
1098 	if ((hw->mac_type == e1000_82545_rev_3) &&
1099 		(hw->media_type == e1000_media_type_copper)) {
1100 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1101 				1, &eeprom_data);
1102 		if (ret_val)
1103 			return ret_val;
1104 
1105 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
1106 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
1107 			ret_val = e1000_write_phy_reg(hw,
1108 					M88E1000_PHY_PAGE_SELECT, 0x000B);
1109 			if (ret_val)
1110 				return ret_val;
1111 			ret_val = e1000_write_phy_reg(hw,
1112 					M88E1000_PHY_GEN_CONTROL, 0x8104);
1113 			if (ret_val)
1114 				return ret_val;
1115 
1116 			hw->phy_reset_disable = false;
1117 		}
1118 	}
1119 #endif
1120 	return E1000_SUCCESS;
1121 }
1122 
1123 #ifndef CONFIG_E1000_NO_NVM
1124 /***************************************************************************
1125  *
1126  * Obtaining software semaphore bit (SMBI) before resetting PHY.
1127  *
1128  * hw: Struct containing variables accessed by shared code
1129  *
1130  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1131  *            E1000_SUCCESS at any other case.
1132  *
1133  ***************************************************************************/
1134 static int32_t
1135 e1000_get_software_semaphore(struct e1000_hw *hw)
1136 {
1137 	 int32_t timeout = hw->eeprom.word_size + 1;
1138 	 uint32_t swsm;
1139 
1140 	DEBUGFUNC();
1141 
1142 	if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
1143 		return E1000_SUCCESS;
1144 
1145 	while (timeout) {
1146 		swsm = E1000_READ_REG(hw, SWSM);
1147 		/* If SMBI bit cleared, it is now set and we hold
1148 		 * the semaphore */
1149 		if (!(swsm & E1000_SWSM_SMBI))
1150 			break;
1151 		mdelay(1);
1152 		timeout--;
1153 	}
1154 
1155 	if (!timeout) {
1156 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1157 		return -E1000_ERR_RESET;
1158 	}
1159 
1160 	return E1000_SUCCESS;
1161 }
1162 #endif
1163 
1164 /***************************************************************************
1165  * This function clears HW semaphore bits.
1166  *
1167  * hw: Struct containing variables accessed by shared code
1168  *
1169  * returns: - None.
1170  *
1171  ***************************************************************************/
1172 static void
1173 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1174 {
1175 #ifndef CONFIG_E1000_NO_NVM
1176 	 uint32_t swsm;
1177 
1178 	DEBUGFUNC();
1179 
1180 	if (!hw->eeprom_semaphore_present)
1181 		return;
1182 
1183 	swsm = E1000_READ_REG(hw, SWSM);
1184 	if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1185 		/* Release both semaphores. */
1186 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1187 	} else
1188 		swsm &= ~(E1000_SWSM_SWESMBI);
1189 	E1000_WRITE_REG(hw, SWSM, swsm);
1190 #endif
1191 }
1192 
1193 /***************************************************************************
1194  *
1195  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1196  * adapter or Eeprom access.
1197  *
1198  * hw: Struct containing variables accessed by shared code
1199  *
1200  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1201  *            E1000_SUCCESS at any other case.
1202  *
1203  ***************************************************************************/
1204 static int32_t
1205 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1206 {
1207 #ifndef CONFIG_E1000_NO_NVM
1208 	int32_t timeout;
1209 	uint32_t swsm;
1210 
1211 	DEBUGFUNC();
1212 
1213 	if (!hw->eeprom_semaphore_present)
1214 		return E1000_SUCCESS;
1215 
1216 	if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1217 		/* Get the SW semaphore. */
1218 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1219 			return -E1000_ERR_EEPROM;
1220 	}
1221 
1222 	/* Get the FW semaphore. */
1223 	timeout = hw->eeprom.word_size + 1;
1224 	while (timeout) {
1225 		swsm = E1000_READ_REG(hw, SWSM);
1226 		swsm |= E1000_SWSM_SWESMBI;
1227 		E1000_WRITE_REG(hw, SWSM, swsm);
1228 		/* if we managed to set the bit we got the semaphore. */
1229 		swsm = E1000_READ_REG(hw, SWSM);
1230 		if (swsm & E1000_SWSM_SWESMBI)
1231 			break;
1232 
1233 		udelay(50);
1234 		timeout--;
1235 	}
1236 
1237 	if (!timeout) {
1238 		/* Release semaphores */
1239 		e1000_put_hw_eeprom_semaphore(hw);
1240 		DEBUGOUT("Driver can't access the Eeprom - "
1241 				"SWESMBI bit is set.\n");
1242 		return -E1000_ERR_EEPROM;
1243 	}
1244 #endif
1245 	return E1000_SUCCESS;
1246 }
1247 
1248 /* Take ownership of the PHY */
1249 static int32_t
1250 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1251 {
1252 	uint32_t swfw_sync = 0;
1253 	uint32_t swmask = mask;
1254 	uint32_t fwmask = mask << 16;
1255 	int32_t timeout = 200;
1256 
1257 	DEBUGFUNC();
1258 	while (timeout) {
1259 		if (e1000_get_hw_eeprom_semaphore(hw))
1260 			return -E1000_ERR_SWFW_SYNC;
1261 
1262 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1263 		if (!(swfw_sync & (fwmask | swmask)))
1264 			break;
1265 
1266 		/* firmware currently using resource (fwmask) */
1267 		/* or other software thread currently using resource (swmask) */
1268 		e1000_put_hw_eeprom_semaphore(hw);
1269 		mdelay(5);
1270 		timeout--;
1271 	}
1272 
1273 	if (!timeout) {
1274 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1275 		return -E1000_ERR_SWFW_SYNC;
1276 	}
1277 
1278 	swfw_sync |= swmask;
1279 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1280 
1281 	e1000_put_hw_eeprom_semaphore(hw);
1282 	return E1000_SUCCESS;
1283 }
1284 
1285 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1286 {
1287 	uint32_t swfw_sync = 0;
1288 
1289 	DEBUGFUNC();
1290 	while (e1000_get_hw_eeprom_semaphore(hw))
1291 		; /* Empty */
1292 
1293 	swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1294 	swfw_sync &= ~mask;
1295 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1296 
1297 	e1000_put_hw_eeprom_semaphore(hw);
1298 }
1299 
1300 static bool e1000_is_second_port(struct e1000_hw *hw)
1301 {
1302 	switch (hw->mac_type) {
1303 	case e1000_80003es2lan:
1304 	case e1000_82546:
1305 	case e1000_82571:
1306 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1307 			return true;
1308 		/* Fallthrough */
1309 	default:
1310 		return false;
1311 	}
1312 }
1313 
1314 #ifndef CONFIG_E1000_NO_NVM
1315 /******************************************************************************
1316  * Reads the adapter's MAC address from the EEPROM
1317  *
1318  * hw - Struct containing variables accessed by shared code
1319  * enetaddr - buffering where the MAC address will be stored
1320  *****************************************************************************/
1321 static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
1322 					   unsigned char enetaddr[6])
1323 {
1324 	uint16_t offset;
1325 	uint16_t eeprom_data;
1326 	int i;
1327 
1328 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1329 		offset = i >> 1;
1330 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1331 			DEBUGOUT("EEPROM Read Error\n");
1332 			return -E1000_ERR_EEPROM;
1333 		}
1334 		enetaddr[i] = eeprom_data & 0xff;
1335 		enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /******************************************************************************
1342  * Reads the adapter's MAC address from the RAL/RAH registers
1343  *
1344  * hw - Struct containing variables accessed by shared code
1345  * enetaddr - buffering where the MAC address will be stored
1346  *****************************************************************************/
1347 static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
1348 					 unsigned char enetaddr[6])
1349 {
1350 	uint16_t offset, tmp;
1351 	uint32_t reg_data = 0;
1352 	int i;
1353 
1354 	if (hw->mac_type != e1000_igb)
1355 		return -E1000_ERR_MAC_TYPE;
1356 
1357 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1358 		offset = i >> 1;
1359 
1360 		if (offset == 0)
1361 			reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1362 		else if (offset == 1)
1363 			reg_data >>= 16;
1364 		else if (offset == 2)
1365 			reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1366 		tmp = reg_data & 0xffff;
1367 
1368 		enetaddr[i] = tmp & 0xff;
1369 		enetaddr[i + 1] = (tmp >> 8) & 0xff;
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 /******************************************************************************
1376  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1377  * second function of dual function devices
1378  *
1379  * hw - Struct containing variables accessed by shared code
1380  * enetaddr - buffering where the MAC address will be stored
1381  *****************************************************************************/
1382 static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1383 {
1384 	int ret_val;
1385 
1386 	if (hw->mac_type == e1000_igb) {
1387 		/* i210 preloads MAC address into RAL/RAH registers */
1388 		ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
1389 	} else {
1390 		ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
1391 	}
1392 	if (ret_val)
1393 		return ret_val;
1394 
1395 	/* Invert the last bit if this is the second device */
1396 	if (e1000_is_second_port(hw))
1397 		enetaddr[5] ^= 1;
1398 
1399 	return 0;
1400 }
1401 #endif
1402 
1403 /******************************************************************************
1404  * Initializes receive address filters.
1405  *
1406  * hw - Struct containing variables accessed by shared code
1407  *
1408  * Places the MAC address in receive address register 0 and clears the rest
1409  * of the receive addresss registers. Clears the multicast table. Assumes
1410  * the receiver is in reset when the routine is called.
1411  *****************************************************************************/
1412 static void
1413 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1414 {
1415 	uint32_t i;
1416 	uint32_t addr_low;
1417 	uint32_t addr_high;
1418 
1419 	DEBUGFUNC();
1420 
1421 	/* Setup the receive address. */
1422 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1423 	addr_low = (enetaddr[0] |
1424 		    (enetaddr[1] << 8) |
1425 		    (enetaddr[2] << 16) | (enetaddr[3] << 24));
1426 
1427 	addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1428 
1429 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1430 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1431 
1432 	/* Zero out the other 15 receive addresses. */
1433 	DEBUGOUT("Clearing RAR[1-15]\n");
1434 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1435 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1436 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1437 	}
1438 }
1439 
1440 /******************************************************************************
1441  * Clears the VLAN filer table
1442  *
1443  * hw - Struct containing variables accessed by shared code
1444  *****************************************************************************/
1445 static void
1446 e1000_clear_vfta(struct e1000_hw *hw)
1447 {
1448 	uint32_t offset;
1449 
1450 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1451 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1452 }
1453 
1454 /******************************************************************************
1455  * Set the mac type member in the hw struct.
1456  *
1457  * hw - Struct containing variables accessed by shared code
1458  *****************************************************************************/
1459 int32_t
1460 e1000_set_mac_type(struct e1000_hw *hw)
1461 {
1462 	DEBUGFUNC();
1463 
1464 	switch (hw->device_id) {
1465 	case E1000_DEV_ID_82542:
1466 		switch (hw->revision_id) {
1467 		case E1000_82542_2_0_REV_ID:
1468 			hw->mac_type = e1000_82542_rev2_0;
1469 			break;
1470 		case E1000_82542_2_1_REV_ID:
1471 			hw->mac_type = e1000_82542_rev2_1;
1472 			break;
1473 		default:
1474 			/* Invalid 82542 revision ID */
1475 			return -E1000_ERR_MAC_TYPE;
1476 		}
1477 		break;
1478 	case E1000_DEV_ID_82543GC_FIBER:
1479 	case E1000_DEV_ID_82543GC_COPPER:
1480 		hw->mac_type = e1000_82543;
1481 		break;
1482 	case E1000_DEV_ID_82544EI_COPPER:
1483 	case E1000_DEV_ID_82544EI_FIBER:
1484 	case E1000_DEV_ID_82544GC_COPPER:
1485 	case E1000_DEV_ID_82544GC_LOM:
1486 		hw->mac_type = e1000_82544;
1487 		break;
1488 	case E1000_DEV_ID_82540EM:
1489 	case E1000_DEV_ID_82540EM_LOM:
1490 	case E1000_DEV_ID_82540EP:
1491 	case E1000_DEV_ID_82540EP_LOM:
1492 	case E1000_DEV_ID_82540EP_LP:
1493 		hw->mac_type = e1000_82540;
1494 		break;
1495 	case E1000_DEV_ID_82545EM_COPPER:
1496 	case E1000_DEV_ID_82545EM_FIBER:
1497 		hw->mac_type = e1000_82545;
1498 		break;
1499 	case E1000_DEV_ID_82545GM_COPPER:
1500 	case E1000_DEV_ID_82545GM_FIBER:
1501 	case E1000_DEV_ID_82545GM_SERDES:
1502 		hw->mac_type = e1000_82545_rev_3;
1503 		break;
1504 	case E1000_DEV_ID_82546EB_COPPER:
1505 	case E1000_DEV_ID_82546EB_FIBER:
1506 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1507 		hw->mac_type = e1000_82546;
1508 		break;
1509 	case E1000_DEV_ID_82546GB_COPPER:
1510 	case E1000_DEV_ID_82546GB_FIBER:
1511 	case E1000_DEV_ID_82546GB_SERDES:
1512 	case E1000_DEV_ID_82546GB_PCIE:
1513 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1514 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1515 		hw->mac_type = e1000_82546_rev_3;
1516 		break;
1517 	case E1000_DEV_ID_82541EI:
1518 	case E1000_DEV_ID_82541EI_MOBILE:
1519 	case E1000_DEV_ID_82541ER_LOM:
1520 		hw->mac_type = e1000_82541;
1521 		break;
1522 	case E1000_DEV_ID_82541ER:
1523 	case E1000_DEV_ID_82541GI:
1524 	case E1000_DEV_ID_82541GI_LF:
1525 	case E1000_DEV_ID_82541GI_MOBILE:
1526 		hw->mac_type = e1000_82541_rev_2;
1527 		break;
1528 	case E1000_DEV_ID_82547EI:
1529 	case E1000_DEV_ID_82547EI_MOBILE:
1530 		hw->mac_type = e1000_82547;
1531 		break;
1532 	case E1000_DEV_ID_82547GI:
1533 		hw->mac_type = e1000_82547_rev_2;
1534 		break;
1535 	case E1000_DEV_ID_82571EB_COPPER:
1536 	case E1000_DEV_ID_82571EB_FIBER:
1537 	case E1000_DEV_ID_82571EB_SERDES:
1538 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1539 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1540 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1541 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1542 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1543 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1544 		hw->mac_type = e1000_82571;
1545 		break;
1546 	case E1000_DEV_ID_82572EI_COPPER:
1547 	case E1000_DEV_ID_82572EI_FIBER:
1548 	case E1000_DEV_ID_82572EI_SERDES:
1549 	case E1000_DEV_ID_82572EI:
1550 		hw->mac_type = e1000_82572;
1551 		break;
1552 	case E1000_DEV_ID_82573E:
1553 	case E1000_DEV_ID_82573E_IAMT:
1554 	case E1000_DEV_ID_82573L:
1555 		hw->mac_type = e1000_82573;
1556 		break;
1557 	case E1000_DEV_ID_82574L:
1558 		hw->mac_type = e1000_82574;
1559 		break;
1560 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1561 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1562 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1563 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1564 		hw->mac_type = e1000_80003es2lan;
1565 		break;
1566 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1567 	case E1000_DEV_ID_ICH8_IGP_AMT:
1568 	case E1000_DEV_ID_ICH8_IGP_C:
1569 	case E1000_DEV_ID_ICH8_IFE:
1570 	case E1000_DEV_ID_ICH8_IFE_GT:
1571 	case E1000_DEV_ID_ICH8_IFE_G:
1572 	case E1000_DEV_ID_ICH8_IGP_M:
1573 		hw->mac_type = e1000_ich8lan;
1574 		break;
1575 	case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1576 	case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1577 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
1578 	case PCI_DEVICE_ID_INTEL_I211_COPPER:
1579 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1580 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
1581 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1582 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1583 		hw->mac_type = e1000_igb;
1584 		break;
1585 	default:
1586 		/* Should never have loaded on this device */
1587 		return -E1000_ERR_MAC_TYPE;
1588 	}
1589 	return E1000_SUCCESS;
1590 }
1591 
1592 /******************************************************************************
1593  * Reset the transmit and receive units; mask and clear all interrupts.
1594  *
1595  * hw - Struct containing variables accessed by shared code
1596  *****************************************************************************/
1597 void
1598 e1000_reset_hw(struct e1000_hw *hw)
1599 {
1600 	uint32_t ctrl;
1601 	uint32_t ctrl_ext;
1602 	uint32_t manc;
1603 	uint32_t pba = 0;
1604 	uint32_t reg;
1605 
1606 	DEBUGFUNC();
1607 
1608 	/* get the correct pba value for both PCI and PCIe*/
1609 	if (hw->mac_type <  e1000_82571)
1610 		pba = E1000_DEFAULT_PCI_PBA;
1611 	else
1612 		pba = E1000_DEFAULT_PCIE_PBA;
1613 
1614 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1615 	if (hw->mac_type == e1000_82542_rev2_0) {
1616 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1617 #ifdef CONFIG_DM_ETH
1618 		dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1619 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1620 #else
1621 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1622 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1623 #endif
1624 	}
1625 
1626 	/* Clear interrupt mask to stop board from generating interrupts */
1627 	DEBUGOUT("Masking off all interrupts\n");
1628 	if (hw->mac_type == e1000_igb)
1629 		E1000_WRITE_REG(hw, I210_IAM, 0);
1630 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1631 
1632 	/* Disable the Transmit and Receive units.  Then delay to allow
1633 	 * any pending transactions to complete before we hit the MAC with
1634 	 * the global reset.
1635 	 */
1636 	E1000_WRITE_REG(hw, RCTL, 0);
1637 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1638 	E1000_WRITE_FLUSH(hw);
1639 
1640 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1641 	hw->tbi_compatibility_on = false;
1642 
1643 	/* Delay to allow any outstanding PCI transactions to complete before
1644 	 * resetting the device
1645 	 */
1646 	mdelay(10);
1647 
1648 	/* Issue a global reset to the MAC.  This will reset the chip's
1649 	 * transmit, receive, DMA, and link units.  It will not effect
1650 	 * the current PCI configuration.  The global reset bit is self-
1651 	 * clearing, and should clear within a microsecond.
1652 	 */
1653 	DEBUGOUT("Issuing a global reset to MAC\n");
1654 	ctrl = E1000_READ_REG(hw, CTRL);
1655 
1656 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1657 
1658 	/* Force a reload from the EEPROM if necessary */
1659 	if (hw->mac_type == e1000_igb) {
1660 		mdelay(20);
1661 		reg = E1000_READ_REG(hw, STATUS);
1662 		if (reg & E1000_STATUS_PF_RST_DONE)
1663 			DEBUGOUT("PF OK\n");
1664 		reg = E1000_READ_REG(hw, I210_EECD);
1665 		if (reg & E1000_EECD_AUTO_RD)
1666 			DEBUGOUT("EEC OK\n");
1667 	} else if (hw->mac_type < e1000_82540) {
1668 		/* Wait for reset to complete */
1669 		udelay(10);
1670 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1671 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1672 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1673 		E1000_WRITE_FLUSH(hw);
1674 		/* Wait for EEPROM reload */
1675 		mdelay(2);
1676 	} else {
1677 		/* Wait for EEPROM reload (it happens automatically) */
1678 		mdelay(4);
1679 		/* Dissable HW ARPs on ASF enabled adapters */
1680 		manc = E1000_READ_REG(hw, MANC);
1681 		manc &= ~(E1000_MANC_ARP_EN);
1682 		E1000_WRITE_REG(hw, MANC, manc);
1683 	}
1684 
1685 	/* Clear interrupt mask to stop board from generating interrupts */
1686 	DEBUGOUT("Masking off all interrupts\n");
1687 	if (hw->mac_type == e1000_igb)
1688 		E1000_WRITE_REG(hw, I210_IAM, 0);
1689 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1690 
1691 	/* Clear any pending interrupt events. */
1692 	E1000_READ_REG(hw, ICR);
1693 
1694 	/* If MWI was previously enabled, reenable it. */
1695 	if (hw->mac_type == e1000_82542_rev2_0) {
1696 #ifdef CONFIG_DM_ETH
1697 		dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1698 #else
1699 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1700 #endif
1701 	}
1702 	if (hw->mac_type != e1000_igb)
1703 		E1000_WRITE_REG(hw, PBA, pba);
1704 }
1705 
1706 /******************************************************************************
1707  *
1708  * Initialize a number of hardware-dependent bits
1709  *
1710  * hw: Struct containing variables accessed by shared code
1711  *
1712  * This function contains hardware limitation workarounds for PCI-E adapters
1713  *
1714  *****************************************************************************/
1715 static void
1716 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1717 {
1718 	if ((hw->mac_type >= e1000_82571) &&
1719 			(!hw->initialize_hw_bits_disable)) {
1720 		/* Settings common to all PCI-express silicon */
1721 		uint32_t reg_ctrl, reg_ctrl_ext;
1722 		uint32_t reg_tarc0, reg_tarc1;
1723 		uint32_t reg_tctl;
1724 		uint32_t reg_txdctl, reg_txdctl1;
1725 
1726 		/* link autonegotiation/sync workarounds */
1727 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1728 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1729 
1730 		/* Enable not-done TX descriptor counting */
1731 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1732 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1733 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1734 
1735 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1736 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1737 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1738 
1739 
1740 		switch (hw->mac_type) {
1741 		case e1000_igb:			/* IGB is cool */
1742 			return;
1743 		case e1000_82571:
1744 		case e1000_82572:
1745 			/* Clear PHY TX compatible mode bits */
1746 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1747 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1748 
1749 			/* link autonegotiation/sync workarounds */
1750 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1751 
1752 			/* TX ring control fixes */
1753 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1754 
1755 			/* Multiple read bit is reversed polarity */
1756 			reg_tctl = E1000_READ_REG(hw, TCTL);
1757 			if (reg_tctl & E1000_TCTL_MULR)
1758 				reg_tarc1 &= ~(1 << 28);
1759 			else
1760 				reg_tarc1 |= (1 << 28);
1761 
1762 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1763 			break;
1764 		case e1000_82573:
1765 		case e1000_82574:
1766 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1767 			reg_ctrl_ext &= ~(1 << 23);
1768 			reg_ctrl_ext |= (1 << 22);
1769 
1770 			/* TX byte count fix */
1771 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1772 			reg_ctrl &= ~(1 << 29);
1773 
1774 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1775 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1776 			break;
1777 		case e1000_80003es2lan:
1778 	/* improve small packet performace for fiber/serdes */
1779 			if ((hw->media_type == e1000_media_type_fiber)
1780 			|| (hw->media_type ==
1781 				e1000_media_type_internal_serdes)) {
1782 				reg_tarc0 &= ~(1 << 20);
1783 			}
1784 
1785 		/* Multiple read bit is reversed polarity */
1786 			reg_tctl = E1000_READ_REG(hw, TCTL);
1787 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1788 			if (reg_tctl & E1000_TCTL_MULR)
1789 				reg_tarc1 &= ~(1 << 28);
1790 			else
1791 				reg_tarc1 |= (1 << 28);
1792 
1793 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1794 			break;
1795 		case e1000_ich8lan:
1796 			/* Reduce concurrent DMA requests to 3 from 4 */
1797 			if ((hw->revision_id < 3) ||
1798 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1799 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1800 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1801 
1802 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1803 			reg_ctrl_ext |= (1 << 22);
1804 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1805 
1806 			/* workaround TX hang with TSO=on */
1807 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1808 
1809 			/* Multiple read bit is reversed polarity */
1810 			reg_tctl = E1000_READ_REG(hw, TCTL);
1811 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1812 			if (reg_tctl & E1000_TCTL_MULR)
1813 				reg_tarc1 &= ~(1 << 28);
1814 			else
1815 				reg_tarc1 |= (1 << 28);
1816 
1817 			/* workaround TX hang with TSO=on */
1818 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1819 
1820 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1821 			break;
1822 		default:
1823 			break;
1824 		}
1825 
1826 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1827 	}
1828 }
1829 
1830 /******************************************************************************
1831  * Performs basic configuration of the adapter.
1832  *
1833  * hw - Struct containing variables accessed by shared code
1834  *
1835  * Assumes that the controller has previously been reset and is in a
1836  * post-reset uninitialized state. Initializes the receive address registers,
1837  * multicast table, and VLAN filter table. Calls routines to setup link
1838  * configuration and flow control settings. Clears all on-chip counters. Leaves
1839  * the transmit and receive units disabled and uninitialized.
1840  *****************************************************************************/
1841 static int
1842 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1843 {
1844 	uint32_t ctrl;
1845 	uint32_t i;
1846 	int32_t ret_val;
1847 	uint16_t pcix_cmd_word;
1848 	uint16_t pcix_stat_hi_word;
1849 	uint16_t cmd_mmrbc;
1850 	uint16_t stat_mmrbc;
1851 	uint32_t mta_size;
1852 	uint32_t reg_data;
1853 	uint32_t ctrl_ext;
1854 	DEBUGFUNC();
1855 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1856 	if ((hw->mac_type == e1000_ich8lan) &&
1857 		((hw->revision_id < 3) ||
1858 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1859 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1860 			reg_data = E1000_READ_REG(hw, STATUS);
1861 			reg_data &= ~0x80000000;
1862 			E1000_WRITE_REG(hw, STATUS, reg_data);
1863 	}
1864 	/* Do not need initialize Identification LED */
1865 
1866 	/* Set the media type and TBI compatibility */
1867 	e1000_set_media_type(hw);
1868 
1869 	/* Must be called after e1000_set_media_type
1870 	 * because media_type is used */
1871 	e1000_initialize_hardware_bits(hw);
1872 
1873 	/* Disabling VLAN filtering. */
1874 	DEBUGOUT("Initializing the IEEE VLAN\n");
1875 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1876 	if (hw->mac_type != e1000_ich8lan) {
1877 		if (hw->mac_type < e1000_82545_rev_3)
1878 			E1000_WRITE_REG(hw, VET, 0);
1879 		e1000_clear_vfta(hw);
1880 	}
1881 
1882 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1883 	if (hw->mac_type == e1000_82542_rev2_0) {
1884 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1885 #ifdef CONFIG_DM_ETH
1886 		dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1887 				      hw->
1888 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1889 #else
1890 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1891 				      hw->
1892 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1893 #endif
1894 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1895 		E1000_WRITE_FLUSH(hw);
1896 		mdelay(5);
1897 	}
1898 
1899 	/* Setup the receive address. This involves initializing all of the Receive
1900 	 * Address Registers (RARs 0 - 15).
1901 	 */
1902 	e1000_init_rx_addrs(hw, enetaddr);
1903 
1904 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1905 	if (hw->mac_type == e1000_82542_rev2_0) {
1906 		E1000_WRITE_REG(hw, RCTL, 0);
1907 		E1000_WRITE_FLUSH(hw);
1908 		mdelay(1);
1909 #ifdef CONFIG_DM_ETH
1910 		dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1911 #else
1912 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1913 #endif
1914 	}
1915 
1916 	/* Zero out the Multicast HASH table */
1917 	DEBUGOUT("Zeroing the MTA\n");
1918 	mta_size = E1000_MC_TBL_SIZE;
1919 	if (hw->mac_type == e1000_ich8lan)
1920 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1921 	for (i = 0; i < mta_size; i++) {
1922 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1923 		/* use write flush to prevent Memory Write Block (MWB) from
1924 		 * occuring when accessing our register space */
1925 		E1000_WRITE_FLUSH(hw);
1926 	}
1927 
1928 	switch (hw->mac_type) {
1929 	case e1000_82545_rev_3:
1930 	case e1000_82546_rev_3:
1931 	case e1000_igb:
1932 		break;
1933 	default:
1934 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1935 	if (hw->bus_type == e1000_bus_type_pcix) {
1936 #ifdef CONFIG_DM_ETH
1937 		dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1938 				     &pcix_cmd_word);
1939 		dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1940 				     &pcix_stat_hi_word);
1941 #else
1942 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1943 				     &pcix_cmd_word);
1944 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1945 				     &pcix_stat_hi_word);
1946 #endif
1947 		cmd_mmrbc =
1948 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1949 		    PCIX_COMMAND_MMRBC_SHIFT;
1950 		stat_mmrbc =
1951 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1952 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1953 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1954 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1955 		if (cmd_mmrbc > stat_mmrbc) {
1956 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1957 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1958 #ifdef CONFIG_DM_ETH
1959 			dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1960 					      pcix_cmd_word);
1961 #else
1962 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1963 					      pcix_cmd_word);
1964 #endif
1965 		}
1966 	}
1967 		break;
1968 	}
1969 
1970 	/* More time needed for PHY to initialize */
1971 	if (hw->mac_type == e1000_ich8lan)
1972 		mdelay(15);
1973 	if (hw->mac_type == e1000_igb)
1974 		mdelay(15);
1975 
1976 	/* Call a subroutine to configure the link and setup flow control. */
1977 	ret_val = e1000_setup_link(hw);
1978 
1979 	/* Set the transmit descriptor write-back policy */
1980 	if (hw->mac_type > e1000_82544) {
1981 		ctrl = E1000_READ_REG(hw, TXDCTL);
1982 		ctrl =
1983 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1984 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1985 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1986 	}
1987 
1988 	/* Set the receive descriptor write back policy */
1989 	if (hw->mac_type >= e1000_82571) {
1990 		ctrl = E1000_READ_REG(hw, RXDCTL);
1991 		ctrl =
1992 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1993 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1994 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1995 	}
1996 
1997 	switch (hw->mac_type) {
1998 	default:
1999 		break;
2000 	case e1000_80003es2lan:
2001 		/* Enable retransmit on late collisions */
2002 		reg_data = E1000_READ_REG(hw, TCTL);
2003 		reg_data |= E1000_TCTL_RTLC;
2004 		E1000_WRITE_REG(hw, TCTL, reg_data);
2005 
2006 		/* Configure Gigabit Carry Extend Padding */
2007 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
2008 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
2009 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
2010 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
2011 
2012 		/* Configure Transmit Inter-Packet Gap */
2013 		reg_data = E1000_READ_REG(hw, TIPG);
2014 		reg_data &= ~E1000_TIPG_IPGT_MASK;
2015 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2016 		E1000_WRITE_REG(hw, TIPG, reg_data);
2017 
2018 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
2019 		reg_data &= ~0x00100000;
2020 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
2021 		/* Fall through */
2022 	case e1000_82571:
2023 	case e1000_82572:
2024 	case e1000_ich8lan:
2025 		ctrl = E1000_READ_REG(hw, TXDCTL1);
2026 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
2027 			| E1000_TXDCTL_FULL_TX_DESC_WB;
2028 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
2029 		break;
2030 	case e1000_82573:
2031 	case e1000_82574:
2032 		reg_data = E1000_READ_REG(hw, GCR);
2033 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
2034 		E1000_WRITE_REG(hw, GCR, reg_data);
2035 	case e1000_igb:
2036 		break;
2037 	}
2038 
2039 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
2040 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
2041 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2042 		/* Relaxed ordering must be disabled to avoid a parity
2043 		 * error crash in a PCI slot. */
2044 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2045 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2046 	}
2047 
2048 	return ret_val;
2049 }
2050 
2051 /******************************************************************************
2052  * Configures flow control and link settings.
2053  *
2054  * hw - Struct containing variables accessed by shared code
2055  *
2056  * Determines which flow control settings to use. Calls the apropriate media-
2057  * specific link configuration function. Configures the flow control settings.
2058  * Assuming the adapter has a valid link partner, a valid link should be
2059  * established. Assumes the hardware has previously been reset and the
2060  * transmitter and receiver are not enabled.
2061  *****************************************************************************/
2062 static int
2063 e1000_setup_link(struct e1000_hw *hw)
2064 {
2065 	int32_t ret_val;
2066 #ifndef CONFIG_E1000_NO_NVM
2067 	uint32_t ctrl_ext;
2068 	uint16_t eeprom_data;
2069 #endif
2070 
2071 	DEBUGFUNC();
2072 
2073 	/* In the case of the phy reset being blocked, we already have a link.
2074 	 * We do not have to set it up again. */
2075 	if (e1000_check_phy_reset_block(hw))
2076 		return E1000_SUCCESS;
2077 
2078 #ifndef CONFIG_E1000_NO_NVM
2079 	/* Read and store word 0x0F of the EEPROM. This word contains bits
2080 	 * that determine the hardware's default PAUSE (flow control) mode,
2081 	 * a bit that determines whether the HW defaults to enabling or
2082 	 * disabling auto-negotiation, and the direction of the
2083 	 * SW defined pins. If there is no SW over-ride of the flow
2084 	 * control setting, then the variable hw->fc will
2085 	 * be initialized based on a value in the EEPROM.
2086 	 */
2087 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
2088 				&eeprom_data) < 0) {
2089 		DEBUGOUT("EEPROM Read Error\n");
2090 		return -E1000_ERR_EEPROM;
2091 	}
2092 #endif
2093 	if (hw->fc == e1000_fc_default) {
2094 		switch (hw->mac_type) {
2095 		case e1000_ich8lan:
2096 		case e1000_82573:
2097 		case e1000_82574:
2098 		case e1000_igb:
2099 			hw->fc = e1000_fc_full;
2100 			break;
2101 		default:
2102 #ifndef CONFIG_E1000_NO_NVM
2103 			ret_val = e1000_read_eeprom(hw,
2104 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
2105 			if (ret_val) {
2106 				DEBUGOUT("EEPROM Read Error\n");
2107 				return -E1000_ERR_EEPROM;
2108 			}
2109 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
2110 				hw->fc = e1000_fc_none;
2111 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
2112 				    EEPROM_WORD0F_ASM_DIR)
2113 				hw->fc = e1000_fc_tx_pause;
2114 			else
2115 #endif
2116 				hw->fc = e1000_fc_full;
2117 			break;
2118 		}
2119 	}
2120 
2121 	/* We want to save off the original Flow Control configuration just
2122 	 * in case we get disconnected and then reconnected into a different
2123 	 * hub or switch with different Flow Control capabilities.
2124 	 */
2125 	if (hw->mac_type == e1000_82542_rev2_0)
2126 		hw->fc &= (~e1000_fc_tx_pause);
2127 
2128 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
2129 		hw->fc &= (~e1000_fc_rx_pause);
2130 
2131 	hw->original_fc = hw->fc;
2132 
2133 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
2134 
2135 #ifndef CONFIG_E1000_NO_NVM
2136 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
2137 	 * polarity value for the SW controlled pins, and setup the
2138 	 * Extended Device Control reg with that info.
2139 	 * This is needed because one of the SW controlled pins is used for
2140 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
2141 	 * or e1000_phy_setup() is called.
2142 	 */
2143 	if (hw->mac_type == e1000_82543) {
2144 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
2145 			    SWDPIO__EXT_SHIFT);
2146 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2147 	}
2148 #endif
2149 
2150 	/* Call the necessary subroutine to configure the link. */
2151 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
2152 	    e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
2153 	if (ret_val < 0) {
2154 		return ret_val;
2155 	}
2156 
2157 	/* Initialize the flow control address, type, and PAUSE timer
2158 	 * registers to their default values.  This is done even if flow
2159 	 * control is disabled, because it does not hurt anything to
2160 	 * initialize these registers.
2161 	 */
2162 	DEBUGOUT("Initializing the Flow Control address, type"
2163 			"and timer regs\n");
2164 
2165 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
2166 	if (hw->mac_type != e1000_ich8lan) {
2167 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
2168 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
2169 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
2170 	}
2171 
2172 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
2173 
2174 	/* Set the flow control receive threshold registers.  Normally,
2175 	 * these registers will be set to a default threshold that may be
2176 	 * adjusted later by the driver's runtime code.  However, if the
2177 	 * ability to transmit pause frames in not enabled, then these
2178 	 * registers will be set to 0.
2179 	 */
2180 	if (!(hw->fc & e1000_fc_tx_pause)) {
2181 		E1000_WRITE_REG(hw, FCRTL, 0);
2182 		E1000_WRITE_REG(hw, FCRTH, 0);
2183 	} else {
2184 		/* We need to set up the Receive Threshold high and low water marks
2185 		 * as well as (optionally) enabling the transmission of XON frames.
2186 		 */
2187 		if (hw->fc_send_xon) {
2188 			E1000_WRITE_REG(hw, FCRTL,
2189 					(hw->fc_low_water | E1000_FCRTL_XONE));
2190 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2191 		} else {
2192 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2193 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2194 		}
2195 	}
2196 	return ret_val;
2197 }
2198 
2199 /******************************************************************************
2200  * Sets up link for a fiber based adapter
2201  *
2202  * hw - Struct containing variables accessed by shared code
2203  *
2204  * Manipulates Physical Coding Sublayer functions in order to configure
2205  * link. Assumes the hardware has been previously reset and the transmitter
2206  * and receiver are not enabled.
2207  *****************************************************************************/
2208 static int
2209 e1000_setup_fiber_link(struct e1000_hw *hw)
2210 {
2211 	uint32_t ctrl;
2212 	uint32_t status;
2213 	uint32_t txcw = 0;
2214 	uint32_t i;
2215 	uint32_t signal;
2216 	int32_t ret_val;
2217 
2218 	DEBUGFUNC();
2219 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2220 	 * set when the optics detect a signal. On older adapters, it will be
2221 	 * cleared when there is a signal
2222 	 */
2223 	ctrl = E1000_READ_REG(hw, CTRL);
2224 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2225 		signal = E1000_CTRL_SWDPIN1;
2226 	else
2227 		signal = 0;
2228 
2229 	printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2230 	       ctrl);
2231 	/* Take the link out of reset */
2232 	ctrl &= ~(E1000_CTRL_LRST);
2233 
2234 	e1000_config_collision_dist(hw);
2235 
2236 	/* Check for a software override of the flow control settings, and setup
2237 	 * the device accordingly.  If auto-negotiation is enabled, then software
2238 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2239 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2240 	 * auto-negotiation is disabled, then software will have to manually
2241 	 * configure the two flow control enable bits in the CTRL register.
2242 	 *
2243 	 * The possible values of the "fc" parameter are:
2244 	 *	0:  Flow control is completely disabled
2245 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
2246 	 *	    not send pause frames).
2247 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
2248 	 *	    not support receiving pause frames).
2249 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
2250 	 */
2251 	switch (hw->fc) {
2252 	case e1000_fc_none:
2253 		/* Flow control is completely disabled by a software over-ride. */
2254 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2255 		break;
2256 	case e1000_fc_rx_pause:
2257 		/* RX Flow control is enabled and TX Flow control is disabled by a
2258 		 * software over-ride. Since there really isn't a way to advertise
2259 		 * that we are capable of RX Pause ONLY, we will advertise that we
2260 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
2261 		 *  disable the adapter's ability to send PAUSE frames.
2262 		 */
2263 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2264 		break;
2265 	case e1000_fc_tx_pause:
2266 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2267 		 * software over-ride.
2268 		 */
2269 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2270 		break;
2271 	case e1000_fc_full:
2272 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2273 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2274 		break;
2275 	default:
2276 		DEBUGOUT("Flow control param set incorrectly\n");
2277 		return -E1000_ERR_CONFIG;
2278 		break;
2279 	}
2280 
2281 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2282 	 * will be in reset, because we previously reset the chip). This will
2283 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2284 	 * link-up status bit will be set and the flow control enable bits (RFCE
2285 	 * and TFCE) will be set according to their negotiated value.
2286 	 */
2287 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2288 
2289 	E1000_WRITE_REG(hw, TXCW, txcw);
2290 	E1000_WRITE_REG(hw, CTRL, ctrl);
2291 	E1000_WRITE_FLUSH(hw);
2292 
2293 	hw->txcw = txcw;
2294 	mdelay(1);
2295 
2296 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2297 	 * indication in the Device Status Register.  Time-out if a link isn't
2298 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2299 	 * less than 500 milliseconds even if the other end is doing it in SW).
2300 	 */
2301 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2302 		DEBUGOUT("Looking for Link\n");
2303 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2304 			mdelay(10);
2305 			status = E1000_READ_REG(hw, STATUS);
2306 			if (status & E1000_STATUS_LU)
2307 				break;
2308 		}
2309 		if (i == (LINK_UP_TIMEOUT / 10)) {
2310 			/* AutoNeg failed to achieve a link, so we'll call
2311 			 * e1000_check_for_link. This routine will force the link up if we
2312 			 * detect a signal. This will allow us to communicate with
2313 			 * non-autonegotiating link partners.
2314 			 */
2315 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2316 			hw->autoneg_failed = 1;
2317 			ret_val = e1000_check_for_link(hw);
2318 			if (ret_val < 0) {
2319 				DEBUGOUT("Error while checking for link\n");
2320 				return ret_val;
2321 			}
2322 			hw->autoneg_failed = 0;
2323 		} else {
2324 			hw->autoneg_failed = 0;
2325 			DEBUGOUT("Valid Link Found\n");
2326 		}
2327 	} else {
2328 		DEBUGOUT("No Signal Detected\n");
2329 		return -E1000_ERR_NOLINK;
2330 	}
2331 	return 0;
2332 }
2333 
2334 /******************************************************************************
2335 * Make sure we have a valid PHY and change PHY mode before link setup.
2336 *
2337 * hw - Struct containing variables accessed by shared code
2338 ******************************************************************************/
2339 static int32_t
2340 e1000_copper_link_preconfig(struct e1000_hw *hw)
2341 {
2342 	uint32_t ctrl;
2343 	int32_t ret_val;
2344 	uint16_t phy_data;
2345 
2346 	DEBUGFUNC();
2347 
2348 	ctrl = E1000_READ_REG(hw, CTRL);
2349 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2350 	 * the PHY speed and duplex configuration is. In addition, we need to
2351 	 * perform a hardware reset on the PHY to take it out of reset.
2352 	 */
2353 	if (hw->mac_type > e1000_82543) {
2354 		ctrl |= E1000_CTRL_SLU;
2355 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2356 		E1000_WRITE_REG(hw, CTRL, ctrl);
2357 	} else {
2358 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2359 				| E1000_CTRL_SLU);
2360 		E1000_WRITE_REG(hw, CTRL, ctrl);
2361 		ret_val = e1000_phy_hw_reset(hw);
2362 		if (ret_val)
2363 			return ret_val;
2364 	}
2365 
2366 	/* Make sure we have a valid PHY */
2367 	ret_val = e1000_detect_gig_phy(hw);
2368 	if (ret_val) {
2369 		DEBUGOUT("Error, did not detect valid phy.\n");
2370 		return ret_val;
2371 	}
2372 	DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2373 
2374 	/* Set PHY to class A mode (if necessary) */
2375 	ret_val = e1000_set_phy_mode(hw);
2376 	if (ret_val)
2377 		return ret_val;
2378 	if ((hw->mac_type == e1000_82545_rev_3) ||
2379 		(hw->mac_type == e1000_82546_rev_3)) {
2380 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2381 				&phy_data);
2382 		phy_data |= 0x00000008;
2383 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2384 				phy_data);
2385 	}
2386 
2387 	if (hw->mac_type <= e1000_82543 ||
2388 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2389 		hw->mac_type == e1000_82541_rev_2
2390 		|| hw->mac_type == e1000_82547_rev_2)
2391 			hw->phy_reset_disable = false;
2392 
2393 	return E1000_SUCCESS;
2394 }
2395 
2396 /*****************************************************************************
2397  *
2398  * This function sets the lplu state according to the active flag.  When
2399  * activating lplu this function also disables smart speed and vise versa.
2400  * lplu will not be activated unless the device autonegotiation advertisment
2401  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2402  * hw: Struct containing variables accessed by shared code
2403  * active - true to enable lplu false to disable lplu.
2404  *
2405  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2406  *            E1000_SUCCESS at any other case.
2407  *
2408  ****************************************************************************/
2409 
2410 static int32_t
2411 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2412 {
2413 	uint32_t phy_ctrl = 0;
2414 	int32_t ret_val;
2415 	uint16_t phy_data;
2416 	DEBUGFUNC();
2417 
2418 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2419 	    && hw->phy_type != e1000_phy_igp_3)
2420 		return E1000_SUCCESS;
2421 
2422 	/* During driver activity LPLU should not be used or it will attain link
2423 	 * from the lowest speeds starting from 10Mbps. The capability is used
2424 	 * for Dx transitions and states */
2425 	if (hw->mac_type == e1000_82541_rev_2
2426 			|| hw->mac_type == e1000_82547_rev_2) {
2427 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2428 				&phy_data);
2429 		if (ret_val)
2430 			return ret_val;
2431 	} else if (hw->mac_type == e1000_ich8lan) {
2432 		/* MAC writes into PHY register based on the state transition
2433 		 * and start auto-negotiation. SW driver can overwrite the
2434 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2435 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2436 	} else {
2437 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2438 				&phy_data);
2439 		if (ret_val)
2440 			return ret_val;
2441 	}
2442 
2443 	if (!active) {
2444 		if (hw->mac_type == e1000_82541_rev_2 ||
2445 			hw->mac_type == e1000_82547_rev_2) {
2446 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2447 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2448 					phy_data);
2449 			if (ret_val)
2450 				return ret_val;
2451 		} else {
2452 			if (hw->mac_type == e1000_ich8lan) {
2453 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2454 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2455 			} else {
2456 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2457 				ret_val = e1000_write_phy_reg(hw,
2458 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2459 				if (ret_val)
2460 					return ret_val;
2461 			}
2462 		}
2463 
2464 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2465 	 * Dx states where the power conservation is most important.  During
2466 	 * driver activity we should enable SmartSpeed, so performance is
2467 	 * maintained. */
2468 		if (hw->smart_speed == e1000_smart_speed_on) {
2469 			ret_val = e1000_read_phy_reg(hw,
2470 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2471 			if (ret_val)
2472 				return ret_val;
2473 
2474 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2475 			ret_val = e1000_write_phy_reg(hw,
2476 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2477 			if (ret_val)
2478 				return ret_val;
2479 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2480 			ret_val = e1000_read_phy_reg(hw,
2481 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2482 			if (ret_val)
2483 				return ret_val;
2484 
2485 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2486 			ret_val = e1000_write_phy_reg(hw,
2487 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2488 			if (ret_val)
2489 				return ret_val;
2490 		}
2491 
2492 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2493 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2494 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2495 
2496 		if (hw->mac_type == e1000_82541_rev_2 ||
2497 		    hw->mac_type == e1000_82547_rev_2) {
2498 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2499 			ret_val = e1000_write_phy_reg(hw,
2500 					IGP01E1000_GMII_FIFO, phy_data);
2501 			if (ret_val)
2502 				return ret_val;
2503 		} else {
2504 			if (hw->mac_type == e1000_ich8lan) {
2505 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2506 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2507 			} else {
2508 				phy_data |= IGP02E1000_PM_D3_LPLU;
2509 				ret_val = e1000_write_phy_reg(hw,
2510 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2511 				if (ret_val)
2512 					return ret_val;
2513 			}
2514 		}
2515 
2516 		/* When LPLU is enabled we should disable SmartSpeed */
2517 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2518 				&phy_data);
2519 		if (ret_val)
2520 			return ret_val;
2521 
2522 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2523 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2524 				phy_data);
2525 		if (ret_val)
2526 			return ret_val;
2527 	}
2528 	return E1000_SUCCESS;
2529 }
2530 
2531 /*****************************************************************************
2532  *
2533  * This function sets the lplu d0 state according to the active flag.  When
2534  * activating lplu this function also disables smart speed and vise versa.
2535  * lplu will not be activated unless the device autonegotiation advertisment
2536  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2537  * hw: Struct containing variables accessed by shared code
2538  * active - true to enable lplu false to disable lplu.
2539  *
2540  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2541  *            E1000_SUCCESS at any other case.
2542  *
2543  ****************************************************************************/
2544 
2545 static int32_t
2546 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2547 {
2548 	uint32_t phy_ctrl = 0;
2549 	int32_t ret_val;
2550 	uint16_t phy_data;
2551 	DEBUGFUNC();
2552 
2553 	if (hw->mac_type <= e1000_82547_rev_2)
2554 		return E1000_SUCCESS;
2555 
2556 	if (hw->mac_type == e1000_ich8lan) {
2557 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2558 	} else if (hw->mac_type == e1000_igb) {
2559 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2560 	} else {
2561 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2562 				&phy_data);
2563 		if (ret_val)
2564 			return ret_val;
2565 	}
2566 
2567 	if (!active) {
2568 		if (hw->mac_type == e1000_ich8lan) {
2569 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2570 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2571 		} else if (hw->mac_type == e1000_igb) {
2572 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2573 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2574 		} else {
2575 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2576 			ret_val = e1000_write_phy_reg(hw,
2577 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2578 			if (ret_val)
2579 				return ret_val;
2580 		}
2581 
2582 		if (hw->mac_type == e1000_igb)
2583 			return E1000_SUCCESS;
2584 
2585 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2586 	 * Dx states where the power conservation is most important.  During
2587 	 * driver activity we should enable SmartSpeed, so performance is
2588 	 * maintained. */
2589 		if (hw->smart_speed == e1000_smart_speed_on) {
2590 			ret_val = e1000_read_phy_reg(hw,
2591 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2592 			if (ret_val)
2593 				return ret_val;
2594 
2595 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2596 			ret_val = e1000_write_phy_reg(hw,
2597 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2598 			if (ret_val)
2599 				return ret_val;
2600 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2601 			ret_val = e1000_read_phy_reg(hw,
2602 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2603 			if (ret_val)
2604 				return ret_val;
2605 
2606 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2607 			ret_val = e1000_write_phy_reg(hw,
2608 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2609 			if (ret_val)
2610 				return ret_val;
2611 		}
2612 
2613 
2614 	} else {
2615 
2616 		if (hw->mac_type == e1000_ich8lan) {
2617 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2618 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2619 		} else if (hw->mac_type == e1000_igb) {
2620 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2621 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2622 		} else {
2623 			phy_data |= IGP02E1000_PM_D0_LPLU;
2624 			ret_val = e1000_write_phy_reg(hw,
2625 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2626 			if (ret_val)
2627 				return ret_val;
2628 		}
2629 
2630 		if (hw->mac_type == e1000_igb)
2631 			return E1000_SUCCESS;
2632 
2633 		/* When LPLU is enabled we should disable SmartSpeed */
2634 		ret_val = e1000_read_phy_reg(hw,
2635 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2636 		if (ret_val)
2637 			return ret_val;
2638 
2639 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2640 		ret_val = e1000_write_phy_reg(hw,
2641 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2642 		if (ret_val)
2643 			return ret_val;
2644 
2645 	}
2646 	return E1000_SUCCESS;
2647 }
2648 
2649 /********************************************************************
2650 * Copper link setup for e1000_phy_igp series.
2651 *
2652 * hw - Struct containing variables accessed by shared code
2653 *********************************************************************/
2654 static int32_t
2655 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2656 {
2657 	uint32_t led_ctrl;
2658 	int32_t ret_val;
2659 	uint16_t phy_data;
2660 
2661 	DEBUGFUNC();
2662 
2663 	if (hw->phy_reset_disable)
2664 		return E1000_SUCCESS;
2665 
2666 	ret_val = e1000_phy_reset(hw);
2667 	if (ret_val) {
2668 		DEBUGOUT("Error Resetting the PHY\n");
2669 		return ret_val;
2670 	}
2671 
2672 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2673 	mdelay(15);
2674 	if (hw->mac_type != e1000_ich8lan) {
2675 		/* Configure activity LED after PHY reset */
2676 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2677 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2678 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2679 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2680 	}
2681 
2682 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2683 	if (hw->phy_type == e1000_phy_igp) {
2684 		/* disable lplu d3 during driver init */
2685 		ret_val = e1000_set_d3_lplu_state(hw, false);
2686 		if (ret_val) {
2687 			DEBUGOUT("Error Disabling LPLU D3\n");
2688 			return ret_val;
2689 		}
2690 	}
2691 
2692 	/* disable lplu d0 during driver init */
2693 	ret_val = e1000_set_d0_lplu_state(hw, false);
2694 	if (ret_val) {
2695 		DEBUGOUT("Error Disabling LPLU D0\n");
2696 		return ret_val;
2697 	}
2698 	/* Configure mdi-mdix settings */
2699 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2700 	if (ret_val)
2701 		return ret_val;
2702 
2703 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2704 		hw->dsp_config_state = e1000_dsp_config_disabled;
2705 		/* Force MDI for earlier revs of the IGP PHY */
2706 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2707 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2708 		hw->mdix = 1;
2709 
2710 	} else {
2711 		hw->dsp_config_state = e1000_dsp_config_enabled;
2712 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2713 
2714 		switch (hw->mdix) {
2715 		case 1:
2716 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2717 			break;
2718 		case 2:
2719 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2720 			break;
2721 		case 0:
2722 		default:
2723 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2724 			break;
2725 		}
2726 	}
2727 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2728 	if (ret_val)
2729 		return ret_val;
2730 
2731 	/* set auto-master slave resolution settings */
2732 	if (hw->autoneg) {
2733 		e1000_ms_type phy_ms_setting = hw->master_slave;
2734 
2735 		if (hw->ffe_config_state == e1000_ffe_config_active)
2736 			hw->ffe_config_state = e1000_ffe_config_enabled;
2737 
2738 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2739 			hw->dsp_config_state = e1000_dsp_config_enabled;
2740 
2741 		/* when autonegotiation advertisment is only 1000Mbps then we
2742 		  * should disable SmartSpeed and enable Auto MasterSlave
2743 		  * resolution as hardware default. */
2744 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2745 			/* Disable SmartSpeed */
2746 			ret_val = e1000_read_phy_reg(hw,
2747 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2748 			if (ret_val)
2749 				return ret_val;
2750 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2751 			ret_val = e1000_write_phy_reg(hw,
2752 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2753 			if (ret_val)
2754 				return ret_val;
2755 			/* Set auto Master/Slave resolution process */
2756 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2757 					&phy_data);
2758 			if (ret_val)
2759 				return ret_val;
2760 			phy_data &= ~CR_1000T_MS_ENABLE;
2761 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2762 					phy_data);
2763 			if (ret_val)
2764 				return ret_val;
2765 		}
2766 
2767 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2768 		if (ret_val)
2769 			return ret_val;
2770 
2771 		/* load defaults for future use */
2772 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2773 				((phy_data & CR_1000T_MS_VALUE) ?
2774 				e1000_ms_force_master :
2775 				e1000_ms_force_slave) :
2776 				e1000_ms_auto;
2777 
2778 		switch (phy_ms_setting) {
2779 		case e1000_ms_force_master:
2780 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2781 			break;
2782 		case e1000_ms_force_slave:
2783 			phy_data |= CR_1000T_MS_ENABLE;
2784 			phy_data &= ~(CR_1000T_MS_VALUE);
2785 			break;
2786 		case e1000_ms_auto:
2787 			phy_data &= ~CR_1000T_MS_ENABLE;
2788 		default:
2789 			break;
2790 		}
2791 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2792 		if (ret_val)
2793 			return ret_val;
2794 	}
2795 
2796 	return E1000_SUCCESS;
2797 }
2798 
2799 /*****************************************************************************
2800  * This function checks the mode of the firmware.
2801  *
2802  * returns  - true when the mode is IAMT or false.
2803  ****************************************************************************/
2804 bool
2805 e1000_check_mng_mode(struct e1000_hw *hw)
2806 {
2807 	uint32_t fwsm;
2808 	DEBUGFUNC();
2809 
2810 	fwsm = E1000_READ_REG(hw, FWSM);
2811 
2812 	if (hw->mac_type == e1000_ich8lan) {
2813 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2814 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2815 			return true;
2816 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2817 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2818 			return true;
2819 
2820 	return false;
2821 }
2822 
2823 static int32_t
2824 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2825 {
2826 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2827 	uint32_t reg_val;
2828 	DEBUGFUNC();
2829 
2830 	if (e1000_is_second_port(hw))
2831 		swfw = E1000_SWFW_PHY1_SM;
2832 
2833 	if (e1000_swfw_sync_acquire(hw, swfw))
2834 		return -E1000_ERR_SWFW_SYNC;
2835 
2836 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2837 			& E1000_KUMCTRLSTA_OFFSET) | data;
2838 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2839 	udelay(2);
2840 
2841 	return E1000_SUCCESS;
2842 }
2843 
2844 static int32_t
2845 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2846 {
2847 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2848 	uint32_t reg_val;
2849 	DEBUGFUNC();
2850 
2851 	if (e1000_is_second_port(hw))
2852 		swfw = E1000_SWFW_PHY1_SM;
2853 
2854 	if (e1000_swfw_sync_acquire(hw, swfw)) {
2855 		debug("%s[%i]\n", __func__, __LINE__);
2856 		return -E1000_ERR_SWFW_SYNC;
2857 	}
2858 
2859 	/* Write register address */
2860 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2861 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2862 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2863 	udelay(2);
2864 
2865 	/* Read the data returned */
2866 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2867 	*data = (uint16_t)reg_val;
2868 
2869 	return E1000_SUCCESS;
2870 }
2871 
2872 /********************************************************************
2873 * Copper link setup for e1000_phy_gg82563 series.
2874 *
2875 * hw - Struct containing variables accessed by shared code
2876 *********************************************************************/
2877 static int32_t
2878 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2879 {
2880 	int32_t ret_val;
2881 	uint16_t phy_data;
2882 	uint32_t reg_data;
2883 
2884 	DEBUGFUNC();
2885 
2886 	if (!hw->phy_reset_disable) {
2887 		/* Enable CRS on TX for half-duplex operation. */
2888 		ret_val = e1000_read_phy_reg(hw,
2889 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2890 		if (ret_val)
2891 			return ret_val;
2892 
2893 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2894 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2895 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2896 
2897 		ret_val = e1000_write_phy_reg(hw,
2898 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2899 		if (ret_val)
2900 			return ret_val;
2901 
2902 		/* Options:
2903 		 *   MDI/MDI-X = 0 (default)
2904 		 *   0 - Auto for all speeds
2905 		 *   1 - MDI mode
2906 		 *   2 - MDI-X mode
2907 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2908 		 */
2909 		ret_val = e1000_read_phy_reg(hw,
2910 				GG82563_PHY_SPEC_CTRL, &phy_data);
2911 		if (ret_val)
2912 			return ret_val;
2913 
2914 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2915 
2916 		switch (hw->mdix) {
2917 		case 1:
2918 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2919 			break;
2920 		case 2:
2921 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2922 			break;
2923 		case 0:
2924 		default:
2925 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2926 			break;
2927 		}
2928 
2929 		/* Options:
2930 		 *   disable_polarity_correction = 0 (default)
2931 		 *       Automatic Correction for Reversed Cable Polarity
2932 		 *   0 - Disabled
2933 		 *   1 - Enabled
2934 		 */
2935 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2936 		ret_val = e1000_write_phy_reg(hw,
2937 				GG82563_PHY_SPEC_CTRL, phy_data);
2938 
2939 		if (ret_val)
2940 			return ret_val;
2941 
2942 		/* SW Reset the PHY so all changes take effect */
2943 		ret_val = e1000_phy_reset(hw);
2944 		if (ret_val) {
2945 			DEBUGOUT("Error Resetting the PHY\n");
2946 			return ret_val;
2947 		}
2948 	} /* phy_reset_disable */
2949 
2950 	if (hw->mac_type == e1000_80003es2lan) {
2951 		/* Bypass RX and TX FIFO's */
2952 		ret_val = e1000_write_kmrn_reg(hw,
2953 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2954 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2955 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2956 		if (ret_val)
2957 			return ret_val;
2958 
2959 		ret_val = e1000_read_phy_reg(hw,
2960 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2961 		if (ret_val)
2962 			return ret_val;
2963 
2964 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2965 		ret_val = e1000_write_phy_reg(hw,
2966 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2967 
2968 		if (ret_val)
2969 			return ret_val;
2970 
2971 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2972 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2973 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2974 
2975 		ret_val = e1000_read_phy_reg(hw,
2976 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2977 		if (ret_val)
2978 			return ret_val;
2979 
2980 	/* Do not init these registers when the HW is in IAMT mode, since the
2981 	 * firmware will have already initialized them.  We only initialize
2982 	 * them if the HW is not in IAMT mode.
2983 	 */
2984 		if (e1000_check_mng_mode(hw) == false) {
2985 			/* Enable Electrical Idle on the PHY */
2986 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2987 			ret_val = e1000_write_phy_reg(hw,
2988 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2989 			if (ret_val)
2990 				return ret_val;
2991 
2992 			ret_val = e1000_read_phy_reg(hw,
2993 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2994 			if (ret_val)
2995 				return ret_val;
2996 
2997 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2998 			ret_val = e1000_write_phy_reg(hw,
2999 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
3000 
3001 			if (ret_val)
3002 				return ret_val;
3003 		}
3004 
3005 		/* Workaround: Disable padding in Kumeran interface in the MAC
3006 		 * and in the PHY to avoid CRC errors.
3007 		 */
3008 		ret_val = e1000_read_phy_reg(hw,
3009 				GG82563_PHY_INBAND_CTRL, &phy_data);
3010 		if (ret_val)
3011 			return ret_val;
3012 		phy_data |= GG82563_ICR_DIS_PADDING;
3013 		ret_val = e1000_write_phy_reg(hw,
3014 				GG82563_PHY_INBAND_CTRL, phy_data);
3015 		if (ret_val)
3016 			return ret_val;
3017 	}
3018 	return E1000_SUCCESS;
3019 }
3020 
3021 /********************************************************************
3022 * Copper link setup for e1000_phy_m88 series.
3023 *
3024 * hw - Struct containing variables accessed by shared code
3025 *********************************************************************/
3026 static int32_t
3027 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
3028 {
3029 	int32_t ret_val;
3030 	uint16_t phy_data;
3031 
3032 	DEBUGFUNC();
3033 
3034 	if (hw->phy_reset_disable)
3035 		return E1000_SUCCESS;
3036 
3037 	/* Enable CRS on TX. This must be set for half-duplex operation. */
3038 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3039 	if (ret_val)
3040 		return ret_val;
3041 
3042 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
3043 
3044 	/* Options:
3045 	 *   MDI/MDI-X = 0 (default)
3046 	 *   0 - Auto for all speeds
3047 	 *   1 - MDI mode
3048 	 *   2 - MDI-X mode
3049 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
3050 	 */
3051 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
3052 
3053 	switch (hw->mdix) {
3054 	case 1:
3055 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
3056 		break;
3057 	case 2:
3058 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
3059 		break;
3060 	case 3:
3061 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
3062 		break;
3063 	case 0:
3064 	default:
3065 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
3066 		break;
3067 	}
3068 
3069 	/* Options:
3070 	 *   disable_polarity_correction = 0 (default)
3071 	 *       Automatic Correction for Reversed Cable Polarity
3072 	 *   0 - Disabled
3073 	 *   1 - Enabled
3074 	 */
3075 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
3076 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
3077 	if (ret_val)
3078 		return ret_val;
3079 
3080 	if (hw->phy_revision < M88E1011_I_REV_4) {
3081 		/* Force TX_CLK in the Extended PHY Specific Control Register
3082 		 * to 25MHz clock.
3083 		 */
3084 		ret_val = e1000_read_phy_reg(hw,
3085 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
3086 		if (ret_val)
3087 			return ret_val;
3088 
3089 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
3090 
3091 		if ((hw->phy_revision == E1000_REVISION_2) &&
3092 			(hw->phy_id == M88E1111_I_PHY_ID)) {
3093 			/* Vidalia Phy, set the downshift counter to 5x */
3094 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
3095 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
3096 			ret_val = e1000_write_phy_reg(hw,
3097 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3098 			if (ret_val)
3099 				return ret_val;
3100 		} else {
3101 			/* Configure Master and Slave downshift values */
3102 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
3103 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
3104 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
3105 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
3106 			ret_val = e1000_write_phy_reg(hw,
3107 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3108 			if (ret_val)
3109 				return ret_val;
3110 		}
3111 	}
3112 
3113 	/* SW Reset the PHY so all changes take effect */
3114 	ret_val = e1000_phy_reset(hw);
3115 	if (ret_val) {
3116 		DEBUGOUT("Error Resetting the PHY\n");
3117 		return ret_val;
3118 	}
3119 
3120 	return E1000_SUCCESS;
3121 }
3122 
3123 /********************************************************************
3124 * Setup auto-negotiation and flow control advertisements,
3125 * and then perform auto-negotiation.
3126 *
3127 * hw - Struct containing variables accessed by shared code
3128 *********************************************************************/
3129 static int32_t
3130 e1000_copper_link_autoneg(struct e1000_hw *hw)
3131 {
3132 	int32_t ret_val;
3133 	uint16_t phy_data;
3134 
3135 	DEBUGFUNC();
3136 
3137 	/* Perform some bounds checking on the hw->autoneg_advertised
3138 	 * parameter.  If this variable is zero, then set it to the default.
3139 	 */
3140 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
3141 
3142 	/* If autoneg_advertised is zero, we assume it was not defaulted
3143 	 * by the calling code so we set to advertise full capability.
3144 	 */
3145 	if (hw->autoneg_advertised == 0)
3146 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
3147 
3148 	/* IFE phy only supports 10/100 */
3149 	if (hw->phy_type == e1000_phy_ife)
3150 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
3151 
3152 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
3153 	ret_val = e1000_phy_setup_autoneg(hw);
3154 	if (ret_val) {
3155 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
3156 		return ret_val;
3157 	}
3158 	DEBUGOUT("Restarting Auto-Neg\n");
3159 
3160 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
3161 	 * the Auto Neg Restart bit in the PHY control register.
3162 	 */
3163 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3164 	if (ret_val)
3165 		return ret_val;
3166 
3167 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3168 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3169 	if (ret_val)
3170 		return ret_val;
3171 
3172 	/* Does the user want to wait for Auto-Neg to complete here, or
3173 	 * check at a later time (for example, callback routine).
3174 	 */
3175 	/* If we do not wait for autonegtation to complete I
3176 	 * do not see a valid link status.
3177 	 * wait_autoneg_complete = 1 .
3178 	 */
3179 	if (hw->wait_autoneg_complete) {
3180 		ret_val = e1000_wait_autoneg(hw);
3181 		if (ret_val) {
3182 			DEBUGOUT("Error while waiting for autoneg"
3183 					"to complete\n");
3184 			return ret_val;
3185 		}
3186 	}
3187 
3188 	hw->get_link_status = true;
3189 
3190 	return E1000_SUCCESS;
3191 }
3192 
3193 /******************************************************************************
3194 * Config the MAC and the PHY after link is up.
3195 *   1) Set up the MAC to the current PHY speed/duplex
3196 *      if we are on 82543.  If we
3197 *      are on newer silicon, we only need to configure
3198 *      collision distance in the Transmit Control Register.
3199 *   2) Set up flow control on the MAC to that established with
3200 *      the link partner.
3201 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3202 *
3203 * hw - Struct containing variables accessed by shared code
3204 ******************************************************************************/
3205 static int32_t
3206 e1000_copper_link_postconfig(struct e1000_hw *hw)
3207 {
3208 	int32_t ret_val;
3209 	DEBUGFUNC();
3210 
3211 	if (hw->mac_type >= e1000_82544) {
3212 		e1000_config_collision_dist(hw);
3213 	} else {
3214 		ret_val = e1000_config_mac_to_phy(hw);
3215 		if (ret_val) {
3216 			DEBUGOUT("Error configuring MAC to PHY settings\n");
3217 			return ret_val;
3218 		}
3219 	}
3220 	ret_val = e1000_config_fc_after_link_up(hw);
3221 	if (ret_val) {
3222 		DEBUGOUT("Error Configuring Flow Control\n");
3223 		return ret_val;
3224 	}
3225 	return E1000_SUCCESS;
3226 }
3227 
3228 /******************************************************************************
3229 * Detects which PHY is present and setup the speed and duplex
3230 *
3231 * hw - Struct containing variables accessed by shared code
3232 ******************************************************************************/
3233 static int
3234 e1000_setup_copper_link(struct e1000_hw *hw)
3235 {
3236 	int32_t ret_val;
3237 	uint16_t i;
3238 	uint16_t phy_data;
3239 	uint16_t reg_data;
3240 
3241 	DEBUGFUNC();
3242 
3243 	switch (hw->mac_type) {
3244 	case e1000_80003es2lan:
3245 	case e1000_ich8lan:
3246 		/* Set the mac to wait the maximum time between each
3247 		 * iteration and increase the max iterations when
3248 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3249 		ret_val = e1000_write_kmrn_reg(hw,
3250 				GG82563_REG(0x34, 4), 0xFFFF);
3251 		if (ret_val)
3252 			return ret_val;
3253 		ret_val = e1000_read_kmrn_reg(hw,
3254 				GG82563_REG(0x34, 9), &reg_data);
3255 		if (ret_val)
3256 			return ret_val;
3257 		reg_data |= 0x3F;
3258 		ret_val = e1000_write_kmrn_reg(hw,
3259 				GG82563_REG(0x34, 9), reg_data);
3260 		if (ret_val)
3261 			return ret_val;
3262 	default:
3263 		break;
3264 	}
3265 
3266 	/* Check if it is a valid PHY and set PHY mode if necessary. */
3267 	ret_val = e1000_copper_link_preconfig(hw);
3268 	if (ret_val)
3269 		return ret_val;
3270 	switch (hw->mac_type) {
3271 	case e1000_80003es2lan:
3272 		/* Kumeran registers are written-only */
3273 		reg_data =
3274 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3275 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3276 		ret_val = e1000_write_kmrn_reg(hw,
3277 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3278 		if (ret_val)
3279 			return ret_val;
3280 		break;
3281 	default:
3282 		break;
3283 	}
3284 
3285 	if (hw->phy_type == e1000_phy_igp ||
3286 		hw->phy_type == e1000_phy_igp_3 ||
3287 		hw->phy_type == e1000_phy_igp_2) {
3288 		ret_val = e1000_copper_link_igp_setup(hw);
3289 		if (ret_val)
3290 			return ret_val;
3291 	} else if (hw->phy_type == e1000_phy_m88 ||
3292 		hw->phy_type == e1000_phy_igb) {
3293 		ret_val = e1000_copper_link_mgp_setup(hw);
3294 		if (ret_val)
3295 			return ret_val;
3296 	} else if (hw->phy_type == e1000_phy_gg82563) {
3297 		ret_val = e1000_copper_link_ggp_setup(hw);
3298 		if (ret_val)
3299 			return ret_val;
3300 	}
3301 
3302 	/* always auto */
3303 	/* Setup autoneg and flow control advertisement
3304 	  * and perform autonegotiation */
3305 	ret_val = e1000_copper_link_autoneg(hw);
3306 	if (ret_val)
3307 		return ret_val;
3308 
3309 	/* Check link status. Wait up to 100 microseconds for link to become
3310 	 * valid.
3311 	 */
3312 	for (i = 0; i < 10; i++) {
3313 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3314 		if (ret_val)
3315 			return ret_val;
3316 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3317 		if (ret_val)
3318 			return ret_val;
3319 
3320 		if (phy_data & MII_SR_LINK_STATUS) {
3321 			/* Config the MAC and PHY after link is up */
3322 			ret_val = e1000_copper_link_postconfig(hw);
3323 			if (ret_val)
3324 				return ret_val;
3325 
3326 			DEBUGOUT("Valid link established!!!\n");
3327 			return E1000_SUCCESS;
3328 		}
3329 		udelay(10);
3330 	}
3331 
3332 	DEBUGOUT("Unable to establish link!!!\n");
3333 	return E1000_SUCCESS;
3334 }
3335 
3336 /******************************************************************************
3337 * Configures PHY autoneg and flow control advertisement settings
3338 *
3339 * hw - Struct containing variables accessed by shared code
3340 ******************************************************************************/
3341 int32_t
3342 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3343 {
3344 	int32_t ret_val;
3345 	uint16_t mii_autoneg_adv_reg;
3346 	uint16_t mii_1000t_ctrl_reg;
3347 
3348 	DEBUGFUNC();
3349 
3350 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3351 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3352 	if (ret_val)
3353 		return ret_val;
3354 
3355 	if (hw->phy_type != e1000_phy_ife) {
3356 		/* Read the MII 1000Base-T Control Register (Address 9). */
3357 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3358 				&mii_1000t_ctrl_reg);
3359 		if (ret_val)
3360 			return ret_val;
3361 	} else
3362 		mii_1000t_ctrl_reg = 0;
3363 
3364 	/* Need to parse both autoneg_advertised and fc and set up
3365 	 * the appropriate PHY registers.  First we will parse for
3366 	 * autoneg_advertised software override.  Since we can advertise
3367 	 * a plethora of combinations, we need to check each bit
3368 	 * individually.
3369 	 */
3370 
3371 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3372 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3373 	 * the  1000Base-T Control Register (Address 9).
3374 	 */
3375 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3376 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3377 
3378 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3379 
3380 	/* Do we want to advertise 10 Mb Half Duplex? */
3381 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3382 		DEBUGOUT("Advertise 10mb Half duplex\n");
3383 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3384 	}
3385 
3386 	/* Do we want to advertise 10 Mb Full Duplex? */
3387 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3388 		DEBUGOUT("Advertise 10mb Full duplex\n");
3389 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3390 	}
3391 
3392 	/* Do we want to advertise 100 Mb Half Duplex? */
3393 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3394 		DEBUGOUT("Advertise 100mb Half duplex\n");
3395 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3396 	}
3397 
3398 	/* Do we want to advertise 100 Mb Full Duplex? */
3399 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3400 		DEBUGOUT("Advertise 100mb Full duplex\n");
3401 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3402 	}
3403 
3404 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3405 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3406 		DEBUGOUT
3407 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3408 	}
3409 
3410 	/* Do we want to advertise 1000 Mb Full Duplex? */
3411 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3412 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3413 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3414 	}
3415 
3416 	/* Check for a software override of the flow control settings, and
3417 	 * setup the PHY advertisement registers accordingly.  If
3418 	 * auto-negotiation is enabled, then software will have to set the
3419 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3420 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3421 	 *
3422 	 * The possible values of the "fc" parameter are:
3423 	 *	0:  Flow control is completely disabled
3424 	 *	1:  Rx flow control is enabled (we can receive pause frames
3425 	 *	    but not send pause frames).
3426 	 *	2:  Tx flow control is enabled (we can send pause frames
3427 	 *	    but we do not support receiving pause frames).
3428 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3429 	 *  other:  No software override.  The flow control configuration
3430 	 *	    in the EEPROM is used.
3431 	 */
3432 	switch (hw->fc) {
3433 	case e1000_fc_none:	/* 0 */
3434 		/* Flow control (RX & TX) is completely disabled by a
3435 		 * software over-ride.
3436 		 */
3437 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3438 		break;
3439 	case e1000_fc_rx_pause:	/* 1 */
3440 		/* RX Flow control is enabled, and TX Flow control is
3441 		 * disabled, by a software over-ride.
3442 		 */
3443 		/* Since there really isn't a way to advertise that we are
3444 		 * capable of RX Pause ONLY, we will advertise that we
3445 		 * support both symmetric and asymmetric RX PAUSE.  Later
3446 		 * (in e1000_config_fc_after_link_up) we will disable the
3447 		 *hw's ability to send PAUSE frames.
3448 		 */
3449 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3450 		break;
3451 	case e1000_fc_tx_pause:	/* 2 */
3452 		/* TX Flow control is enabled, and RX Flow control is
3453 		 * disabled, by a software over-ride.
3454 		 */
3455 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3456 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3457 		break;
3458 	case e1000_fc_full:	/* 3 */
3459 		/* Flow control (both RX and TX) is enabled by a software
3460 		 * over-ride.
3461 		 */
3462 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3463 		break;
3464 	default:
3465 		DEBUGOUT("Flow control param set incorrectly\n");
3466 		return -E1000_ERR_CONFIG;
3467 	}
3468 
3469 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3470 	if (ret_val)
3471 		return ret_val;
3472 
3473 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3474 
3475 	if (hw->phy_type != e1000_phy_ife) {
3476 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3477 				mii_1000t_ctrl_reg);
3478 		if (ret_val)
3479 			return ret_val;
3480 	}
3481 
3482 	return E1000_SUCCESS;
3483 }
3484 
3485 /******************************************************************************
3486 * Sets the collision distance in the Transmit Control register
3487 *
3488 * hw - Struct containing variables accessed by shared code
3489 *
3490 * Link should have been established previously. Reads the speed and duplex
3491 * information from the Device Status register.
3492 ******************************************************************************/
3493 static void
3494 e1000_config_collision_dist(struct e1000_hw *hw)
3495 {
3496 	uint32_t tctl, coll_dist;
3497 
3498 	DEBUGFUNC();
3499 
3500 	if (hw->mac_type < e1000_82543)
3501 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3502 	else
3503 		coll_dist = E1000_COLLISION_DISTANCE;
3504 
3505 	tctl = E1000_READ_REG(hw, TCTL);
3506 
3507 	tctl &= ~E1000_TCTL_COLD;
3508 	tctl |= coll_dist << E1000_COLD_SHIFT;
3509 
3510 	E1000_WRITE_REG(hw, TCTL, tctl);
3511 	E1000_WRITE_FLUSH(hw);
3512 }
3513 
3514 /******************************************************************************
3515 * Sets MAC speed and duplex settings to reflect the those in the PHY
3516 *
3517 * hw - Struct containing variables accessed by shared code
3518 * mii_reg - data to write to the MII control register
3519 *
3520 * The contents of the PHY register containing the needed information need to
3521 * be passed in.
3522 ******************************************************************************/
3523 static int
3524 e1000_config_mac_to_phy(struct e1000_hw *hw)
3525 {
3526 	uint32_t ctrl;
3527 	uint16_t phy_data;
3528 
3529 	DEBUGFUNC();
3530 
3531 	/* Read the Device Control Register and set the bits to Force Speed
3532 	 * and Duplex.
3533 	 */
3534 	ctrl = E1000_READ_REG(hw, CTRL);
3535 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3536 	ctrl &= ~(E1000_CTRL_ILOS);
3537 	ctrl |= (E1000_CTRL_SPD_SEL);
3538 
3539 	/* Set up duplex in the Device Control and Transmit Control
3540 	 * registers depending on negotiated values.
3541 	 */
3542 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3543 		DEBUGOUT("PHY Read Error\n");
3544 		return -E1000_ERR_PHY;
3545 	}
3546 	if (phy_data & M88E1000_PSSR_DPLX)
3547 		ctrl |= E1000_CTRL_FD;
3548 	else
3549 		ctrl &= ~E1000_CTRL_FD;
3550 
3551 	e1000_config_collision_dist(hw);
3552 
3553 	/* Set up speed in the Device Control register depending on
3554 	 * negotiated values.
3555 	 */
3556 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3557 		ctrl |= E1000_CTRL_SPD_1000;
3558 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3559 		ctrl |= E1000_CTRL_SPD_100;
3560 	/* Write the configured values back to the Device Control Reg. */
3561 	E1000_WRITE_REG(hw, CTRL, ctrl);
3562 	return 0;
3563 }
3564 
3565 /******************************************************************************
3566  * Forces the MAC's flow control settings.
3567  *
3568  * hw - Struct containing variables accessed by shared code
3569  *
3570  * Sets the TFCE and RFCE bits in the device control register to reflect
3571  * the adapter settings. TFCE and RFCE need to be explicitly set by
3572  * software when a Copper PHY is used because autonegotiation is managed
3573  * by the PHY rather than the MAC. Software must also configure these
3574  * bits when link is forced on a fiber connection.
3575  *****************************************************************************/
3576 static int
3577 e1000_force_mac_fc(struct e1000_hw *hw)
3578 {
3579 	uint32_t ctrl;
3580 
3581 	DEBUGFUNC();
3582 
3583 	/* Get the current configuration of the Device Control Register */
3584 	ctrl = E1000_READ_REG(hw, CTRL);
3585 
3586 	/* Because we didn't get link via the internal auto-negotiation
3587 	 * mechanism (we either forced link or we got link via PHY
3588 	 * auto-neg), we have to manually enable/disable transmit an
3589 	 * receive flow control.
3590 	 *
3591 	 * The "Case" statement below enables/disable flow control
3592 	 * according to the "hw->fc" parameter.
3593 	 *
3594 	 * The possible values of the "fc" parameter are:
3595 	 *	0:  Flow control is completely disabled
3596 	 *	1:  Rx flow control is enabled (we can receive pause
3597 	 *	    frames but not send pause frames).
3598 	 *	2:  Tx flow control is enabled (we can send pause frames
3599 	 *	    frames but we do not receive pause frames).
3600 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3601 	 *  other:  No other values should be possible at this point.
3602 	 */
3603 
3604 	switch (hw->fc) {
3605 	case e1000_fc_none:
3606 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3607 		break;
3608 	case e1000_fc_rx_pause:
3609 		ctrl &= (~E1000_CTRL_TFCE);
3610 		ctrl |= E1000_CTRL_RFCE;
3611 		break;
3612 	case e1000_fc_tx_pause:
3613 		ctrl &= (~E1000_CTRL_RFCE);
3614 		ctrl |= E1000_CTRL_TFCE;
3615 		break;
3616 	case e1000_fc_full:
3617 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3618 		break;
3619 	default:
3620 		DEBUGOUT("Flow control param set incorrectly\n");
3621 		return -E1000_ERR_CONFIG;
3622 	}
3623 
3624 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3625 	if (hw->mac_type == e1000_82542_rev2_0)
3626 		ctrl &= (~E1000_CTRL_TFCE);
3627 
3628 	E1000_WRITE_REG(hw, CTRL, ctrl);
3629 	return 0;
3630 }
3631 
3632 /******************************************************************************
3633  * Configures flow control settings after link is established
3634  *
3635  * hw - Struct containing variables accessed by shared code
3636  *
3637  * Should be called immediately after a valid link has been established.
3638  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3639  * and autonegotiation is enabled, the MAC flow control settings will be set
3640  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3641  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3642  *****************************************************************************/
3643 static int32_t
3644 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3645 {
3646 	int32_t ret_val;
3647 	uint16_t mii_status_reg;
3648 	uint16_t mii_nway_adv_reg;
3649 	uint16_t mii_nway_lp_ability_reg;
3650 	uint16_t speed;
3651 	uint16_t duplex;
3652 
3653 	DEBUGFUNC();
3654 
3655 	/* Check for the case where we have fiber media and auto-neg failed
3656 	 * so we had to force link.  In this case, we need to force the
3657 	 * configuration of the MAC to match the "fc" parameter.
3658 	 */
3659 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3660 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3661 		&& (hw->autoneg_failed))
3662 		|| ((hw->media_type == e1000_media_type_copper)
3663 		&& (!hw->autoneg))) {
3664 		ret_val = e1000_force_mac_fc(hw);
3665 		if (ret_val < 0) {
3666 			DEBUGOUT("Error forcing flow control settings\n");
3667 			return ret_val;
3668 		}
3669 	}
3670 
3671 	/* Check for the case where we have copper media and auto-neg is
3672 	 * enabled.  In this case, we need to check and see if Auto-Neg
3673 	 * has completed, and if so, how the PHY and link partner has
3674 	 * flow control configured.
3675 	 */
3676 	if (hw->media_type == e1000_media_type_copper) {
3677 		/* Read the MII Status Register and check to see if AutoNeg
3678 		 * has completed.  We read this twice because this reg has
3679 		 * some "sticky" (latched) bits.
3680 		 */
3681 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3682 			DEBUGOUT("PHY Read Error\n");
3683 			return -E1000_ERR_PHY;
3684 		}
3685 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3686 			DEBUGOUT("PHY Read Error\n");
3687 			return -E1000_ERR_PHY;
3688 		}
3689 
3690 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3691 			/* The AutoNeg process has completed, so we now need to
3692 			 * read both the Auto Negotiation Advertisement Register
3693 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3694 			 * Register (Address 5) to determine how flow control was
3695 			 * negotiated.
3696 			 */
3697 			if (e1000_read_phy_reg
3698 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3699 				DEBUGOUT("PHY Read Error\n");
3700 				return -E1000_ERR_PHY;
3701 			}
3702 			if (e1000_read_phy_reg
3703 			    (hw, PHY_LP_ABILITY,
3704 			     &mii_nway_lp_ability_reg) < 0) {
3705 				DEBUGOUT("PHY Read Error\n");
3706 				return -E1000_ERR_PHY;
3707 			}
3708 
3709 			/* Two bits in the Auto Negotiation Advertisement Register
3710 			 * (Address 4) and two bits in the Auto Negotiation Base
3711 			 * Page Ability Register (Address 5) determine flow control
3712 			 * for both the PHY and the link partner.  The following
3713 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3714 			 * 1999, describes these PAUSE resolution bits and how flow
3715 			 * control is determined based upon these settings.
3716 			 * NOTE:  DC = Don't Care
3717 			 *
3718 			 *   LOCAL DEVICE  |   LINK PARTNER
3719 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3720 			 *-------|---------|-------|---------|--------------------
3721 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3722 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3723 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3724 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3725 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3726 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3727 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3728 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3729 			 *
3730 			 */
3731 			/* Are both PAUSE bits set to 1?  If so, this implies
3732 			 * Symmetric Flow Control is enabled at both ends.  The
3733 			 * ASM_DIR bits are irrelevant per the spec.
3734 			 *
3735 			 * For Symmetric Flow Control:
3736 			 *
3737 			 *   LOCAL DEVICE  |   LINK PARTNER
3738 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3739 			 *-------|---------|-------|---------|--------------------
3740 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3741 			 *
3742 			 */
3743 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3744 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3745 				/* Now we need to check if the user selected RX ONLY
3746 				 * of pause frames.  In this case, we had to advertise
3747 				 * FULL flow control because we could not advertise RX
3748 				 * ONLY. Hence, we must now check to see if we need to
3749 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3750 				 */
3751 				if (hw->original_fc == e1000_fc_full) {
3752 					hw->fc = e1000_fc_full;
3753 					DEBUGOUT("Flow Control = FULL.\r\n");
3754 				} else {
3755 					hw->fc = e1000_fc_rx_pause;
3756 					DEBUGOUT
3757 					    ("Flow Control = RX PAUSE frames only.\r\n");
3758 				}
3759 			}
3760 			/* For receiving PAUSE frames ONLY.
3761 			 *
3762 			 *   LOCAL DEVICE  |   LINK PARTNER
3763 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3764 			 *-------|---------|-------|---------|--------------------
3765 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3766 			 *
3767 			 */
3768 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3769 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3770 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3771 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3772 			{
3773 				hw->fc = e1000_fc_tx_pause;
3774 				DEBUGOUT
3775 				    ("Flow Control = TX PAUSE frames only.\r\n");
3776 			}
3777 			/* For transmitting PAUSE frames ONLY.
3778 			 *
3779 			 *   LOCAL DEVICE  |   LINK PARTNER
3780 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3781 			 *-------|---------|-------|---------|--------------------
3782 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3783 			 *
3784 			 */
3785 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3786 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3787 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3788 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3789 			{
3790 				hw->fc = e1000_fc_rx_pause;
3791 				DEBUGOUT
3792 				    ("Flow Control = RX PAUSE frames only.\r\n");
3793 			}
3794 			/* Per the IEEE spec, at this point flow control should be
3795 			 * disabled.  However, we want to consider that we could
3796 			 * be connected to a legacy switch that doesn't advertise
3797 			 * desired flow control, but can be forced on the link
3798 			 * partner.  So if we advertised no flow control, that is
3799 			 * what we will resolve to.  If we advertised some kind of
3800 			 * receive capability (Rx Pause Only or Full Flow Control)
3801 			 * and the link partner advertised none, we will configure
3802 			 * ourselves to enable Rx Flow Control only.  We can do
3803 			 * this safely for two reasons:  If the link partner really
3804 			 * didn't want flow control enabled, and we enable Rx, no
3805 			 * harm done since we won't be receiving any PAUSE frames
3806 			 * anyway.  If the intent on the link partner was to have
3807 			 * flow control enabled, then by us enabling RX only, we
3808 			 * can at least receive pause frames and process them.
3809 			 * This is a good idea because in most cases, since we are
3810 			 * predominantly a server NIC, more times than not we will
3811 			 * be asked to delay transmission of packets than asking
3812 			 * our link partner to pause transmission of frames.
3813 			 */
3814 			else if (hw->original_fc == e1000_fc_none ||
3815 				 hw->original_fc == e1000_fc_tx_pause) {
3816 				hw->fc = e1000_fc_none;
3817 				DEBUGOUT("Flow Control = NONE.\r\n");
3818 			} else {
3819 				hw->fc = e1000_fc_rx_pause;
3820 				DEBUGOUT
3821 				    ("Flow Control = RX PAUSE frames only.\r\n");
3822 			}
3823 
3824 			/* Now we need to do one last check...	If we auto-
3825 			 * negotiated to HALF DUPLEX, flow control should not be
3826 			 * enabled per IEEE 802.3 spec.
3827 			 */
3828 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3829 
3830 			if (duplex == HALF_DUPLEX)
3831 				hw->fc = e1000_fc_none;
3832 
3833 			/* Now we call a subroutine to actually force the MAC
3834 			 * controller to use the correct flow control settings.
3835 			 */
3836 			ret_val = e1000_force_mac_fc(hw);
3837 			if (ret_val < 0) {
3838 				DEBUGOUT
3839 				    ("Error forcing flow control settings\n");
3840 				return ret_val;
3841 			}
3842 		} else {
3843 			DEBUGOUT
3844 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3845 		}
3846 	}
3847 	return E1000_SUCCESS;
3848 }
3849 
3850 /******************************************************************************
3851  * Checks to see if the link status of the hardware has changed.
3852  *
3853  * hw - Struct containing variables accessed by shared code
3854  *
3855  * Called by any function that needs to check the link status of the adapter.
3856  *****************************************************************************/
3857 static int
3858 e1000_check_for_link(struct e1000_hw *hw)
3859 {
3860 	uint32_t rxcw;
3861 	uint32_t ctrl;
3862 	uint32_t status;
3863 	uint32_t rctl;
3864 	uint32_t signal;
3865 	int32_t ret_val;
3866 	uint16_t phy_data;
3867 	uint16_t lp_capability;
3868 
3869 	DEBUGFUNC();
3870 
3871 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3872 	 * set when the optics detect a signal. On older adapters, it will be
3873 	 * cleared when there is a signal
3874 	 */
3875 	ctrl = E1000_READ_REG(hw, CTRL);
3876 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3877 		signal = E1000_CTRL_SWDPIN1;
3878 	else
3879 		signal = 0;
3880 
3881 	status = E1000_READ_REG(hw, STATUS);
3882 	rxcw = E1000_READ_REG(hw, RXCW);
3883 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3884 
3885 	/* If we have a copper PHY then we only want to go out to the PHY
3886 	 * registers to see if Auto-Neg has completed and/or if our link
3887 	 * status has changed.	The get_link_status flag will be set if we
3888 	 * receive a Link Status Change interrupt or we have Rx Sequence
3889 	 * Errors.
3890 	 */
3891 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3892 		/* First we want to see if the MII Status Register reports
3893 		 * link.  If so, then we want to get the current speed/duplex
3894 		 * of the PHY.
3895 		 * Read the register twice since the link bit is sticky.
3896 		 */
3897 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3898 			DEBUGOUT("PHY Read Error\n");
3899 			return -E1000_ERR_PHY;
3900 		}
3901 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3902 			DEBUGOUT("PHY Read Error\n");
3903 			return -E1000_ERR_PHY;
3904 		}
3905 
3906 		if (phy_data & MII_SR_LINK_STATUS) {
3907 			hw->get_link_status = false;
3908 		} else {
3909 			/* No link detected */
3910 			return -E1000_ERR_NOLINK;
3911 		}
3912 
3913 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3914 		 * have Si on board that is 82544 or newer, Auto
3915 		 * Speed Detection takes care of MAC speed/duplex
3916 		 * configuration.  So we only need to configure Collision
3917 		 * Distance in the MAC.  Otherwise, we need to force
3918 		 * speed/duplex on the MAC to the current PHY speed/duplex
3919 		 * settings.
3920 		 */
3921 		if (hw->mac_type >= e1000_82544)
3922 			e1000_config_collision_dist(hw);
3923 		else {
3924 			ret_val = e1000_config_mac_to_phy(hw);
3925 			if (ret_val < 0) {
3926 				DEBUGOUT
3927 				    ("Error configuring MAC to PHY settings\n");
3928 				return ret_val;
3929 			}
3930 		}
3931 
3932 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3933 		 * need to restore the desired flow control settings because we may
3934 		 * have had to re-autoneg with a different link partner.
3935 		 */
3936 		ret_val = e1000_config_fc_after_link_up(hw);
3937 		if (ret_val < 0) {
3938 			DEBUGOUT("Error configuring flow control\n");
3939 			return ret_val;
3940 		}
3941 
3942 		/* At this point we know that we are on copper and we have
3943 		 * auto-negotiated link.  These are conditions for checking the link
3944 		 * parter capability register.	We use the link partner capability to
3945 		 * determine if TBI Compatibility needs to be turned on or off.  If
3946 		 * the link partner advertises any speed in addition to Gigabit, then
3947 		 * we assume that they are GMII-based, and TBI compatibility is not
3948 		 * needed. If no other speeds are advertised, we assume the link
3949 		 * partner is TBI-based, and we turn on TBI Compatibility.
3950 		 */
3951 		if (hw->tbi_compatibility_en) {
3952 			if (e1000_read_phy_reg
3953 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3954 				DEBUGOUT("PHY Read Error\n");
3955 				return -E1000_ERR_PHY;
3956 			}
3957 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3958 					     NWAY_LPAR_10T_FD_CAPS |
3959 					     NWAY_LPAR_100TX_HD_CAPS |
3960 					     NWAY_LPAR_100TX_FD_CAPS |
3961 					     NWAY_LPAR_100T4_CAPS)) {
3962 				/* If our link partner advertises anything in addition to
3963 				 * gigabit, we do not need to enable TBI compatibility.
3964 				 */
3965 				if (hw->tbi_compatibility_on) {
3966 					/* If we previously were in the mode, turn it off. */
3967 					rctl = E1000_READ_REG(hw, RCTL);
3968 					rctl &= ~E1000_RCTL_SBP;
3969 					E1000_WRITE_REG(hw, RCTL, rctl);
3970 					hw->tbi_compatibility_on = false;
3971 				}
3972 			} else {
3973 				/* If TBI compatibility is was previously off, turn it on. For
3974 				 * compatibility with a TBI link partner, we will store bad
3975 				 * packets. Some frames have an additional byte on the end and
3976 				 * will look like CRC errors to to the hardware.
3977 				 */
3978 				if (!hw->tbi_compatibility_on) {
3979 					hw->tbi_compatibility_on = true;
3980 					rctl = E1000_READ_REG(hw, RCTL);
3981 					rctl |= E1000_RCTL_SBP;
3982 					E1000_WRITE_REG(hw, RCTL, rctl);
3983 				}
3984 			}
3985 		}
3986 	}
3987 	/* If we don't have link (auto-negotiation failed or link partner cannot
3988 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3989 	 * link partner is not trying to auto-negotiate with us (we are receiving
3990 	 * idles or data), we need to force link up. We also need to give
3991 	 * auto-negotiation time to complete, in case the cable was just plugged
3992 	 * in. The autoneg_failed flag does this.
3993 	 */
3994 	else if ((hw->media_type == e1000_media_type_fiber) &&
3995 		 (!(status & E1000_STATUS_LU)) &&
3996 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3997 		 (!(rxcw & E1000_RXCW_C))) {
3998 		if (hw->autoneg_failed == 0) {
3999 			hw->autoneg_failed = 1;
4000 			return 0;
4001 		}
4002 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
4003 
4004 		/* Disable auto-negotiation in the TXCW register */
4005 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
4006 
4007 		/* Force link-up and also force full-duplex. */
4008 		ctrl = E1000_READ_REG(hw, CTRL);
4009 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
4010 		E1000_WRITE_REG(hw, CTRL, ctrl);
4011 
4012 		/* Configure Flow Control after forcing link up. */
4013 		ret_val = e1000_config_fc_after_link_up(hw);
4014 		if (ret_val < 0) {
4015 			DEBUGOUT("Error configuring flow control\n");
4016 			return ret_val;
4017 		}
4018 	}
4019 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
4020 	 * auto-negotiation in the TXCW register and disable forced link in the
4021 	 * Device Control register in an attempt to auto-negotiate with our link
4022 	 * partner.
4023 	 */
4024 	else if ((hw->media_type == e1000_media_type_fiber) &&
4025 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
4026 		DEBUGOUT
4027 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
4028 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
4029 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
4030 	}
4031 	return 0;
4032 }
4033 
4034 /******************************************************************************
4035 * Configure the MAC-to-PHY interface for 10/100Mbps
4036 *
4037 * hw - Struct containing variables accessed by shared code
4038 ******************************************************************************/
4039 static int32_t
4040 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
4041 {
4042 	int32_t ret_val = E1000_SUCCESS;
4043 	uint32_t tipg;
4044 	uint16_t reg_data;
4045 
4046 	DEBUGFUNC();
4047 
4048 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
4049 	ret_val = e1000_write_kmrn_reg(hw,
4050 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4051 	if (ret_val)
4052 		return ret_val;
4053 
4054 	/* Configure Transmit Inter-Packet Gap */
4055 	tipg = E1000_READ_REG(hw, TIPG);
4056 	tipg &= ~E1000_TIPG_IPGT_MASK;
4057 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
4058 	E1000_WRITE_REG(hw, TIPG, tipg);
4059 
4060 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4061 
4062 	if (ret_val)
4063 		return ret_val;
4064 
4065 	if (duplex == HALF_DUPLEX)
4066 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
4067 	else
4068 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4069 
4070 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4071 
4072 	return ret_val;
4073 }
4074 
4075 static int32_t
4076 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
4077 {
4078 	int32_t ret_val = E1000_SUCCESS;
4079 	uint16_t reg_data;
4080 	uint32_t tipg;
4081 
4082 	DEBUGFUNC();
4083 
4084 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
4085 	ret_val = e1000_write_kmrn_reg(hw,
4086 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4087 	if (ret_val)
4088 		return ret_val;
4089 
4090 	/* Configure Transmit Inter-Packet Gap */
4091 	tipg = E1000_READ_REG(hw, TIPG);
4092 	tipg &= ~E1000_TIPG_IPGT_MASK;
4093 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
4094 	E1000_WRITE_REG(hw, TIPG, tipg);
4095 
4096 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4097 
4098 	if (ret_val)
4099 		return ret_val;
4100 
4101 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4102 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4103 
4104 	return ret_val;
4105 }
4106 
4107 /******************************************************************************
4108  * Detects the current speed and duplex settings of the hardware.
4109  *
4110  * hw - Struct containing variables accessed by shared code
4111  * speed - Speed of the connection
4112  * duplex - Duplex setting of the connection
4113  *****************************************************************************/
4114 static int
4115 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
4116 		uint16_t *duplex)
4117 {
4118 	uint32_t status;
4119 	int32_t ret_val;
4120 	uint16_t phy_data;
4121 
4122 	DEBUGFUNC();
4123 
4124 	if (hw->mac_type >= e1000_82543) {
4125 		status = E1000_READ_REG(hw, STATUS);
4126 		if (status & E1000_STATUS_SPEED_1000) {
4127 			*speed = SPEED_1000;
4128 			DEBUGOUT("1000 Mbs, ");
4129 		} else if (status & E1000_STATUS_SPEED_100) {
4130 			*speed = SPEED_100;
4131 			DEBUGOUT("100 Mbs, ");
4132 		} else {
4133 			*speed = SPEED_10;
4134 			DEBUGOUT("10 Mbs, ");
4135 		}
4136 
4137 		if (status & E1000_STATUS_FD) {
4138 			*duplex = FULL_DUPLEX;
4139 			DEBUGOUT("Full Duplex\r\n");
4140 		} else {
4141 			*duplex = HALF_DUPLEX;
4142 			DEBUGOUT(" Half Duplex\r\n");
4143 		}
4144 	} else {
4145 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
4146 		*speed = SPEED_1000;
4147 		*duplex = FULL_DUPLEX;
4148 	}
4149 
4150 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
4151 	 * even if it is operating at half duplex.  Here we set the duplex
4152 	 * settings to match the duplex in the link partner's capabilities.
4153 	 */
4154 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
4155 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
4156 		if (ret_val)
4157 			return ret_val;
4158 
4159 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
4160 			*duplex = HALF_DUPLEX;
4161 		else {
4162 			ret_val = e1000_read_phy_reg(hw,
4163 					PHY_LP_ABILITY, &phy_data);
4164 			if (ret_val)
4165 				return ret_val;
4166 			if ((*speed == SPEED_100 &&
4167 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
4168 				|| (*speed == SPEED_10
4169 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
4170 				*duplex = HALF_DUPLEX;
4171 		}
4172 	}
4173 
4174 	if ((hw->mac_type == e1000_80003es2lan) &&
4175 		(hw->media_type == e1000_media_type_copper)) {
4176 		if (*speed == SPEED_1000)
4177 			ret_val = e1000_configure_kmrn_for_1000(hw);
4178 		else
4179 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4180 		if (ret_val)
4181 			return ret_val;
4182 	}
4183 	return E1000_SUCCESS;
4184 }
4185 
4186 /******************************************************************************
4187 * Blocks until autoneg completes or times out (~4.5 seconds)
4188 *
4189 * hw - Struct containing variables accessed by shared code
4190 ******************************************************************************/
4191 static int
4192 e1000_wait_autoneg(struct e1000_hw *hw)
4193 {
4194 	uint16_t i;
4195 	uint16_t phy_data;
4196 
4197 	DEBUGFUNC();
4198 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4199 
4200 	/* We will wait for autoneg to complete or timeout to expire. */
4201 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4202 		/* Read the MII Status Register and wait for Auto-Neg
4203 		 * Complete bit to be set.
4204 		 */
4205 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4206 			DEBUGOUT("PHY Read Error\n");
4207 			return -E1000_ERR_PHY;
4208 		}
4209 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4210 			DEBUGOUT("PHY Read Error\n");
4211 			return -E1000_ERR_PHY;
4212 		}
4213 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4214 			DEBUGOUT("Auto-Neg complete.\n");
4215 			return 0;
4216 		}
4217 		mdelay(100);
4218 	}
4219 	DEBUGOUT("Auto-Neg timedout.\n");
4220 	return -E1000_ERR_TIMEOUT;
4221 }
4222 
4223 /******************************************************************************
4224 * Raises the Management Data Clock
4225 *
4226 * hw - Struct containing variables accessed by shared code
4227 * ctrl - Device control register's current value
4228 ******************************************************************************/
4229 static void
4230 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4231 {
4232 	/* Raise the clock input to the Management Data Clock (by setting the MDC
4233 	 * bit), and then delay 2 microseconds.
4234 	 */
4235 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4236 	E1000_WRITE_FLUSH(hw);
4237 	udelay(2);
4238 }
4239 
4240 /******************************************************************************
4241 * Lowers the Management Data Clock
4242 *
4243 * hw - Struct containing variables accessed by shared code
4244 * ctrl - Device control register's current value
4245 ******************************************************************************/
4246 static void
4247 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4248 {
4249 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
4250 	 * bit), and then delay 2 microseconds.
4251 	 */
4252 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4253 	E1000_WRITE_FLUSH(hw);
4254 	udelay(2);
4255 }
4256 
4257 /******************************************************************************
4258 * Shifts data bits out to the PHY
4259 *
4260 * hw - Struct containing variables accessed by shared code
4261 * data - Data to send out to the PHY
4262 * count - Number of bits to shift out
4263 *
4264 * Bits are shifted out in MSB to LSB order.
4265 ******************************************************************************/
4266 static void
4267 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4268 {
4269 	uint32_t ctrl;
4270 	uint32_t mask;
4271 
4272 	/* We need to shift "count" number of bits out to the PHY. So, the value
4273 	 * in the "data" parameter will be shifted out to the PHY one bit at a
4274 	 * time. In order to do this, "data" must be broken down into bits.
4275 	 */
4276 	mask = 0x01;
4277 	mask <<= (count - 1);
4278 
4279 	ctrl = E1000_READ_REG(hw, CTRL);
4280 
4281 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4282 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4283 
4284 	while (mask) {
4285 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4286 		 * then raising and lowering the Management Data Clock. A "0" is
4287 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4288 		 * raising and lowering the clock.
4289 		 */
4290 		if (data & mask)
4291 			ctrl |= E1000_CTRL_MDIO;
4292 		else
4293 			ctrl &= ~E1000_CTRL_MDIO;
4294 
4295 		E1000_WRITE_REG(hw, CTRL, ctrl);
4296 		E1000_WRITE_FLUSH(hw);
4297 
4298 		udelay(2);
4299 
4300 		e1000_raise_mdi_clk(hw, &ctrl);
4301 		e1000_lower_mdi_clk(hw, &ctrl);
4302 
4303 		mask = mask >> 1;
4304 	}
4305 }
4306 
4307 /******************************************************************************
4308 * Shifts data bits in from the PHY
4309 *
4310 * hw - Struct containing variables accessed by shared code
4311 *
4312 * Bits are shifted in in MSB to LSB order.
4313 ******************************************************************************/
4314 static uint16_t
4315 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4316 {
4317 	uint32_t ctrl;
4318 	uint16_t data = 0;
4319 	uint8_t i;
4320 
4321 	/* In order to read a register from the PHY, we need to shift in a total
4322 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4323 	 * to avoid contention on the MDIO pin when a read operation is performed.
4324 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4325 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4326 	 * and then reading the value of the MDIO bit.
4327 	 */
4328 	ctrl = E1000_READ_REG(hw, CTRL);
4329 
4330 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4331 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4332 	ctrl &= ~E1000_CTRL_MDIO;
4333 
4334 	E1000_WRITE_REG(hw, CTRL, ctrl);
4335 	E1000_WRITE_FLUSH(hw);
4336 
4337 	/* Raise and Lower the clock before reading in the data. This accounts for
4338 	 * the turnaround bits. The first clock occurred when we clocked out the
4339 	 * last bit of the Register Address.
4340 	 */
4341 	e1000_raise_mdi_clk(hw, &ctrl);
4342 	e1000_lower_mdi_clk(hw, &ctrl);
4343 
4344 	for (data = 0, i = 0; i < 16; i++) {
4345 		data = data << 1;
4346 		e1000_raise_mdi_clk(hw, &ctrl);
4347 		ctrl = E1000_READ_REG(hw, CTRL);
4348 		/* Check to see if we shifted in a "1". */
4349 		if (ctrl & E1000_CTRL_MDIO)
4350 			data |= 1;
4351 		e1000_lower_mdi_clk(hw, &ctrl);
4352 	}
4353 
4354 	e1000_raise_mdi_clk(hw, &ctrl);
4355 	e1000_lower_mdi_clk(hw, &ctrl);
4356 
4357 	return data;
4358 }
4359 
4360 /*****************************************************************************
4361 * Reads the value from a PHY register
4362 *
4363 * hw - Struct containing variables accessed by shared code
4364 * reg_addr - address of the PHY register to read
4365 ******************************************************************************/
4366 static int
4367 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4368 {
4369 	uint32_t i;
4370 	uint32_t mdic = 0;
4371 	const uint32_t phy_addr = 1;
4372 
4373 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4374 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4375 		return -E1000_ERR_PARAM;
4376 	}
4377 
4378 	if (hw->mac_type > e1000_82543) {
4379 		/* Set up Op-code, Phy Address, and register address in the MDI
4380 		 * Control register.  The MAC will take care of interfacing with the
4381 		 * PHY to retrieve the desired data.
4382 		 */
4383 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4384 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4385 			(E1000_MDIC_OP_READ));
4386 
4387 		E1000_WRITE_REG(hw, MDIC, mdic);
4388 
4389 		/* Poll the ready bit to see if the MDI read completed */
4390 		for (i = 0; i < 64; i++) {
4391 			udelay(10);
4392 			mdic = E1000_READ_REG(hw, MDIC);
4393 			if (mdic & E1000_MDIC_READY)
4394 				break;
4395 		}
4396 		if (!(mdic & E1000_MDIC_READY)) {
4397 			DEBUGOUT("MDI Read did not complete\n");
4398 			return -E1000_ERR_PHY;
4399 		}
4400 		if (mdic & E1000_MDIC_ERROR) {
4401 			DEBUGOUT("MDI Error\n");
4402 			return -E1000_ERR_PHY;
4403 		}
4404 		*phy_data = (uint16_t) mdic;
4405 	} else {
4406 		/* We must first send a preamble through the MDIO pin to signal the
4407 		 * beginning of an MII instruction.  This is done by sending 32
4408 		 * consecutive "1" bits.
4409 		 */
4410 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4411 
4412 		/* Now combine the next few fields that are required for a read
4413 		 * operation.  We use this method instead of calling the
4414 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4415 		 * a MII read instruction consists of a shift out of 14 bits and is
4416 		 * defined as follows:
4417 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4418 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4419 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4420 		 * READ operation is performed.  These two bits are thrown away
4421 		 * followed by a shift in of 16 bits which contains the desired data.
4422 		 */
4423 		mdic = ((reg_addr) | (phy_addr << 5) |
4424 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4425 
4426 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4427 
4428 		/* Now that we've shifted out the read command to the MII, we need to
4429 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4430 		 * register address.
4431 		 */
4432 		*phy_data = e1000_shift_in_mdi_bits(hw);
4433 	}
4434 	return 0;
4435 }
4436 
4437 /******************************************************************************
4438 * Writes a value to a PHY register
4439 *
4440 * hw - Struct containing variables accessed by shared code
4441 * reg_addr - address of the PHY register to write
4442 * data - data to write to the PHY
4443 ******************************************************************************/
4444 static int
4445 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4446 {
4447 	uint32_t i;
4448 	uint32_t mdic = 0;
4449 	const uint32_t phy_addr = 1;
4450 
4451 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4452 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4453 		return -E1000_ERR_PARAM;
4454 	}
4455 
4456 	if (hw->mac_type > e1000_82543) {
4457 		/* Set up Op-code, Phy Address, register address, and data intended
4458 		 * for the PHY register in the MDI Control register.  The MAC will take
4459 		 * care of interfacing with the PHY to send the desired data.
4460 		 */
4461 		mdic = (((uint32_t) phy_data) |
4462 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4463 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4464 			(E1000_MDIC_OP_WRITE));
4465 
4466 		E1000_WRITE_REG(hw, MDIC, mdic);
4467 
4468 		/* Poll the ready bit to see if the MDI read completed */
4469 		for (i = 0; i < 64; i++) {
4470 			udelay(10);
4471 			mdic = E1000_READ_REG(hw, MDIC);
4472 			if (mdic & E1000_MDIC_READY)
4473 				break;
4474 		}
4475 		if (!(mdic & E1000_MDIC_READY)) {
4476 			DEBUGOUT("MDI Write did not complete\n");
4477 			return -E1000_ERR_PHY;
4478 		}
4479 	} else {
4480 		/* We'll need to use the SW defined pins to shift the write command
4481 		 * out to the PHY. We first send a preamble to the PHY to signal the
4482 		 * beginning of the MII instruction.  This is done by sending 32
4483 		 * consecutive "1" bits.
4484 		 */
4485 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4486 
4487 		/* Now combine the remaining required fields that will indicate a
4488 		 * write operation. We use this method instead of calling the
4489 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4490 		 * format of a MII write instruction is as follows:
4491 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4492 		 */
4493 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4494 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4495 		mdic <<= 16;
4496 		mdic |= (uint32_t) phy_data;
4497 
4498 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4499 	}
4500 	return 0;
4501 }
4502 
4503 /******************************************************************************
4504  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4505  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4506  * the caller to figure out how to deal with it.
4507  *
4508  * hw - Struct containing variables accessed by shared code
4509  *
4510  * returns: - E1000_BLK_PHY_RESET
4511  *            E1000_SUCCESS
4512  *
4513  *****************************************************************************/
4514 int32_t
4515 e1000_check_phy_reset_block(struct e1000_hw *hw)
4516 {
4517 	uint32_t manc = 0;
4518 	uint32_t fwsm = 0;
4519 
4520 	if (hw->mac_type == e1000_ich8lan) {
4521 		fwsm = E1000_READ_REG(hw, FWSM);
4522 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4523 						: E1000_BLK_PHY_RESET;
4524 	}
4525 
4526 	if (hw->mac_type > e1000_82547_rev_2)
4527 		manc = E1000_READ_REG(hw, MANC);
4528 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4529 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4530 }
4531 
4532 /***************************************************************************
4533  * Checks if the PHY configuration is done
4534  *
4535  * hw: Struct containing variables accessed by shared code
4536  *
4537  * returns: - E1000_ERR_RESET if fail to reset MAC
4538  *            E1000_SUCCESS at any other case.
4539  *
4540  ***************************************************************************/
4541 static int32_t
4542 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4543 {
4544 	int32_t timeout = PHY_CFG_TIMEOUT;
4545 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4546 
4547 	DEBUGFUNC();
4548 
4549 	switch (hw->mac_type) {
4550 	default:
4551 		mdelay(10);
4552 		break;
4553 
4554 	case e1000_80003es2lan:
4555 		/* Separate *_CFG_DONE_* bit for each port */
4556 		if (e1000_is_second_port(hw))
4557 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4558 		/* Fall Through */
4559 
4560 	case e1000_82571:
4561 	case e1000_82572:
4562 	case e1000_igb:
4563 		while (timeout) {
4564 			if (hw->mac_type == e1000_igb) {
4565 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4566 					break;
4567 			} else {
4568 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4569 					break;
4570 			}
4571 			mdelay(1);
4572 			timeout--;
4573 		}
4574 		if (!timeout) {
4575 			DEBUGOUT("MNG configuration cycle has not "
4576 					"completed.\n");
4577 			return -E1000_ERR_RESET;
4578 		}
4579 		break;
4580 	}
4581 
4582 	return E1000_SUCCESS;
4583 }
4584 
4585 /******************************************************************************
4586 * Returns the PHY to the power-on reset state
4587 *
4588 * hw - Struct containing variables accessed by shared code
4589 ******************************************************************************/
4590 int32_t
4591 e1000_phy_hw_reset(struct e1000_hw *hw)
4592 {
4593 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4594 	uint32_t ctrl, ctrl_ext;
4595 	uint32_t led_ctrl;
4596 	int32_t ret_val;
4597 
4598 	DEBUGFUNC();
4599 
4600 	/* In the case of the phy reset being blocked, it's not an error, we
4601 	 * simply return success without performing the reset. */
4602 	ret_val = e1000_check_phy_reset_block(hw);
4603 	if (ret_val)
4604 		return E1000_SUCCESS;
4605 
4606 	DEBUGOUT("Resetting Phy...\n");
4607 
4608 	if (hw->mac_type > e1000_82543) {
4609 		if (e1000_is_second_port(hw))
4610 			swfw = E1000_SWFW_PHY1_SM;
4611 
4612 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4613 			DEBUGOUT("Unable to acquire swfw sync\n");
4614 			return -E1000_ERR_SWFW_SYNC;
4615 		}
4616 
4617 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4618 		 * bit. Then, take it out of reset.
4619 		 */
4620 		ctrl = E1000_READ_REG(hw, CTRL);
4621 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4622 		E1000_WRITE_FLUSH(hw);
4623 
4624 		if (hw->mac_type < e1000_82571)
4625 			udelay(10);
4626 		else
4627 			udelay(100);
4628 
4629 		E1000_WRITE_REG(hw, CTRL, ctrl);
4630 		E1000_WRITE_FLUSH(hw);
4631 
4632 		if (hw->mac_type >= e1000_82571)
4633 			mdelay(10);
4634 
4635 	} else {
4636 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4637 		 * bit to put the PHY into reset. Then, take it out of reset.
4638 		 */
4639 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4640 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4641 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4642 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4643 		E1000_WRITE_FLUSH(hw);
4644 		mdelay(10);
4645 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4646 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4647 		E1000_WRITE_FLUSH(hw);
4648 	}
4649 	udelay(150);
4650 
4651 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4652 		/* Configure activity LED after PHY reset */
4653 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4654 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4655 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4656 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4657 	}
4658 
4659 	e1000_swfw_sync_release(hw, swfw);
4660 
4661 	/* Wait for FW to finish PHY configuration. */
4662 	ret_val = e1000_get_phy_cfg_done(hw);
4663 	if (ret_val != E1000_SUCCESS)
4664 		return ret_val;
4665 
4666 	return ret_val;
4667 }
4668 
4669 /******************************************************************************
4670  * IGP phy init script - initializes the GbE PHY
4671  *
4672  * hw - Struct containing variables accessed by shared code
4673  *****************************************************************************/
4674 static void
4675 e1000_phy_init_script(struct e1000_hw *hw)
4676 {
4677 	uint32_t ret_val;
4678 	uint16_t phy_saved_data;
4679 	DEBUGFUNC();
4680 
4681 	if (hw->phy_init_script) {
4682 		mdelay(20);
4683 
4684 		/* Save off the current value of register 0x2F5B to be
4685 		 * restored at the end of this routine. */
4686 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4687 
4688 		/* Disabled the PHY transmitter */
4689 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4690 
4691 		mdelay(20);
4692 
4693 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4694 
4695 		mdelay(5);
4696 
4697 		switch (hw->mac_type) {
4698 		case e1000_82541:
4699 		case e1000_82547:
4700 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4701 
4702 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4703 
4704 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4705 
4706 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4707 
4708 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4709 
4710 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4711 
4712 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4713 
4714 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4715 
4716 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4717 			break;
4718 
4719 		case e1000_82541_rev_2:
4720 		case e1000_82547_rev_2:
4721 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4722 			break;
4723 		default:
4724 			break;
4725 		}
4726 
4727 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4728 
4729 		mdelay(20);
4730 
4731 		/* Now enable the transmitter */
4732 		if (!ret_val)
4733 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4734 
4735 		if (hw->mac_type == e1000_82547) {
4736 			uint16_t fused, fine, coarse;
4737 
4738 			/* Move to analog registers page */
4739 			e1000_read_phy_reg(hw,
4740 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4741 
4742 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4743 				e1000_read_phy_reg(hw,
4744 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4745 
4746 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4747 				coarse = fused
4748 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4749 
4750 				if (coarse >
4751 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4752 					coarse -=
4753 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4754 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4755 				} else if (coarse
4756 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4757 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4758 
4759 				fused = (fused
4760 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4761 					(fine
4762 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4763 					(coarse
4764 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4765 
4766 				e1000_write_phy_reg(hw,
4767 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4768 				e1000_write_phy_reg(hw,
4769 					IGP01E1000_ANALOG_FUSE_BYPASS,
4770 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4771 			}
4772 		}
4773 	}
4774 }
4775 
4776 /******************************************************************************
4777 * Resets the PHY
4778 *
4779 * hw - Struct containing variables accessed by shared code
4780 *
4781 * Sets bit 15 of the MII Control register
4782 ******************************************************************************/
4783 int32_t
4784 e1000_phy_reset(struct e1000_hw *hw)
4785 {
4786 	int32_t ret_val;
4787 	uint16_t phy_data;
4788 
4789 	DEBUGFUNC();
4790 
4791 	/* In the case of the phy reset being blocked, it's not an error, we
4792 	 * simply return success without performing the reset. */
4793 	ret_val = e1000_check_phy_reset_block(hw);
4794 	if (ret_val)
4795 		return E1000_SUCCESS;
4796 
4797 	switch (hw->phy_type) {
4798 	case e1000_phy_igp:
4799 	case e1000_phy_igp_2:
4800 	case e1000_phy_igp_3:
4801 	case e1000_phy_ife:
4802 	case e1000_phy_igb:
4803 		ret_val = e1000_phy_hw_reset(hw);
4804 		if (ret_val)
4805 			return ret_val;
4806 		break;
4807 	default:
4808 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4809 		if (ret_val)
4810 			return ret_val;
4811 
4812 		phy_data |= MII_CR_RESET;
4813 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4814 		if (ret_val)
4815 			return ret_val;
4816 
4817 		udelay(1);
4818 		break;
4819 	}
4820 
4821 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4822 		e1000_phy_init_script(hw);
4823 
4824 	return E1000_SUCCESS;
4825 }
4826 
4827 static int e1000_set_phy_type (struct e1000_hw *hw)
4828 {
4829 	DEBUGFUNC ();
4830 
4831 	if (hw->mac_type == e1000_undefined)
4832 		return -E1000_ERR_PHY_TYPE;
4833 
4834 	switch (hw->phy_id) {
4835 	case M88E1000_E_PHY_ID:
4836 	case M88E1000_I_PHY_ID:
4837 	case M88E1011_I_PHY_ID:
4838 	case M88E1111_I_PHY_ID:
4839 		hw->phy_type = e1000_phy_m88;
4840 		break;
4841 	case IGP01E1000_I_PHY_ID:
4842 		if (hw->mac_type == e1000_82541 ||
4843 			hw->mac_type == e1000_82541_rev_2 ||
4844 			hw->mac_type == e1000_82547 ||
4845 			hw->mac_type == e1000_82547_rev_2) {
4846 			hw->phy_type = e1000_phy_igp;
4847 			break;
4848 		}
4849 	case IGP03E1000_E_PHY_ID:
4850 		hw->phy_type = e1000_phy_igp_3;
4851 		break;
4852 	case IFE_E_PHY_ID:
4853 	case IFE_PLUS_E_PHY_ID:
4854 	case IFE_C_E_PHY_ID:
4855 		hw->phy_type = e1000_phy_ife;
4856 		break;
4857 	case GG82563_E_PHY_ID:
4858 		if (hw->mac_type == e1000_80003es2lan) {
4859 			hw->phy_type = e1000_phy_gg82563;
4860 			break;
4861 		}
4862 	case BME1000_E_PHY_ID:
4863 		hw->phy_type = e1000_phy_bm;
4864 		break;
4865 	case I210_I_PHY_ID:
4866 		hw->phy_type = e1000_phy_igb;
4867 		break;
4868 		/* Fall Through */
4869 	default:
4870 		/* Should never have loaded on this device */
4871 		hw->phy_type = e1000_phy_undefined;
4872 		return -E1000_ERR_PHY_TYPE;
4873 	}
4874 
4875 	return E1000_SUCCESS;
4876 }
4877 
4878 /******************************************************************************
4879 * Probes the expected PHY address for known PHY IDs
4880 *
4881 * hw - Struct containing variables accessed by shared code
4882 ******************************************************************************/
4883 static int32_t
4884 e1000_detect_gig_phy(struct e1000_hw *hw)
4885 {
4886 	int32_t phy_init_status, ret_val;
4887 	uint16_t phy_id_high, phy_id_low;
4888 	bool match = false;
4889 
4890 	DEBUGFUNC();
4891 
4892 	/* The 82571 firmware may still be configuring the PHY.  In this
4893 	 * case, we cannot access the PHY until the configuration is done.  So
4894 	 * we explicitly set the PHY values. */
4895 	if (hw->mac_type == e1000_82571 ||
4896 		hw->mac_type == e1000_82572) {
4897 		hw->phy_id = IGP01E1000_I_PHY_ID;
4898 		hw->phy_type = e1000_phy_igp_2;
4899 		return E1000_SUCCESS;
4900 	}
4901 
4902 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4903 	 * work- around that forces PHY page 0 to be set or the reads fail.
4904 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4905 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4906 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4907 	 * the routines below will figure this out as well. */
4908 	if (hw->mac_type == e1000_80003es2lan)
4909 		hw->phy_type = e1000_phy_gg82563;
4910 
4911 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4912 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4913 	if (ret_val)
4914 		return ret_val;
4915 
4916 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4917 	udelay(20);
4918 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4919 	if (ret_val)
4920 		return ret_val;
4921 
4922 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4923 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4924 
4925 	switch (hw->mac_type) {
4926 	case e1000_82543:
4927 		if (hw->phy_id == M88E1000_E_PHY_ID)
4928 			match = true;
4929 		break;
4930 	case e1000_82544:
4931 		if (hw->phy_id == M88E1000_I_PHY_ID)
4932 			match = true;
4933 		break;
4934 	case e1000_82540:
4935 	case e1000_82545:
4936 	case e1000_82545_rev_3:
4937 	case e1000_82546:
4938 	case e1000_82546_rev_3:
4939 		if (hw->phy_id == M88E1011_I_PHY_ID)
4940 			match = true;
4941 		break;
4942 	case e1000_82541:
4943 	case e1000_82541_rev_2:
4944 	case e1000_82547:
4945 	case e1000_82547_rev_2:
4946 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4947 			match = true;
4948 
4949 		break;
4950 	case e1000_82573:
4951 		if (hw->phy_id == M88E1111_I_PHY_ID)
4952 			match = true;
4953 		break;
4954 	case e1000_82574:
4955 		if (hw->phy_id == BME1000_E_PHY_ID)
4956 			match = true;
4957 		break;
4958 	case e1000_80003es2lan:
4959 		if (hw->phy_id == GG82563_E_PHY_ID)
4960 			match = true;
4961 		break;
4962 	case e1000_ich8lan:
4963 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4964 			match = true;
4965 		if (hw->phy_id == IFE_E_PHY_ID)
4966 			match = true;
4967 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4968 			match = true;
4969 		if (hw->phy_id == IFE_C_E_PHY_ID)
4970 			match = true;
4971 		break;
4972 	case e1000_igb:
4973 		if (hw->phy_id == I210_I_PHY_ID)
4974 			match = true;
4975 		break;
4976 	default:
4977 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4978 		return -E1000_ERR_CONFIG;
4979 	}
4980 
4981 	phy_init_status = e1000_set_phy_type(hw);
4982 
4983 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4984 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4985 		return 0;
4986 	}
4987 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4988 	return -E1000_ERR_PHY;
4989 }
4990 
4991 /*****************************************************************************
4992  * Set media type and TBI compatibility.
4993  *
4994  * hw - Struct containing variables accessed by shared code
4995  * **************************************************************************/
4996 void
4997 e1000_set_media_type(struct e1000_hw *hw)
4998 {
4999 	uint32_t status;
5000 
5001 	DEBUGFUNC();
5002 
5003 	if (hw->mac_type != e1000_82543) {
5004 		/* tbi_compatibility is only valid on 82543 */
5005 		hw->tbi_compatibility_en = false;
5006 	}
5007 
5008 	switch (hw->device_id) {
5009 	case E1000_DEV_ID_82545GM_SERDES:
5010 	case E1000_DEV_ID_82546GB_SERDES:
5011 	case E1000_DEV_ID_82571EB_SERDES:
5012 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
5013 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
5014 	case E1000_DEV_ID_82572EI_SERDES:
5015 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
5016 		hw->media_type = e1000_media_type_internal_serdes;
5017 		break;
5018 	default:
5019 		switch (hw->mac_type) {
5020 		case e1000_82542_rev2_0:
5021 		case e1000_82542_rev2_1:
5022 			hw->media_type = e1000_media_type_fiber;
5023 			break;
5024 		case e1000_ich8lan:
5025 		case e1000_82573:
5026 		case e1000_82574:
5027 		case e1000_igb:
5028 			/* The STATUS_TBIMODE bit is reserved or reused
5029 			 * for the this device.
5030 			 */
5031 			hw->media_type = e1000_media_type_copper;
5032 			break;
5033 		default:
5034 			status = E1000_READ_REG(hw, STATUS);
5035 			if (status & E1000_STATUS_TBIMODE) {
5036 				hw->media_type = e1000_media_type_fiber;
5037 				/* tbi_compatibility not valid on fiber */
5038 				hw->tbi_compatibility_en = false;
5039 			} else {
5040 				hw->media_type = e1000_media_type_copper;
5041 			}
5042 			break;
5043 		}
5044 	}
5045 }
5046 
5047 /**
5048  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
5049  *
5050  * e1000_sw_init initializes the Adapter private data structure.
5051  * Fields are initialized based on PCI device information and
5052  * OS network device settings (MTU size).
5053  **/
5054 
5055 static int
5056 e1000_sw_init(struct e1000_hw *hw)
5057 {
5058 	int result;
5059 
5060 	/* PCI config space info */
5061 #ifdef CONFIG_DM_ETH
5062 	dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5063 	dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5064 	dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5065 			     &hw->subsystem_vendor_id);
5066 	dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5067 
5068 	dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5069 	dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5070 #else
5071 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5072 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5073 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5074 			     &hw->subsystem_vendor_id);
5075 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5076 
5077 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5078 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5079 #endif
5080 
5081 	/* identify the MAC */
5082 	result = e1000_set_mac_type(hw);
5083 	if (result) {
5084 		E1000_ERR(hw, "Unknown MAC Type\n");
5085 		return result;
5086 	}
5087 
5088 	switch (hw->mac_type) {
5089 	default:
5090 		break;
5091 	case e1000_82541:
5092 	case e1000_82547:
5093 	case e1000_82541_rev_2:
5094 	case e1000_82547_rev_2:
5095 		hw->phy_init_script = 1;
5096 		break;
5097 	}
5098 
5099 	/* flow control settings */
5100 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
5101 	hw->fc_low_water = E1000_FC_LOW_THRESH;
5102 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
5103 	hw->fc_send_xon = 1;
5104 
5105 	/* Media type - copper or fiber */
5106 	hw->tbi_compatibility_en = true;
5107 	e1000_set_media_type(hw);
5108 
5109 	if (hw->mac_type >= e1000_82543) {
5110 		uint32_t status = E1000_READ_REG(hw, STATUS);
5111 
5112 		if (status & E1000_STATUS_TBIMODE) {
5113 			DEBUGOUT("fiber interface\n");
5114 			hw->media_type = e1000_media_type_fiber;
5115 		} else {
5116 			DEBUGOUT("copper interface\n");
5117 			hw->media_type = e1000_media_type_copper;
5118 		}
5119 	} else {
5120 		hw->media_type = e1000_media_type_fiber;
5121 	}
5122 
5123 	hw->wait_autoneg_complete = true;
5124 	if (hw->mac_type < e1000_82543)
5125 		hw->report_tx_early = 0;
5126 	else
5127 		hw->report_tx_early = 1;
5128 
5129 	return E1000_SUCCESS;
5130 }
5131 
5132 void
5133 fill_rx(struct e1000_hw *hw)
5134 {
5135 	struct e1000_rx_desc *rd;
5136 	unsigned long flush_start, flush_end;
5137 
5138 	rx_last = rx_tail;
5139 	rd = rx_base + rx_tail;
5140 	rx_tail = (rx_tail + 1) % 8;
5141 	memset(rd, 0, 16);
5142 	rd->buffer_addr = cpu_to_le64((unsigned long)packet);
5143 
5144 	/*
5145 	 * Make sure there are no stale data in WB over this area, which
5146 	 * might get written into the memory while the e1000 also writes
5147 	 * into the same memory area.
5148 	 */
5149 	invalidate_dcache_range((unsigned long)packet,
5150 				(unsigned long)packet + 4096);
5151 	/* Dump the DMA descriptor into RAM. */
5152 	flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5153 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5154 	flush_dcache_range(flush_start, flush_end);
5155 
5156 	E1000_WRITE_REG(hw, RDT, rx_tail);
5157 }
5158 
5159 /**
5160  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
5161  * @adapter: board private structure
5162  *
5163  * Configure the Tx unit of the MAC after a reset.
5164  **/
5165 
5166 static void
5167 e1000_configure_tx(struct e1000_hw *hw)
5168 {
5169 	unsigned long tctl;
5170 	unsigned long tipg, tarc;
5171 	uint32_t ipgr1, ipgr2;
5172 
5173 	E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
5174 	E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
5175 
5176 	E1000_WRITE_REG(hw, TDLEN, 128);
5177 
5178 	/* Setup the HW Tx Head and Tail descriptor pointers */
5179 	E1000_WRITE_REG(hw, TDH, 0);
5180 	E1000_WRITE_REG(hw, TDT, 0);
5181 	tx_tail = 0;
5182 
5183 	/* Set the default values for the Tx Inter Packet Gap timer */
5184 	if (hw->mac_type <= e1000_82547_rev_2 &&
5185 	    (hw->media_type == e1000_media_type_fiber ||
5186 	     hw->media_type == e1000_media_type_internal_serdes))
5187 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
5188 	else
5189 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5190 
5191 	/* Set the default values for the Tx Inter Packet Gap timer */
5192 	switch (hw->mac_type) {
5193 	case e1000_82542_rev2_0:
5194 	case e1000_82542_rev2_1:
5195 		tipg = DEFAULT_82542_TIPG_IPGT;
5196 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5197 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5198 		break;
5199 	case e1000_80003es2lan:
5200 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5201 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5202 		break;
5203 	default:
5204 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5205 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5206 		break;
5207 	}
5208 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5209 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5210 	E1000_WRITE_REG(hw, TIPG, tipg);
5211 	/* Program the Transmit Control Register */
5212 	tctl = E1000_READ_REG(hw, TCTL);
5213 	tctl &= ~E1000_TCTL_CT;
5214 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5215 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5216 
5217 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5218 		tarc = E1000_READ_REG(hw, TARC0);
5219 		/* set the speed mode bit, we'll clear it if we're not at
5220 		 * gigabit link later */
5221 		/* git bit can be set to 1*/
5222 	} else if (hw->mac_type == e1000_80003es2lan) {
5223 		tarc = E1000_READ_REG(hw, TARC0);
5224 		tarc |= 1;
5225 		E1000_WRITE_REG(hw, TARC0, tarc);
5226 		tarc = E1000_READ_REG(hw, TARC1);
5227 		tarc |= 1;
5228 		E1000_WRITE_REG(hw, TARC1, tarc);
5229 	}
5230 
5231 
5232 	e1000_config_collision_dist(hw);
5233 	/* Setup Transmit Descriptor Settings for eop descriptor */
5234 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5235 
5236 	/* Need to set up RS bit */
5237 	if (hw->mac_type < e1000_82543)
5238 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
5239 	else
5240 		hw->txd_cmd |= E1000_TXD_CMD_RS;
5241 
5242 
5243 	if (hw->mac_type == e1000_igb) {
5244 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5245 
5246 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5247 		reg_txdctl |= 1 << 25;
5248 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5249 		mdelay(20);
5250 	}
5251 
5252 
5253 
5254 	E1000_WRITE_REG(hw, TCTL, tctl);
5255 
5256 
5257 }
5258 
5259 /**
5260  * e1000_setup_rctl - configure the receive control register
5261  * @adapter: Board private structure
5262  **/
5263 static void
5264 e1000_setup_rctl(struct e1000_hw *hw)
5265 {
5266 	uint32_t rctl;
5267 
5268 	rctl = E1000_READ_REG(hw, RCTL);
5269 
5270 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5271 
5272 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5273 		| E1000_RCTL_RDMTS_HALF;	/* |
5274 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5275 
5276 	if (hw->tbi_compatibility_on == 1)
5277 		rctl |= E1000_RCTL_SBP;
5278 	else
5279 		rctl &= ~E1000_RCTL_SBP;
5280 
5281 	rctl &= ~(E1000_RCTL_SZ_4096);
5282 		rctl |= E1000_RCTL_SZ_2048;
5283 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5284 	E1000_WRITE_REG(hw, RCTL, rctl);
5285 }
5286 
5287 /**
5288  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5289  * @adapter: board private structure
5290  *
5291  * Configure the Rx unit of the MAC after a reset.
5292  **/
5293 static void
5294 e1000_configure_rx(struct e1000_hw *hw)
5295 {
5296 	unsigned long rctl, ctrl_ext;
5297 	rx_tail = 0;
5298 
5299 	/* make sure receives are disabled while setting up the descriptors */
5300 	rctl = E1000_READ_REG(hw, RCTL);
5301 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5302 	if (hw->mac_type >= e1000_82540) {
5303 		/* Set the interrupt throttling rate.  Value is calculated
5304 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5305 #define MAX_INTS_PER_SEC	8000
5306 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
5307 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5308 	}
5309 
5310 	if (hw->mac_type >= e1000_82571) {
5311 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5312 		/* Reset delay timers after every interrupt */
5313 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5314 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5315 		E1000_WRITE_FLUSH(hw);
5316 	}
5317 	/* Setup the Base and Length of the Rx Descriptor Ring */
5318 	E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5319 	E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5320 
5321 	E1000_WRITE_REG(hw, RDLEN, 128);
5322 
5323 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5324 	E1000_WRITE_REG(hw, RDH, 0);
5325 	E1000_WRITE_REG(hw, RDT, 0);
5326 	/* Enable Receives */
5327 
5328 	if (hw->mac_type == e1000_igb) {
5329 
5330 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5331 		reg_rxdctl |= 1 << 25;
5332 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5333 		mdelay(20);
5334 	}
5335 
5336 	E1000_WRITE_REG(hw, RCTL, rctl);
5337 
5338 	fill_rx(hw);
5339 }
5340 
5341 /**************************************************************************
5342 POLL - Wait for a frame
5343 ***************************************************************************/
5344 static int
5345 _e1000_poll(struct e1000_hw *hw)
5346 {
5347 	struct e1000_rx_desc *rd;
5348 	unsigned long inval_start, inval_end;
5349 	uint32_t len;
5350 
5351 	/* return true if there's an ethernet packet ready to read */
5352 	rd = rx_base + rx_last;
5353 
5354 	/* Re-load the descriptor from RAM. */
5355 	inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5356 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5357 	invalidate_dcache_range(inval_start, inval_end);
5358 
5359 	if (!(rd->status & E1000_RXD_STAT_DD))
5360 		return 0;
5361 	/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5362 	/* Packet received, make sure the data are re-loaded from RAM. */
5363 	len = le16_to_cpu(rd->length);
5364 	invalidate_dcache_range((unsigned long)packet,
5365 				(unsigned long)packet +
5366 				roundup(len, ARCH_DMA_MINALIGN));
5367 	return len;
5368 }
5369 
5370 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5371 {
5372 	void *nv_packet = (void *)txpacket;
5373 	struct e1000_tx_desc *txp;
5374 	int i = 0;
5375 	unsigned long flush_start, flush_end;
5376 
5377 	txp = tx_base + tx_tail;
5378 	tx_tail = (tx_tail + 1) % 8;
5379 
5380 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5381 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5382 	txp->upper.data = 0;
5383 
5384 	/* Dump the packet into RAM so e1000 can pick them. */
5385 	flush_dcache_range((unsigned long)nv_packet,
5386 			   (unsigned long)nv_packet +
5387 			   roundup(length, ARCH_DMA_MINALIGN));
5388 	/* Dump the descriptor into RAM as well. */
5389 	flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5390 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5391 	flush_dcache_range(flush_start, flush_end);
5392 
5393 	E1000_WRITE_REG(hw, TDT, tx_tail);
5394 
5395 	E1000_WRITE_FLUSH(hw);
5396 	while (1) {
5397 		invalidate_dcache_range(flush_start, flush_end);
5398 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5399 			break;
5400 		if (i++ > TOUT_LOOP) {
5401 			DEBUGOUT("e1000: tx timeout\n");
5402 			return 0;
5403 		}
5404 		udelay(10);	/* give the nic a chance to write to the register */
5405 	}
5406 	return 1;
5407 }
5408 
5409 static void
5410 _e1000_disable(struct e1000_hw *hw)
5411 {
5412 	/* Turn off the ethernet interface */
5413 	E1000_WRITE_REG(hw, RCTL, 0);
5414 	E1000_WRITE_REG(hw, TCTL, 0);
5415 
5416 	/* Clear the transmit ring */
5417 	E1000_WRITE_REG(hw, TDH, 0);
5418 	E1000_WRITE_REG(hw, TDT, 0);
5419 
5420 	/* Clear the receive ring */
5421 	E1000_WRITE_REG(hw, RDH, 0);
5422 	E1000_WRITE_REG(hw, RDT, 0);
5423 
5424 	mdelay(10);
5425 }
5426 
5427 /*reset function*/
5428 static inline int
5429 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5430 {
5431 	e1000_reset_hw(hw);
5432 	if (hw->mac_type >= e1000_82544)
5433 		E1000_WRITE_REG(hw, WUC, 0);
5434 
5435 	return e1000_init_hw(hw, enetaddr);
5436 }
5437 
5438 static int
5439 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5440 {
5441 	int ret_val = 0;
5442 
5443 	ret_val = e1000_reset(hw, enetaddr);
5444 	if (ret_val < 0) {
5445 		if ((ret_val == -E1000_ERR_NOLINK) ||
5446 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5447 			E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5448 		} else {
5449 			E1000_ERR(hw, "Hardware Initialization Failed\n");
5450 		}
5451 		return ret_val;
5452 	}
5453 	e1000_configure_tx(hw);
5454 	e1000_setup_rctl(hw);
5455 	e1000_configure_rx(hw);
5456 	return 0;
5457 }
5458 
5459 /******************************************************************************
5460  * Gets the current PCI bus type of hardware
5461  *
5462  * hw - Struct containing variables accessed by shared code
5463  *****************************************************************************/
5464 void e1000_get_bus_type(struct e1000_hw *hw)
5465 {
5466 	uint32_t status;
5467 
5468 	switch (hw->mac_type) {
5469 	case e1000_82542_rev2_0:
5470 	case e1000_82542_rev2_1:
5471 		hw->bus_type = e1000_bus_type_pci;
5472 		break;
5473 	case e1000_82571:
5474 	case e1000_82572:
5475 	case e1000_82573:
5476 	case e1000_82574:
5477 	case e1000_80003es2lan:
5478 	case e1000_ich8lan:
5479 	case e1000_igb:
5480 		hw->bus_type = e1000_bus_type_pci_express;
5481 		break;
5482 	default:
5483 		status = E1000_READ_REG(hw, STATUS);
5484 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5485 				e1000_bus_type_pcix : e1000_bus_type_pci;
5486 		break;
5487 	}
5488 }
5489 
5490 #ifndef CONFIG_DM_ETH
5491 /* A list of all registered e1000 devices */
5492 static LIST_HEAD(e1000_hw_list);
5493 #endif
5494 
5495 #ifdef CONFIG_DM_ETH
5496 static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5497 			  struct udevice *devno, unsigned char enetaddr[6])
5498 #else
5499 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5500 			  unsigned char enetaddr[6])
5501 #endif
5502 {
5503 	u32 val;
5504 
5505 	/* Assign the passed-in values */
5506 #ifdef CONFIG_DM_ETH
5507 	hw->pdev = devno;
5508 #else
5509 	hw->pdev = devno;
5510 #endif
5511 	hw->cardnum = cardnum;
5512 
5513 	/* Print a debug message with the IO base address */
5514 #ifdef CONFIG_DM_ETH
5515 	dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5516 #else
5517 	pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5518 #endif
5519 	E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5520 
5521 	/* Try to enable I/O accesses and bus-mastering */
5522 	val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5523 #ifdef CONFIG_DM_ETH
5524 	dm_pci_write_config32(devno, PCI_COMMAND, val);
5525 #else
5526 	pci_write_config_dword(devno, PCI_COMMAND, val);
5527 #endif
5528 
5529 	/* Make sure it worked */
5530 #ifdef CONFIG_DM_ETH
5531 	dm_pci_read_config32(devno, PCI_COMMAND, &val);
5532 #else
5533 	pci_read_config_dword(devno, PCI_COMMAND, &val);
5534 #endif
5535 	if (!(val & PCI_COMMAND_MEMORY)) {
5536 		E1000_ERR(hw, "Can't enable I/O memory\n");
5537 		return -ENOSPC;
5538 	}
5539 	if (!(val & PCI_COMMAND_MASTER)) {
5540 		E1000_ERR(hw, "Can't enable bus-mastering\n");
5541 		return -EPERM;
5542 	}
5543 
5544 	/* Are these variables needed? */
5545 	hw->fc = e1000_fc_default;
5546 	hw->original_fc = e1000_fc_default;
5547 	hw->autoneg_failed = 0;
5548 	hw->autoneg = 1;
5549 	hw->get_link_status = true;
5550 #ifndef CONFIG_E1000_NO_NVM
5551 	hw->eeprom_semaphore_present = true;
5552 #endif
5553 #ifdef CONFIG_DM_ETH
5554 	hw->hw_addr = dm_pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5555 						PCI_REGION_MEM);
5556 #else
5557 	hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5558 						PCI_REGION_MEM);
5559 #endif
5560 	hw->mac_type = e1000_undefined;
5561 
5562 	/* MAC and Phy settings */
5563 	if (e1000_sw_init(hw) < 0) {
5564 		E1000_ERR(hw, "Software init failed\n");
5565 		return -EIO;
5566 	}
5567 	if (e1000_check_phy_reset_block(hw))
5568 		E1000_ERR(hw, "PHY Reset is blocked!\n");
5569 
5570 	/* Basic init was OK, reset the hardware and allow SPI access */
5571 	e1000_reset_hw(hw);
5572 
5573 #ifndef CONFIG_E1000_NO_NVM
5574 	/* Validate the EEPROM and get chipset information */
5575 	if (e1000_init_eeprom_params(hw)) {
5576 		E1000_ERR(hw, "EEPROM is invalid!\n");
5577 		return -EINVAL;
5578 	}
5579 	if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5580 	    e1000_validate_eeprom_checksum(hw))
5581 		return -ENXIO;
5582 	e1000_read_mac_addr(hw, enetaddr);
5583 #endif
5584 	e1000_get_bus_type(hw);
5585 
5586 #ifndef CONFIG_E1000_NO_NVM
5587 	printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5588 	       enetaddr[0], enetaddr[1], enetaddr[2],
5589 	       enetaddr[3], enetaddr[4], enetaddr[5]);
5590 #else
5591 	memset(enetaddr, 0, 6);
5592 	printf("e1000: no NVM\n");
5593 #endif
5594 
5595 	return 0;
5596 }
5597 
5598 /* Put the name of a device in a string */
5599 static void e1000_name(char *str, int cardnum)
5600 {
5601 	sprintf(str, "e1000#%u", cardnum);
5602 }
5603 
5604 #ifndef CONFIG_DM_ETH
5605 /**************************************************************************
5606 TRANSMIT - Transmit a frame
5607 ***************************************************************************/
5608 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5609 {
5610 	struct e1000_hw *hw = nic->priv;
5611 
5612 	return _e1000_transmit(hw, txpacket, length);
5613 }
5614 
5615 /**************************************************************************
5616 DISABLE - Turn off ethernet interface
5617 ***************************************************************************/
5618 static void
5619 e1000_disable(struct eth_device *nic)
5620 {
5621 	struct e1000_hw *hw = nic->priv;
5622 
5623 	_e1000_disable(hw);
5624 }
5625 
5626 /**************************************************************************
5627 INIT - set up ethernet interface(s)
5628 ***************************************************************************/
5629 static int
5630 e1000_init(struct eth_device *nic, bd_t *bis)
5631 {
5632 	struct e1000_hw *hw = nic->priv;
5633 
5634 	return _e1000_init(hw, nic->enetaddr);
5635 }
5636 
5637 static int
5638 e1000_poll(struct eth_device *nic)
5639 {
5640 	struct e1000_hw *hw = nic->priv;
5641 	int len;
5642 
5643 	len = _e1000_poll(hw);
5644 	if (len) {
5645 		net_process_received_packet((uchar *)packet, len);
5646 		fill_rx(hw);
5647 	}
5648 
5649 	return len ? 1 : 0;
5650 }
5651 
5652 static int e1000_write_hwaddr(struct eth_device *dev)
5653 {
5654 #ifndef CONFIG_E1000_NO_NVM
5655 	unsigned char *mac = dev->enetaddr;
5656 	unsigned char current_mac[6];
5657 	struct e1000_hw *hw = dev->priv;
5658 	uint16_t data[3];
5659 	int ret_val, i;
5660 
5661 	DEBUGOUT("%s: mac=%pM\n", __func__, mac);
5662 
5663 	memset(current_mac, 0, 6);
5664 
5665 	/* Read from EEPROM, not from registers, to make sure
5666 	 * the address is persistently configured
5667 	 */
5668 	ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
5669 	DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
5670 
5671 	/* Only write to EEPROM if the given address is different or
5672 	 * reading the current address failed
5673 	 */
5674 	if (!ret_val && memcmp(current_mac, mac, 6) == 0)
5675 		return 0;
5676 
5677 	for (i = 0; i < 3; ++i)
5678 		data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
5679 
5680 	ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
5681 
5682 	if (!ret_val)
5683 		ret_val = e1000_update_eeprom_checksum_i210(hw);
5684 
5685 	return ret_val;
5686 #else
5687 	return 0;
5688 #endif
5689 }
5690 
5691 /**************************************************************************
5692 PROBE - Look for an adapter, this routine's visible to the outside
5693 You should omit the last argument struct pci_device * for a non-PCI NIC
5694 ***************************************************************************/
5695 int
5696 e1000_initialize(bd_t * bis)
5697 {
5698 	unsigned int i;
5699 	pci_dev_t devno;
5700 	int ret;
5701 
5702 	DEBUGFUNC();
5703 
5704 	/* Find and probe all the matching PCI devices */
5705 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5706 		/*
5707 		 * These will never get freed due to errors, this allows us to
5708 		 * perform SPI EEPROM programming from U-Boot, for example.
5709 		 */
5710 		struct eth_device *nic = malloc(sizeof(*nic));
5711 		struct e1000_hw *hw = malloc(sizeof(*hw));
5712 		if (!nic || !hw) {
5713 			printf("e1000#%u: Out of Memory!\n", i);
5714 			free(nic);
5715 			free(hw);
5716 			continue;
5717 		}
5718 
5719 		/* Make sure all of the fields are initially zeroed */
5720 		memset(nic, 0, sizeof(*nic));
5721 		memset(hw, 0, sizeof(*hw));
5722 		nic->priv = hw;
5723 
5724 		/* Generate a card name */
5725 		e1000_name(nic->name, i);
5726 		hw->name = nic->name;
5727 
5728 		ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5729 		if (ret)
5730 			continue;
5731 		list_add_tail(&hw->list_node, &e1000_hw_list);
5732 
5733 		hw->nic = nic;
5734 
5735 		/* Set up the function pointers and register the device */
5736 		nic->init = e1000_init;
5737 		nic->recv = e1000_poll;
5738 		nic->send = e1000_transmit;
5739 		nic->halt = e1000_disable;
5740 		nic->write_hwaddr = e1000_write_hwaddr;
5741 		eth_register(nic);
5742 	}
5743 
5744 	return i;
5745 }
5746 
5747 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5748 {
5749 	struct e1000_hw *hw;
5750 
5751 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5752 		if (hw->cardnum == cardnum)
5753 			return hw;
5754 
5755 	return NULL;
5756 }
5757 #endif /* !CONFIG_DM_ETH */
5758 
5759 #ifdef CONFIG_CMD_E1000
5760 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5761 		int argc, char * const argv[])
5762 {
5763 	unsigned char *mac = NULL;
5764 #ifdef CONFIG_DM_ETH
5765 	struct eth_pdata *plat;
5766 	struct udevice *dev;
5767 	char name[30];
5768 	int ret;
5769 #endif
5770 #if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
5771 	struct e1000_hw *hw;
5772 #endif
5773 	int cardnum;
5774 
5775 	if (argc < 3) {
5776 		cmd_usage(cmdtp);
5777 		return 1;
5778 	}
5779 
5780 	/* Make sure we can find the requested e1000 card */
5781 	cardnum = simple_strtoul(argv[1], NULL, 10);
5782 #ifdef CONFIG_DM_ETH
5783 	e1000_name(name, cardnum);
5784 	ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5785 	if (!ret) {
5786 		plat = dev_get_platdata(dev);
5787 		mac = plat->enetaddr;
5788 	}
5789 #else
5790 	hw = e1000_find_card(cardnum);
5791 	if (hw)
5792 		mac = hw->nic->enetaddr;
5793 #endif
5794 	if (!mac) {
5795 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5796 		return 1;
5797 	}
5798 
5799 	if (!strcmp(argv[2], "print-mac-address")) {
5800 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5801 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5802 		return 0;
5803 	}
5804 
5805 #ifdef CONFIG_E1000_SPI
5806 #ifdef CONFIG_DM_ETH
5807 	hw = dev_get_priv(dev);
5808 #endif
5809 	/* Handle the "SPI" subcommand */
5810 	if (!strcmp(argv[2], "spi"))
5811 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5812 #endif
5813 
5814 	cmd_usage(cmdtp);
5815 	return 1;
5816 }
5817 
5818 U_BOOT_CMD(
5819 	e1000, 7, 0, do_e1000,
5820 	"Intel e1000 controller management",
5821 	/*  */"<card#> print-mac-address\n"
5822 #ifdef CONFIG_E1000_SPI
5823 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5824 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5825 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5826 	"e1000 <card#> spi checksum [update]\n"
5827 #endif
5828 	"       - Manage the Intel E1000 PCI device"
5829 );
5830 #endif /* not CONFIG_CMD_E1000 */
5831 
5832 #ifdef CONFIG_DM_ETH
5833 static int e1000_eth_start(struct udevice *dev)
5834 {
5835 	struct eth_pdata *plat = dev_get_platdata(dev);
5836 	struct e1000_hw *hw = dev_get_priv(dev);
5837 
5838 	return _e1000_init(hw, plat->enetaddr);
5839 }
5840 
5841 static void e1000_eth_stop(struct udevice *dev)
5842 {
5843 	struct e1000_hw *hw = dev_get_priv(dev);
5844 
5845 	_e1000_disable(hw);
5846 }
5847 
5848 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5849 {
5850 	struct e1000_hw *hw = dev_get_priv(dev);
5851 	int ret;
5852 
5853 	ret = _e1000_transmit(hw, packet, length);
5854 
5855 	return ret ? 0 : -ETIMEDOUT;
5856 }
5857 
5858 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5859 {
5860 	struct e1000_hw *hw = dev_get_priv(dev);
5861 	int len;
5862 
5863 	len = _e1000_poll(hw);
5864 	if (len)
5865 		*packetp = packet;
5866 
5867 	return len ? len : -EAGAIN;
5868 }
5869 
5870 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5871 {
5872 	struct e1000_hw *hw = dev_get_priv(dev);
5873 
5874 	fill_rx(hw);
5875 
5876 	return 0;
5877 }
5878 
5879 static int e1000_eth_probe(struct udevice *dev)
5880 {
5881 	struct eth_pdata *plat = dev_get_platdata(dev);
5882 	struct e1000_hw *hw = dev_get_priv(dev);
5883 	int ret;
5884 
5885 	hw->name = dev->name;
5886 	ret = e1000_init_one(hw, trailing_strtol(dev->name),
5887 			     dev, plat->enetaddr);
5888 	if (ret < 0) {
5889 		printf(pr_fmt("failed to initialize card: %d\n"), ret);
5890 		return ret;
5891 	}
5892 
5893 	return 0;
5894 }
5895 
5896 static int e1000_eth_bind(struct udevice *dev)
5897 {
5898 	char name[20];
5899 
5900 	/*
5901 	 * A simple way to number the devices. When device tree is used this
5902 	 * is unnecessary, but when the device is just discovered on the PCI
5903 	 * bus we need a name. We could instead have the uclass figure out
5904 	 * which devices are different and number them.
5905 	 */
5906 	e1000_name(name, num_cards++);
5907 
5908 	return device_set_name(dev, name);
5909 }
5910 
5911 static const struct eth_ops e1000_eth_ops = {
5912 	.start	= e1000_eth_start,
5913 	.send	= e1000_eth_send,
5914 	.recv	= e1000_eth_recv,
5915 	.stop	= e1000_eth_stop,
5916 	.free_pkt = e1000_free_pkt,
5917 };
5918 
5919 static const struct udevice_id e1000_eth_ids[] = {
5920 	{ .compatible = "intel,e1000" },
5921 	{ }
5922 };
5923 
5924 U_BOOT_DRIVER(eth_e1000) = {
5925 	.name	= "eth_e1000",
5926 	.id	= UCLASS_ETH,
5927 	.of_match = e1000_eth_ids,
5928 	.bind	= e1000_eth_bind,
5929 	.probe	= e1000_eth_probe,
5930 	.ops	= &e1000_eth_ops,
5931 	.priv_auto_alloc_size = sizeof(struct e1000_hw),
5932 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5933 };
5934 
5935 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5936 #endif
5937