xref: /openbmc/u-boot/drivers/net/e1000.c (revision 556751427b9b79266918e87f7399e1a6eea60096)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16 
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21 
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA	02111-1307, USA.
25 
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28 
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  *
44  *  Copyright 2011 Freescale Semiconductor, Inc.
45  */
46 
47 #include "e1000.h"
48 
49 #define TOUT_LOOP   100000
50 
51 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
52 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
53 
54 #define E1000_DEFAULT_PCI_PBA	0x00000030
55 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
56 
57 /* NIC specific static variables go here */
58 
59 static char tx_pool[128 + 16];
60 static char rx_pool[128 + 16];
61 static char packet[2096];
62 
63 static struct e1000_tx_desc *tx_base;
64 static struct e1000_rx_desc *rx_base;
65 
66 static int tx_tail;
67 static int rx_tail, rx_last;
68 
69 static struct pci_device_id e1000_supported[] = {
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
86 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
87 	/* E1000 PCIe card */
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
104 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
105 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
110 	{}
111 };
112 
113 /* Function forward declarations */
114 static int e1000_setup_link(struct eth_device *nic);
115 static int e1000_setup_fiber_link(struct eth_device *nic);
116 static int e1000_setup_copper_link(struct eth_device *nic);
117 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118 static void e1000_config_collision_dist(struct e1000_hw *hw);
119 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121 static int e1000_check_for_link(struct eth_device *nic);
122 static int e1000_wait_autoneg(struct e1000_hw *hw);
123 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
124 				       uint16_t * duplex);
125 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 			      uint16_t * phy_data);
127 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
128 			       uint16_t phy_data);
129 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
130 static int e1000_phy_reset(struct e1000_hw *hw);
131 static int e1000_detect_gig_phy(struct e1000_hw *hw);
132 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133 static void e1000_set_media_type(struct e1000_hw *hw);
134 
135 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
137 
138 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
139 		uint16_t words,
140 		uint16_t *data);
141 /******************************************************************************
142  * Raises the EEPROM's clock input.
143  *
144  * hw - Struct containing variables accessed by shared code
145  * eecd - EECD's current value
146  *****************************************************************************/
147 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
148 {
149 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
150 	 * wait 50 microseconds.
151 	 */
152 	*eecd = *eecd | E1000_EECD_SK;
153 	E1000_WRITE_REG(hw, EECD, *eecd);
154 	E1000_WRITE_FLUSH(hw);
155 	udelay(50);
156 }
157 
158 /******************************************************************************
159  * Lowers the EEPROM's clock input.
160  *
161  * hw - Struct containing variables accessed by shared code
162  * eecd - EECD's current value
163  *****************************************************************************/
164 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
165 {
166 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
167 	 * wait 50 microseconds.
168 	 */
169 	*eecd = *eecd & ~E1000_EECD_SK;
170 	E1000_WRITE_REG(hw, EECD, *eecd);
171 	E1000_WRITE_FLUSH(hw);
172 	udelay(50);
173 }
174 
175 /******************************************************************************
176  * Shift data bits out to the EEPROM.
177  *
178  * hw - Struct containing variables accessed by shared code
179  * data - data to send to the EEPROM
180  * count - number of bits to shift out
181  *****************************************************************************/
182 static void
183 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
184 {
185 	uint32_t eecd;
186 	uint32_t mask;
187 
188 	/* We need to shift "count" bits out to the EEPROM. So, value in the
189 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
190 	 * In order to do this, "data" must be broken down into bits.
191 	 */
192 	mask = 0x01 << (count - 1);
193 	eecd = E1000_READ_REG(hw, EECD);
194 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
195 	do {
196 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
197 		 * and then raising and then lowering the clock (the SK bit controls
198 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
199 		 * by setting "DI" to "0" and then raising and then lowering the clock.
200 		 */
201 		eecd &= ~E1000_EECD_DI;
202 
203 		if (data & mask)
204 			eecd |= E1000_EECD_DI;
205 
206 		E1000_WRITE_REG(hw, EECD, eecd);
207 		E1000_WRITE_FLUSH(hw);
208 
209 		udelay(50);
210 
211 		e1000_raise_ee_clk(hw, &eecd);
212 		e1000_lower_ee_clk(hw, &eecd);
213 
214 		mask = mask >> 1;
215 
216 	} while (mask);
217 
218 	/* We leave the "DI" bit set to "0" when we leave this routine. */
219 	eecd &= ~E1000_EECD_DI;
220 	E1000_WRITE_REG(hw, EECD, eecd);
221 }
222 
223 /******************************************************************************
224  * Shift data bits in from the EEPROM
225  *
226  * hw - Struct containing variables accessed by shared code
227  *****************************************************************************/
228 static uint16_t
229 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
230 {
231 	uint32_t eecd;
232 	uint32_t i;
233 	uint16_t data;
234 
235 	/* In order to read a register from the EEPROM, we need to shift 'count'
236 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
237 	 * input to the EEPROM (setting the SK bit), and then reading the
238 	 * value of the "DO" bit.  During this "shifting in" process the
239 	 * "DI" bit should always be clear.
240 	 */
241 
242 	eecd = E1000_READ_REG(hw, EECD);
243 
244 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
245 	data = 0;
246 
247 	for (i = 0; i < count; i++) {
248 		data = data << 1;
249 		e1000_raise_ee_clk(hw, &eecd);
250 
251 		eecd = E1000_READ_REG(hw, EECD);
252 
253 		eecd &= ~(E1000_EECD_DI);
254 		if (eecd & E1000_EECD_DO)
255 			data |= 1;
256 
257 		e1000_lower_ee_clk(hw, &eecd);
258 	}
259 
260 	return data;
261 }
262 
263 /******************************************************************************
264  * Returns EEPROM to a "standby" state
265  *
266  * hw - Struct containing variables accessed by shared code
267  *****************************************************************************/
268 void e1000_standby_eeprom(struct e1000_hw *hw)
269 {
270 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
271 	uint32_t eecd;
272 
273 	eecd = E1000_READ_REG(hw, EECD);
274 
275 	if (eeprom->type == e1000_eeprom_microwire) {
276 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
277 		E1000_WRITE_REG(hw, EECD, eecd);
278 		E1000_WRITE_FLUSH(hw);
279 		udelay(eeprom->delay_usec);
280 
281 		/* Clock high */
282 		eecd |= E1000_EECD_SK;
283 		E1000_WRITE_REG(hw, EECD, eecd);
284 		E1000_WRITE_FLUSH(hw);
285 		udelay(eeprom->delay_usec);
286 
287 		/* Select EEPROM */
288 		eecd |= E1000_EECD_CS;
289 		E1000_WRITE_REG(hw, EECD, eecd);
290 		E1000_WRITE_FLUSH(hw);
291 		udelay(eeprom->delay_usec);
292 
293 		/* Clock low */
294 		eecd &= ~E1000_EECD_SK;
295 		E1000_WRITE_REG(hw, EECD, eecd);
296 		E1000_WRITE_FLUSH(hw);
297 		udelay(eeprom->delay_usec);
298 	} else if (eeprom->type == e1000_eeprom_spi) {
299 		/* Toggle CS to flush commands */
300 		eecd |= E1000_EECD_CS;
301 		E1000_WRITE_REG(hw, EECD, eecd);
302 		E1000_WRITE_FLUSH(hw);
303 		udelay(eeprom->delay_usec);
304 		eecd &= ~E1000_EECD_CS;
305 		E1000_WRITE_REG(hw, EECD, eecd);
306 		E1000_WRITE_FLUSH(hw);
307 		udelay(eeprom->delay_usec);
308 	}
309 }
310 
311 /***************************************************************************
312 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
313 *
314 * hw - Struct containing variables accessed by shared code
315 ****************************************************************************/
316 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
317 {
318 	uint32_t eecd = 0;
319 
320 	DEBUGFUNC();
321 
322 	if (hw->mac_type == e1000_ich8lan)
323 		return FALSE;
324 
325 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
326 		eecd = E1000_READ_REG(hw, EECD);
327 
328 		/* Isolate bits 15 & 16 */
329 		eecd = ((eecd >> 15) & 0x03);
330 
331 		/* If both bits are set, device is Flash type */
332 		if (eecd == 0x03)
333 			return FALSE;
334 	}
335 	return TRUE;
336 }
337 
338 /******************************************************************************
339  * Prepares EEPROM for access
340  *
341  * hw - Struct containing variables accessed by shared code
342  *
343  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
344  * function should be called before issuing a command to the EEPROM.
345  *****************************************************************************/
346 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
347 {
348 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
349 	uint32_t eecd, i = 0;
350 
351 	DEBUGFUNC();
352 
353 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
354 		return -E1000_ERR_SWFW_SYNC;
355 	eecd = E1000_READ_REG(hw, EECD);
356 
357 	if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
358 		/* Request EEPROM Access */
359 		if (hw->mac_type > e1000_82544) {
360 			eecd |= E1000_EECD_REQ;
361 			E1000_WRITE_REG(hw, EECD, eecd);
362 			eecd = E1000_READ_REG(hw, EECD);
363 			while ((!(eecd & E1000_EECD_GNT)) &&
364 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
365 				i++;
366 				udelay(5);
367 				eecd = E1000_READ_REG(hw, EECD);
368 			}
369 			if (!(eecd & E1000_EECD_GNT)) {
370 				eecd &= ~E1000_EECD_REQ;
371 				E1000_WRITE_REG(hw, EECD, eecd);
372 				DEBUGOUT("Could not acquire EEPROM grant\n");
373 				return -E1000_ERR_EEPROM;
374 			}
375 		}
376 	}
377 
378 	/* Setup EEPROM for Read/Write */
379 
380 	if (eeprom->type == e1000_eeprom_microwire) {
381 		/* Clear SK and DI */
382 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
383 		E1000_WRITE_REG(hw, EECD, eecd);
384 
385 		/* Set CS */
386 		eecd |= E1000_EECD_CS;
387 		E1000_WRITE_REG(hw, EECD, eecd);
388 	} else if (eeprom->type == e1000_eeprom_spi) {
389 		/* Clear SK and CS */
390 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
391 		E1000_WRITE_REG(hw, EECD, eecd);
392 		udelay(1);
393 	}
394 
395 	return E1000_SUCCESS;
396 }
397 
398 /******************************************************************************
399  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
400  * is configured.  Additionally, if this is ICH8, the flash controller GbE
401  * registers must be mapped, or this will crash.
402  *
403  * hw - Struct containing variables accessed by shared code
404  *****************************************************************************/
405 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
406 {
407 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
408 	uint32_t eecd = E1000_READ_REG(hw, EECD);
409 	int32_t ret_val = E1000_SUCCESS;
410 	uint16_t eeprom_size;
411 
412 	DEBUGFUNC();
413 
414 	switch (hw->mac_type) {
415 	case e1000_82542_rev2_0:
416 	case e1000_82542_rev2_1:
417 	case e1000_82543:
418 	case e1000_82544:
419 		eeprom->type = e1000_eeprom_microwire;
420 		eeprom->word_size = 64;
421 		eeprom->opcode_bits = 3;
422 		eeprom->address_bits = 6;
423 		eeprom->delay_usec = 50;
424 		eeprom->use_eerd = FALSE;
425 		eeprom->use_eewr = FALSE;
426 	break;
427 	case e1000_82540:
428 	case e1000_82545:
429 	case e1000_82545_rev_3:
430 	case e1000_82546:
431 	case e1000_82546_rev_3:
432 		eeprom->type = e1000_eeprom_microwire;
433 		eeprom->opcode_bits = 3;
434 		eeprom->delay_usec = 50;
435 		if (eecd & E1000_EECD_SIZE) {
436 			eeprom->word_size = 256;
437 			eeprom->address_bits = 8;
438 		} else {
439 			eeprom->word_size = 64;
440 			eeprom->address_bits = 6;
441 		}
442 		eeprom->use_eerd = FALSE;
443 		eeprom->use_eewr = FALSE;
444 		break;
445 	case e1000_82541:
446 	case e1000_82541_rev_2:
447 	case e1000_82547:
448 	case e1000_82547_rev_2:
449 		if (eecd & E1000_EECD_TYPE) {
450 			eeprom->type = e1000_eeprom_spi;
451 			eeprom->opcode_bits = 8;
452 			eeprom->delay_usec = 1;
453 			if (eecd & E1000_EECD_ADDR_BITS) {
454 				eeprom->page_size = 32;
455 				eeprom->address_bits = 16;
456 			} else {
457 				eeprom->page_size = 8;
458 				eeprom->address_bits = 8;
459 			}
460 		} else {
461 			eeprom->type = e1000_eeprom_microwire;
462 			eeprom->opcode_bits = 3;
463 			eeprom->delay_usec = 50;
464 			if (eecd & E1000_EECD_ADDR_BITS) {
465 				eeprom->word_size = 256;
466 				eeprom->address_bits = 8;
467 			} else {
468 				eeprom->word_size = 64;
469 				eeprom->address_bits = 6;
470 			}
471 		}
472 		eeprom->use_eerd = FALSE;
473 		eeprom->use_eewr = FALSE;
474 		break;
475 	case e1000_82571:
476 	case e1000_82572:
477 		eeprom->type = e1000_eeprom_spi;
478 		eeprom->opcode_bits = 8;
479 		eeprom->delay_usec = 1;
480 		if (eecd & E1000_EECD_ADDR_BITS) {
481 			eeprom->page_size = 32;
482 			eeprom->address_bits = 16;
483 		} else {
484 			eeprom->page_size = 8;
485 			eeprom->address_bits = 8;
486 		}
487 		eeprom->use_eerd = FALSE;
488 		eeprom->use_eewr = FALSE;
489 		break;
490 	case e1000_82573:
491 	case e1000_82574:
492 		eeprom->type = e1000_eeprom_spi;
493 		eeprom->opcode_bits = 8;
494 		eeprom->delay_usec = 1;
495 		if (eecd & E1000_EECD_ADDR_BITS) {
496 			eeprom->page_size = 32;
497 			eeprom->address_bits = 16;
498 		} else {
499 			eeprom->page_size = 8;
500 			eeprom->address_bits = 8;
501 		}
502 		eeprom->use_eerd = TRUE;
503 		eeprom->use_eewr = TRUE;
504 		if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
505 			eeprom->type = e1000_eeprom_flash;
506 			eeprom->word_size = 2048;
507 
508 		/* Ensure that the Autonomous FLASH update bit is cleared due to
509 		 * Flash update issue on parts which use a FLASH for NVM. */
510 			eecd &= ~E1000_EECD_AUPDEN;
511 			E1000_WRITE_REG(hw, EECD, eecd);
512 		}
513 		break;
514 	case e1000_80003es2lan:
515 		eeprom->type = e1000_eeprom_spi;
516 		eeprom->opcode_bits = 8;
517 		eeprom->delay_usec = 1;
518 		if (eecd & E1000_EECD_ADDR_BITS) {
519 			eeprom->page_size = 32;
520 			eeprom->address_bits = 16;
521 		} else {
522 			eeprom->page_size = 8;
523 			eeprom->address_bits = 8;
524 		}
525 		eeprom->use_eerd = TRUE;
526 		eeprom->use_eewr = FALSE;
527 		break;
528 
529 	/* ich8lan does not support currently. if needed, please
530 	 * add corresponding code and functions.
531 	 */
532 #if 0
533 	case e1000_ich8lan:
534 		{
535 		int32_t  i = 0;
536 
537 		eeprom->type = e1000_eeprom_ich8;
538 		eeprom->use_eerd = FALSE;
539 		eeprom->use_eewr = FALSE;
540 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
541 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
542 				ICH_FLASH_GFPREG);
543 		/* Zero the shadow RAM structure. But don't load it from NVM
544 		 * so as to save time for driver init */
545 		if (hw->eeprom_shadow_ram != NULL) {
546 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
547 				hw->eeprom_shadow_ram[i].modified = FALSE;
548 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
549 			}
550 		}
551 
552 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
553 				ICH_FLASH_SECTOR_SIZE;
554 
555 		hw->flash_bank_size = ((flash_size >> 16)
556 				& ICH_GFPREG_BASE_MASK) + 1;
557 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
558 
559 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
560 
561 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
562 		break;
563 		}
564 #endif
565 	default:
566 		break;
567 	}
568 
569 	if (eeprom->type == e1000_eeprom_spi) {
570 		/* eeprom_size will be an enum [0..8] that maps
571 		 * to eeprom sizes 128B to
572 		 * 32KB (incremented by powers of 2).
573 		 */
574 		if (hw->mac_type <= e1000_82547_rev_2) {
575 			/* Set to default value for initial eeprom read. */
576 			eeprom->word_size = 64;
577 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
578 					&eeprom_size);
579 			if (ret_val)
580 				return ret_val;
581 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
582 				>> EEPROM_SIZE_SHIFT;
583 			/* 256B eeprom size was not supported in earlier
584 			 * hardware, so we bump eeprom_size up one to
585 			 * ensure that "1" (which maps to 256B) is never
586 			 * the result used in the shifting logic below. */
587 			if (eeprom_size)
588 				eeprom_size++;
589 		} else {
590 			eeprom_size = (uint16_t)((eecd &
591 				E1000_EECD_SIZE_EX_MASK) >>
592 				E1000_EECD_SIZE_EX_SHIFT);
593 		}
594 
595 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
596 	}
597 	return ret_val;
598 }
599 
600 /******************************************************************************
601  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
602  *
603  * hw - Struct containing variables accessed by shared code
604  *****************************************************************************/
605 static int32_t
606 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
607 {
608 	uint32_t attempts = 100000;
609 	uint32_t i, reg = 0;
610 	int32_t done = E1000_ERR_EEPROM;
611 
612 	for (i = 0; i < attempts; i++) {
613 		if (eerd == E1000_EEPROM_POLL_READ)
614 			reg = E1000_READ_REG(hw, EERD);
615 		else
616 			reg = E1000_READ_REG(hw, EEWR);
617 
618 		if (reg & E1000_EEPROM_RW_REG_DONE) {
619 			done = E1000_SUCCESS;
620 			break;
621 		}
622 		udelay(5);
623 	}
624 
625 	return done;
626 }
627 
628 /******************************************************************************
629  * Reads a 16 bit word from the EEPROM using the EERD register.
630  *
631  * hw - Struct containing variables accessed by shared code
632  * offset - offset of  word in the EEPROM to read
633  * data - word read from the EEPROM
634  * words - number of words to read
635  *****************************************************************************/
636 static int32_t
637 e1000_read_eeprom_eerd(struct e1000_hw *hw,
638 			uint16_t offset,
639 			uint16_t words,
640 			uint16_t *data)
641 {
642 	uint32_t i, eerd = 0;
643 	int32_t error = 0;
644 
645 	for (i = 0; i < words; i++) {
646 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
647 			E1000_EEPROM_RW_REG_START;
648 
649 		E1000_WRITE_REG(hw, EERD, eerd);
650 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
651 
652 		if (error)
653 			break;
654 		data[i] = (E1000_READ_REG(hw, EERD) >>
655 				E1000_EEPROM_RW_REG_DATA);
656 
657 	}
658 
659 	return error;
660 }
661 
662 void e1000_release_eeprom(struct e1000_hw *hw)
663 {
664 	uint32_t eecd;
665 
666 	DEBUGFUNC();
667 
668 	eecd = E1000_READ_REG(hw, EECD);
669 
670 	if (hw->eeprom.type == e1000_eeprom_spi) {
671 		eecd |= E1000_EECD_CS;  /* Pull CS high */
672 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
673 
674 		E1000_WRITE_REG(hw, EECD, eecd);
675 
676 		udelay(hw->eeprom.delay_usec);
677 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
678 		/* cleanup eeprom */
679 
680 		/* CS on Microwire is active-high */
681 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
682 
683 		E1000_WRITE_REG(hw, EECD, eecd);
684 
685 		/* Rising edge of clock */
686 		eecd |= E1000_EECD_SK;
687 		E1000_WRITE_REG(hw, EECD, eecd);
688 		E1000_WRITE_FLUSH(hw);
689 		udelay(hw->eeprom.delay_usec);
690 
691 		/* Falling edge of clock */
692 		eecd &= ~E1000_EECD_SK;
693 		E1000_WRITE_REG(hw, EECD, eecd);
694 		E1000_WRITE_FLUSH(hw);
695 		udelay(hw->eeprom.delay_usec);
696 	}
697 
698 	/* Stop requesting EEPROM access */
699 	if (hw->mac_type > e1000_82544) {
700 		eecd &= ~E1000_EECD_REQ;
701 		E1000_WRITE_REG(hw, EECD, eecd);
702 	}
703 }
704 /******************************************************************************
705  * Reads a 16 bit word from the EEPROM.
706  *
707  * hw - Struct containing variables accessed by shared code
708  *****************************************************************************/
709 static int32_t
710 e1000_spi_eeprom_ready(struct e1000_hw *hw)
711 {
712 	uint16_t retry_count = 0;
713 	uint8_t spi_stat_reg;
714 
715 	DEBUGFUNC();
716 
717 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
718 	 * EEPROM will signal that the command has been completed by clearing
719 	 * bit 0 of the internal status register.  If it's not cleared within
720 	 * 5 milliseconds, then error out.
721 	 */
722 	retry_count = 0;
723 	do {
724 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
725 			hw->eeprom.opcode_bits);
726 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
727 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
728 			break;
729 
730 		udelay(5);
731 		retry_count += 5;
732 
733 		e1000_standby_eeprom(hw);
734 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
735 
736 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
737 	 * only 0-5mSec on 5V devices)
738 	 */
739 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
740 		DEBUGOUT("SPI EEPROM Status error\n");
741 		return -E1000_ERR_EEPROM;
742 	}
743 
744 	return E1000_SUCCESS;
745 }
746 
747 /******************************************************************************
748  * Reads a 16 bit word from the EEPROM.
749  *
750  * hw - Struct containing variables accessed by shared code
751  * offset - offset of  word in the EEPROM to read
752  * data - word read from the EEPROM
753  *****************************************************************************/
754 static int32_t
755 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
756 		uint16_t words, uint16_t *data)
757 {
758 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
759 	uint32_t i = 0;
760 
761 	DEBUGFUNC();
762 
763 	/* If eeprom is not yet detected, do so now */
764 	if (eeprom->word_size == 0)
765 		e1000_init_eeprom_params(hw);
766 
767 	/* A check for invalid values:  offset too large, too many words,
768 	 * and not enough words.
769 	 */
770 	if ((offset >= eeprom->word_size) ||
771 		(words > eeprom->word_size - offset) ||
772 		(words == 0)) {
773 		DEBUGOUT("\"words\" parameter out of bounds."
774 			"Words = %d, size = %d\n", offset, eeprom->word_size);
775 		return -E1000_ERR_EEPROM;
776 	}
777 
778 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
779 	 * directly. In this case, we need to acquire the EEPROM so that
780 	 * FW or other port software does not interrupt.
781 	 */
782 	if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
783 		hw->eeprom.use_eerd == FALSE) {
784 
785 		/* Prepare the EEPROM for bit-bang reading */
786 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
787 			return -E1000_ERR_EEPROM;
788 	}
789 
790 	/* Eerd register EEPROM access requires no eeprom aquire/release */
791 	if (eeprom->use_eerd == TRUE)
792 		return e1000_read_eeprom_eerd(hw, offset, words, data);
793 
794 	/* ich8lan does not support currently. if needed, please
795 	 * add corresponding code and functions.
796 	 */
797 #if 0
798 	/* ICH EEPROM access is done via the ICH flash controller */
799 	if (eeprom->type == e1000_eeprom_ich8)
800 		return e1000_read_eeprom_ich8(hw, offset, words, data);
801 #endif
802 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
803 	 * acquired the EEPROM at this point, so any returns should relase it */
804 	if (eeprom->type == e1000_eeprom_spi) {
805 		uint16_t word_in;
806 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
807 
808 		if (e1000_spi_eeprom_ready(hw)) {
809 			e1000_release_eeprom(hw);
810 			return -E1000_ERR_EEPROM;
811 		}
812 
813 		e1000_standby_eeprom(hw);
814 
815 		/* Some SPI eeproms use the 8th address bit embedded in
816 		 * the opcode */
817 		if ((eeprom->address_bits == 8) && (offset >= 128))
818 			read_opcode |= EEPROM_A8_OPCODE_SPI;
819 
820 		/* Send the READ command (opcode + addr)  */
821 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
822 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
823 				eeprom->address_bits);
824 
825 		/* Read the data.  The address of the eeprom internally
826 		 * increments with each byte (spi) being read, saving on the
827 		 * overhead of eeprom setup and tear-down.  The address
828 		 * counter will roll over if reading beyond the size of
829 		 * the eeprom, thus allowing the entire memory to be read
830 		 * starting from any offset. */
831 		for (i = 0; i < words; i++) {
832 			word_in = e1000_shift_in_ee_bits(hw, 16);
833 			data[i] = (word_in >> 8) | (word_in << 8);
834 		}
835 	} else if (eeprom->type == e1000_eeprom_microwire) {
836 		for (i = 0; i < words; i++) {
837 			/* Send the READ command (opcode + addr)  */
838 			e1000_shift_out_ee_bits(hw,
839 				EEPROM_READ_OPCODE_MICROWIRE,
840 				eeprom->opcode_bits);
841 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
842 				eeprom->address_bits);
843 
844 			/* Read the data.  For microwire, each word requires
845 			 * the overhead of eeprom setup and tear-down. */
846 			data[i] = e1000_shift_in_ee_bits(hw, 16);
847 			e1000_standby_eeprom(hw);
848 		}
849 	}
850 
851 	/* End this read operation */
852 	e1000_release_eeprom(hw);
853 
854 	return E1000_SUCCESS;
855 }
856 
857 /******************************************************************************
858  * Verifies that the EEPROM has a valid checksum
859  *
860  * hw - Struct containing variables accessed by shared code
861  *
862  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
863  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
864  * valid.
865  *****************************************************************************/
866 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
867 {
868 	uint16_t i, checksum, checksum_reg, *buf;
869 
870 	DEBUGFUNC();
871 
872 	/* Allocate a temporary buffer */
873 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
874 	if (!buf) {
875 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
876 		return -E1000_ERR_EEPROM;
877 	}
878 
879 	/* Read the EEPROM */
880 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
881 		E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
882 		return -E1000_ERR_EEPROM;
883 	}
884 
885 	/* Compute the checksum */
886 	checksum = 0;
887 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
888 		checksum += buf[i];
889 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
890 	checksum_reg = buf[i];
891 
892 	/* Verify it! */
893 	if (checksum == checksum_reg)
894 		return 0;
895 
896 	/* Hrm, verification failed, print an error */
897 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
898 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
899 			checksum_reg, checksum);
900 
901 	return -E1000_ERR_EEPROM;
902 }
903 
904 /*****************************************************************************
905  * Set PHY to class A mode
906  * Assumes the following operations will follow to enable the new class mode.
907  *  1. Do a PHY soft reset
908  *  2. Restart auto-negotiation or force link.
909  *
910  * hw - Struct containing variables accessed by shared code
911  ****************************************************************************/
912 static int32_t
913 e1000_set_phy_mode(struct e1000_hw *hw)
914 {
915 	int32_t ret_val;
916 	uint16_t eeprom_data;
917 
918 	DEBUGFUNC();
919 
920 	if ((hw->mac_type == e1000_82545_rev_3) &&
921 		(hw->media_type == e1000_media_type_copper)) {
922 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
923 				1, &eeprom_data);
924 		if (ret_val)
925 			return ret_val;
926 
927 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
928 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
929 			ret_val = e1000_write_phy_reg(hw,
930 					M88E1000_PHY_PAGE_SELECT, 0x000B);
931 			if (ret_val)
932 				return ret_val;
933 			ret_val = e1000_write_phy_reg(hw,
934 					M88E1000_PHY_GEN_CONTROL, 0x8104);
935 			if (ret_val)
936 				return ret_val;
937 
938 			hw->phy_reset_disable = FALSE;
939 		}
940 	}
941 
942 	return E1000_SUCCESS;
943 }
944 
945 /***************************************************************************
946  *
947  * Obtaining software semaphore bit (SMBI) before resetting PHY.
948  *
949  * hw: Struct containing variables accessed by shared code
950  *
951  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
952  *            E1000_SUCCESS at any other case.
953  *
954  ***************************************************************************/
955 static int32_t
956 e1000_get_software_semaphore(struct e1000_hw *hw)
957 {
958 	 int32_t timeout = hw->eeprom.word_size + 1;
959 	 uint32_t swsm;
960 
961 	DEBUGFUNC();
962 
963 	if (hw->mac_type != e1000_80003es2lan)
964 		return E1000_SUCCESS;
965 
966 	while (timeout) {
967 		swsm = E1000_READ_REG(hw, SWSM);
968 		/* If SMBI bit cleared, it is now set and we hold
969 		 * the semaphore */
970 		if (!(swsm & E1000_SWSM_SMBI))
971 			break;
972 		mdelay(1);
973 		timeout--;
974 	}
975 
976 	if (!timeout) {
977 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
978 		return -E1000_ERR_RESET;
979 	}
980 
981 	return E1000_SUCCESS;
982 }
983 
984 /***************************************************************************
985  * This function clears HW semaphore bits.
986  *
987  * hw: Struct containing variables accessed by shared code
988  *
989  * returns: - None.
990  *
991  ***************************************************************************/
992 static void
993 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
994 {
995 	 uint32_t swsm;
996 
997 	DEBUGFUNC();
998 
999 	if (!hw->eeprom_semaphore_present)
1000 		return;
1001 
1002 	swsm = E1000_READ_REG(hw, SWSM);
1003 	if (hw->mac_type == e1000_80003es2lan) {
1004 		/* Release both semaphores. */
1005 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1006 	} else
1007 		swsm &= ~(E1000_SWSM_SWESMBI);
1008 	E1000_WRITE_REG(hw, SWSM, swsm);
1009 }
1010 
1011 /***************************************************************************
1012  *
1013  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1014  * adapter or Eeprom access.
1015  *
1016  * hw: Struct containing variables accessed by shared code
1017  *
1018  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1019  *            E1000_SUCCESS at any other case.
1020  *
1021  ***************************************************************************/
1022 static int32_t
1023 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1024 {
1025 	int32_t timeout;
1026 	uint32_t swsm;
1027 
1028 	DEBUGFUNC();
1029 
1030 	if (!hw->eeprom_semaphore_present)
1031 		return E1000_SUCCESS;
1032 
1033 	if (hw->mac_type == e1000_80003es2lan) {
1034 		/* Get the SW semaphore. */
1035 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1036 			return -E1000_ERR_EEPROM;
1037 	}
1038 
1039 	/* Get the FW semaphore. */
1040 	timeout = hw->eeprom.word_size + 1;
1041 	while (timeout) {
1042 		swsm = E1000_READ_REG(hw, SWSM);
1043 		swsm |= E1000_SWSM_SWESMBI;
1044 		E1000_WRITE_REG(hw, SWSM, swsm);
1045 		/* if we managed to set the bit we got the semaphore. */
1046 		swsm = E1000_READ_REG(hw, SWSM);
1047 		if (swsm & E1000_SWSM_SWESMBI)
1048 			break;
1049 
1050 		udelay(50);
1051 		timeout--;
1052 	}
1053 
1054 	if (!timeout) {
1055 		/* Release semaphores */
1056 		e1000_put_hw_eeprom_semaphore(hw);
1057 		DEBUGOUT("Driver can't access the Eeprom - "
1058 				"SWESMBI bit is set.\n");
1059 		return -E1000_ERR_EEPROM;
1060 	}
1061 
1062 	return E1000_SUCCESS;
1063 }
1064 
1065 static int32_t
1066 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1067 {
1068 	uint32_t swfw_sync = 0;
1069 	uint32_t swmask = mask;
1070 	uint32_t fwmask = mask << 16;
1071 	int32_t timeout = 200;
1072 
1073 	DEBUGFUNC();
1074 	while (timeout) {
1075 		if (e1000_get_hw_eeprom_semaphore(hw))
1076 			return -E1000_ERR_SWFW_SYNC;
1077 
1078 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1079 		if (!(swfw_sync & (fwmask | swmask)))
1080 			break;
1081 
1082 		/* firmware currently using resource (fwmask) */
1083 		/* or other software thread currently using resource (swmask) */
1084 		e1000_put_hw_eeprom_semaphore(hw);
1085 		mdelay(5);
1086 		timeout--;
1087 	}
1088 
1089 	if (!timeout) {
1090 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1091 		return -E1000_ERR_SWFW_SYNC;
1092 	}
1093 
1094 	swfw_sync |= swmask;
1095 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1096 
1097 	e1000_put_hw_eeprom_semaphore(hw);
1098 	return E1000_SUCCESS;
1099 }
1100 
1101 static boolean_t e1000_is_second_port(struct e1000_hw *hw)
1102 {
1103 	switch (hw->mac_type) {
1104 	case e1000_80003es2lan:
1105 	case e1000_82546:
1106 	case e1000_82571:
1107 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1108 			return TRUE;
1109 		/* Fallthrough */
1110 	default:
1111 		return FALSE;
1112 	}
1113 }
1114 
1115 /******************************************************************************
1116  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1117  * second function of dual function devices
1118  *
1119  * nic - Struct containing variables accessed by shared code
1120  *****************************************************************************/
1121 static int
1122 e1000_read_mac_addr(struct eth_device *nic)
1123 {
1124 	struct e1000_hw *hw = nic->priv;
1125 	uint16_t offset;
1126 	uint16_t eeprom_data;
1127 	int i;
1128 
1129 	DEBUGFUNC();
1130 
1131 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1132 		offset = i >> 1;
1133 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1134 			DEBUGOUT("EEPROM Read Error\n");
1135 			return -E1000_ERR_EEPROM;
1136 		}
1137 		nic->enetaddr[i] = eeprom_data & 0xff;
1138 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1139 	}
1140 
1141 	/* Invert the last bit if this is the second device */
1142 	if (e1000_is_second_port(hw))
1143 		nic->enetaddr[5] ^= 1;
1144 
1145 #ifdef CONFIG_E1000_FALLBACK_MAC
1146 	if (!is_valid_ether_addr(nic->enetaddr)) {
1147 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1148 
1149 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1150 	}
1151 #endif
1152 	return 0;
1153 }
1154 
1155 /******************************************************************************
1156  * Initializes receive address filters.
1157  *
1158  * hw - Struct containing variables accessed by shared code
1159  *
1160  * Places the MAC address in receive address register 0 and clears the rest
1161  * of the receive addresss registers. Clears the multicast table. Assumes
1162  * the receiver is in reset when the routine is called.
1163  *****************************************************************************/
1164 static void
1165 e1000_init_rx_addrs(struct eth_device *nic)
1166 {
1167 	struct e1000_hw *hw = nic->priv;
1168 	uint32_t i;
1169 	uint32_t addr_low;
1170 	uint32_t addr_high;
1171 
1172 	DEBUGFUNC();
1173 
1174 	/* Setup the receive address. */
1175 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1176 	addr_low = (nic->enetaddr[0] |
1177 		    (nic->enetaddr[1] << 8) |
1178 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1179 
1180 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1181 
1182 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1183 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1184 
1185 	/* Zero out the other 15 receive addresses. */
1186 	DEBUGOUT("Clearing RAR[1-15]\n");
1187 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1188 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1189 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1190 	}
1191 }
1192 
1193 /******************************************************************************
1194  * Clears the VLAN filer table
1195  *
1196  * hw - Struct containing variables accessed by shared code
1197  *****************************************************************************/
1198 static void
1199 e1000_clear_vfta(struct e1000_hw *hw)
1200 {
1201 	uint32_t offset;
1202 
1203 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1204 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1205 }
1206 
1207 /******************************************************************************
1208  * Set the mac type member in the hw struct.
1209  *
1210  * hw - Struct containing variables accessed by shared code
1211  *****************************************************************************/
1212 int32_t
1213 e1000_set_mac_type(struct e1000_hw *hw)
1214 {
1215 	DEBUGFUNC();
1216 
1217 	switch (hw->device_id) {
1218 	case E1000_DEV_ID_82542:
1219 		switch (hw->revision_id) {
1220 		case E1000_82542_2_0_REV_ID:
1221 			hw->mac_type = e1000_82542_rev2_0;
1222 			break;
1223 		case E1000_82542_2_1_REV_ID:
1224 			hw->mac_type = e1000_82542_rev2_1;
1225 			break;
1226 		default:
1227 			/* Invalid 82542 revision ID */
1228 			return -E1000_ERR_MAC_TYPE;
1229 		}
1230 		break;
1231 	case E1000_DEV_ID_82543GC_FIBER:
1232 	case E1000_DEV_ID_82543GC_COPPER:
1233 		hw->mac_type = e1000_82543;
1234 		break;
1235 	case E1000_DEV_ID_82544EI_COPPER:
1236 	case E1000_DEV_ID_82544EI_FIBER:
1237 	case E1000_DEV_ID_82544GC_COPPER:
1238 	case E1000_DEV_ID_82544GC_LOM:
1239 		hw->mac_type = e1000_82544;
1240 		break;
1241 	case E1000_DEV_ID_82540EM:
1242 	case E1000_DEV_ID_82540EM_LOM:
1243 	case E1000_DEV_ID_82540EP:
1244 	case E1000_DEV_ID_82540EP_LOM:
1245 	case E1000_DEV_ID_82540EP_LP:
1246 		hw->mac_type = e1000_82540;
1247 		break;
1248 	case E1000_DEV_ID_82545EM_COPPER:
1249 	case E1000_DEV_ID_82545EM_FIBER:
1250 		hw->mac_type = e1000_82545;
1251 		break;
1252 	case E1000_DEV_ID_82545GM_COPPER:
1253 	case E1000_DEV_ID_82545GM_FIBER:
1254 	case E1000_DEV_ID_82545GM_SERDES:
1255 		hw->mac_type = e1000_82545_rev_3;
1256 		break;
1257 	case E1000_DEV_ID_82546EB_COPPER:
1258 	case E1000_DEV_ID_82546EB_FIBER:
1259 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1260 		hw->mac_type = e1000_82546;
1261 		break;
1262 	case E1000_DEV_ID_82546GB_COPPER:
1263 	case E1000_DEV_ID_82546GB_FIBER:
1264 	case E1000_DEV_ID_82546GB_SERDES:
1265 	case E1000_DEV_ID_82546GB_PCIE:
1266 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1267 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1268 		hw->mac_type = e1000_82546_rev_3;
1269 		break;
1270 	case E1000_DEV_ID_82541EI:
1271 	case E1000_DEV_ID_82541EI_MOBILE:
1272 	case E1000_DEV_ID_82541ER_LOM:
1273 		hw->mac_type = e1000_82541;
1274 		break;
1275 	case E1000_DEV_ID_82541ER:
1276 	case E1000_DEV_ID_82541GI:
1277 	case E1000_DEV_ID_82541GI_LF:
1278 	case E1000_DEV_ID_82541GI_MOBILE:
1279 		hw->mac_type = e1000_82541_rev_2;
1280 		break;
1281 	case E1000_DEV_ID_82547EI:
1282 	case E1000_DEV_ID_82547EI_MOBILE:
1283 		hw->mac_type = e1000_82547;
1284 		break;
1285 	case E1000_DEV_ID_82547GI:
1286 		hw->mac_type = e1000_82547_rev_2;
1287 		break;
1288 	case E1000_DEV_ID_82571EB_COPPER:
1289 	case E1000_DEV_ID_82571EB_FIBER:
1290 	case E1000_DEV_ID_82571EB_SERDES:
1291 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1292 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1293 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1294 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1295 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1296 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1297 		hw->mac_type = e1000_82571;
1298 		break;
1299 	case E1000_DEV_ID_82572EI_COPPER:
1300 	case E1000_DEV_ID_82572EI_FIBER:
1301 	case E1000_DEV_ID_82572EI_SERDES:
1302 	case E1000_DEV_ID_82572EI:
1303 		hw->mac_type = e1000_82572;
1304 		break;
1305 	case E1000_DEV_ID_82573E:
1306 	case E1000_DEV_ID_82573E_IAMT:
1307 	case E1000_DEV_ID_82573L:
1308 		hw->mac_type = e1000_82573;
1309 		break;
1310 	case E1000_DEV_ID_82574L:
1311 		hw->mac_type = e1000_82574;
1312 		break;
1313 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1314 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1315 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1316 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1317 		hw->mac_type = e1000_80003es2lan;
1318 		break;
1319 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1320 	case E1000_DEV_ID_ICH8_IGP_AMT:
1321 	case E1000_DEV_ID_ICH8_IGP_C:
1322 	case E1000_DEV_ID_ICH8_IFE:
1323 	case E1000_DEV_ID_ICH8_IFE_GT:
1324 	case E1000_DEV_ID_ICH8_IFE_G:
1325 	case E1000_DEV_ID_ICH8_IGP_M:
1326 		hw->mac_type = e1000_ich8lan;
1327 		break;
1328 	default:
1329 		/* Should never have loaded on this device */
1330 		return -E1000_ERR_MAC_TYPE;
1331 	}
1332 	return E1000_SUCCESS;
1333 }
1334 
1335 /******************************************************************************
1336  * Reset the transmit and receive units; mask and clear all interrupts.
1337  *
1338  * hw - Struct containing variables accessed by shared code
1339  *****************************************************************************/
1340 void
1341 e1000_reset_hw(struct e1000_hw *hw)
1342 {
1343 	uint32_t ctrl;
1344 	uint32_t ctrl_ext;
1345 	uint32_t manc;
1346 	uint32_t pba = 0;
1347 
1348 	DEBUGFUNC();
1349 
1350 	/* get the correct pba value for both PCI and PCIe*/
1351 	if (hw->mac_type <  e1000_82571)
1352 		pba = E1000_DEFAULT_PCI_PBA;
1353 	else
1354 		pba = E1000_DEFAULT_PCIE_PBA;
1355 
1356 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1357 	if (hw->mac_type == e1000_82542_rev2_0) {
1358 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1359 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1360 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1361 	}
1362 
1363 	/* Clear interrupt mask to stop board from generating interrupts */
1364 	DEBUGOUT("Masking off all interrupts\n");
1365 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1366 
1367 	/* Disable the Transmit and Receive units.  Then delay to allow
1368 	 * any pending transactions to complete before we hit the MAC with
1369 	 * the global reset.
1370 	 */
1371 	E1000_WRITE_REG(hw, RCTL, 0);
1372 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1373 	E1000_WRITE_FLUSH(hw);
1374 
1375 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1376 	hw->tbi_compatibility_on = FALSE;
1377 
1378 	/* Delay to allow any outstanding PCI transactions to complete before
1379 	 * resetting the device
1380 	 */
1381 	mdelay(10);
1382 
1383 	/* Issue a global reset to the MAC.  This will reset the chip's
1384 	 * transmit, receive, DMA, and link units.  It will not effect
1385 	 * the current PCI configuration.  The global reset bit is self-
1386 	 * clearing, and should clear within a microsecond.
1387 	 */
1388 	DEBUGOUT("Issuing a global reset to MAC\n");
1389 	ctrl = E1000_READ_REG(hw, CTRL);
1390 
1391 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1392 
1393 	/* Force a reload from the EEPROM if necessary */
1394 	if (hw->mac_type < e1000_82540) {
1395 		/* Wait for reset to complete */
1396 		udelay(10);
1397 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1398 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1399 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1400 		E1000_WRITE_FLUSH(hw);
1401 		/* Wait for EEPROM reload */
1402 		mdelay(2);
1403 	} else {
1404 		/* Wait for EEPROM reload (it happens automatically) */
1405 		mdelay(4);
1406 		/* Dissable HW ARPs on ASF enabled adapters */
1407 		manc = E1000_READ_REG(hw, MANC);
1408 		manc &= ~(E1000_MANC_ARP_EN);
1409 		E1000_WRITE_REG(hw, MANC, manc);
1410 	}
1411 
1412 	/* Clear interrupt mask to stop board from generating interrupts */
1413 	DEBUGOUT("Masking off all interrupts\n");
1414 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1415 
1416 	/* Clear any pending interrupt events. */
1417 	E1000_READ_REG(hw, ICR);
1418 
1419 	/* If MWI was previously enabled, reenable it. */
1420 	if (hw->mac_type == e1000_82542_rev2_0) {
1421 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1422 	}
1423 	E1000_WRITE_REG(hw, PBA, pba);
1424 }
1425 
1426 /******************************************************************************
1427  *
1428  * Initialize a number of hardware-dependent bits
1429  *
1430  * hw: Struct containing variables accessed by shared code
1431  *
1432  * This function contains hardware limitation workarounds for PCI-E adapters
1433  *
1434  *****************************************************************************/
1435 static void
1436 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1437 {
1438 	if ((hw->mac_type >= e1000_82571) &&
1439 			(!hw->initialize_hw_bits_disable)) {
1440 		/* Settings common to all PCI-express silicon */
1441 		uint32_t reg_ctrl, reg_ctrl_ext;
1442 		uint32_t reg_tarc0, reg_tarc1;
1443 		uint32_t reg_tctl;
1444 		uint32_t reg_txdctl, reg_txdctl1;
1445 
1446 		/* link autonegotiation/sync workarounds */
1447 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1448 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1449 
1450 		/* Enable not-done TX descriptor counting */
1451 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1452 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1453 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1454 
1455 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1456 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1457 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1458 
1459 		switch (hw->mac_type) {
1460 		case e1000_82571:
1461 		case e1000_82572:
1462 			/* Clear PHY TX compatible mode bits */
1463 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1464 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1465 
1466 			/* link autonegotiation/sync workarounds */
1467 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1468 
1469 			/* TX ring control fixes */
1470 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1471 
1472 			/* Multiple read bit is reversed polarity */
1473 			reg_tctl = E1000_READ_REG(hw, TCTL);
1474 			if (reg_tctl & E1000_TCTL_MULR)
1475 				reg_tarc1 &= ~(1 << 28);
1476 			else
1477 				reg_tarc1 |= (1 << 28);
1478 
1479 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1480 			break;
1481 		case e1000_82573:
1482 		case e1000_82574:
1483 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1484 			reg_ctrl_ext &= ~(1 << 23);
1485 			reg_ctrl_ext |= (1 << 22);
1486 
1487 			/* TX byte count fix */
1488 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1489 			reg_ctrl &= ~(1 << 29);
1490 
1491 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1492 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1493 			break;
1494 		case e1000_80003es2lan:
1495 	/* improve small packet performace for fiber/serdes */
1496 			if ((hw->media_type == e1000_media_type_fiber)
1497 			|| (hw->media_type ==
1498 				e1000_media_type_internal_serdes)) {
1499 				reg_tarc0 &= ~(1 << 20);
1500 			}
1501 
1502 		/* Multiple read bit is reversed polarity */
1503 			reg_tctl = E1000_READ_REG(hw, TCTL);
1504 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1505 			if (reg_tctl & E1000_TCTL_MULR)
1506 				reg_tarc1 &= ~(1 << 28);
1507 			else
1508 				reg_tarc1 |= (1 << 28);
1509 
1510 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1511 			break;
1512 		case e1000_ich8lan:
1513 			/* Reduce concurrent DMA requests to 3 from 4 */
1514 			if ((hw->revision_id < 3) ||
1515 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1516 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1517 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1518 
1519 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1520 			reg_ctrl_ext |= (1 << 22);
1521 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1522 
1523 			/* workaround TX hang with TSO=on */
1524 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1525 
1526 			/* Multiple read bit is reversed polarity */
1527 			reg_tctl = E1000_READ_REG(hw, TCTL);
1528 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1529 			if (reg_tctl & E1000_TCTL_MULR)
1530 				reg_tarc1 &= ~(1 << 28);
1531 			else
1532 				reg_tarc1 |= (1 << 28);
1533 
1534 			/* workaround TX hang with TSO=on */
1535 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1536 
1537 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1538 			break;
1539 		default:
1540 			break;
1541 		}
1542 
1543 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1544 	}
1545 }
1546 
1547 /******************************************************************************
1548  * Performs basic configuration of the adapter.
1549  *
1550  * hw - Struct containing variables accessed by shared code
1551  *
1552  * Assumes that the controller has previously been reset and is in a
1553  * post-reset uninitialized state. Initializes the receive address registers,
1554  * multicast table, and VLAN filter table. Calls routines to setup link
1555  * configuration and flow control settings. Clears all on-chip counters. Leaves
1556  * the transmit and receive units disabled and uninitialized.
1557  *****************************************************************************/
1558 static int
1559 e1000_init_hw(struct eth_device *nic)
1560 {
1561 	struct e1000_hw *hw = nic->priv;
1562 	uint32_t ctrl;
1563 	uint32_t i;
1564 	int32_t ret_val;
1565 	uint16_t pcix_cmd_word;
1566 	uint16_t pcix_stat_hi_word;
1567 	uint16_t cmd_mmrbc;
1568 	uint16_t stat_mmrbc;
1569 	uint32_t mta_size;
1570 	uint32_t reg_data;
1571 	uint32_t ctrl_ext;
1572 	DEBUGFUNC();
1573 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1574 	if ((hw->mac_type == e1000_ich8lan) &&
1575 		((hw->revision_id < 3) ||
1576 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1577 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1578 			reg_data = E1000_READ_REG(hw, STATUS);
1579 			reg_data &= ~0x80000000;
1580 			E1000_WRITE_REG(hw, STATUS, reg_data);
1581 	}
1582 	/* Do not need initialize Identification LED */
1583 
1584 	/* Set the media type and TBI compatibility */
1585 	e1000_set_media_type(hw);
1586 
1587 	/* Must be called after e1000_set_media_type
1588 	 * because media_type is used */
1589 	e1000_initialize_hardware_bits(hw);
1590 
1591 	/* Disabling VLAN filtering. */
1592 	DEBUGOUT("Initializing the IEEE VLAN\n");
1593 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1594 	if (hw->mac_type != e1000_ich8lan) {
1595 		if (hw->mac_type < e1000_82545_rev_3)
1596 			E1000_WRITE_REG(hw, VET, 0);
1597 		e1000_clear_vfta(hw);
1598 	}
1599 
1600 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1601 	if (hw->mac_type == e1000_82542_rev2_0) {
1602 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1603 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1604 				      hw->
1605 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1606 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1607 		E1000_WRITE_FLUSH(hw);
1608 		mdelay(5);
1609 	}
1610 
1611 	/* Setup the receive address. This involves initializing all of the Receive
1612 	 * Address Registers (RARs 0 - 15).
1613 	 */
1614 	e1000_init_rx_addrs(nic);
1615 
1616 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1617 	if (hw->mac_type == e1000_82542_rev2_0) {
1618 		E1000_WRITE_REG(hw, RCTL, 0);
1619 		E1000_WRITE_FLUSH(hw);
1620 		mdelay(1);
1621 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1622 	}
1623 
1624 	/* Zero out the Multicast HASH table */
1625 	DEBUGOUT("Zeroing the MTA\n");
1626 	mta_size = E1000_MC_TBL_SIZE;
1627 	if (hw->mac_type == e1000_ich8lan)
1628 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1629 	for (i = 0; i < mta_size; i++) {
1630 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1631 		/* use write flush to prevent Memory Write Block (MWB) from
1632 		 * occuring when accessing our register space */
1633 		E1000_WRITE_FLUSH(hw);
1634 	}
1635 #if 0
1636 	/* Set the PCI priority bit correctly in the CTRL register.  This
1637 	 * determines if the adapter gives priority to receives, or if it
1638 	 * gives equal priority to transmits and receives.  Valid only on
1639 	 * 82542 and 82543 silicon.
1640 	 */
1641 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1642 		ctrl = E1000_READ_REG(hw, CTRL);
1643 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1644 	}
1645 #endif
1646 	switch (hw->mac_type) {
1647 	case e1000_82545_rev_3:
1648 	case e1000_82546_rev_3:
1649 		break;
1650 	default:
1651 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1652 	if (hw->bus_type == e1000_bus_type_pcix) {
1653 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1654 				     &pcix_cmd_word);
1655 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1656 				     &pcix_stat_hi_word);
1657 		cmd_mmrbc =
1658 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1659 		    PCIX_COMMAND_MMRBC_SHIFT;
1660 		stat_mmrbc =
1661 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1662 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1663 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1664 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1665 		if (cmd_mmrbc > stat_mmrbc) {
1666 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1667 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1668 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1669 					      pcix_cmd_word);
1670 		}
1671 	}
1672 		break;
1673 	}
1674 
1675 	/* More time needed for PHY to initialize */
1676 	if (hw->mac_type == e1000_ich8lan)
1677 		mdelay(15);
1678 
1679 	/* Call a subroutine to configure the link and setup flow control. */
1680 	ret_val = e1000_setup_link(nic);
1681 
1682 	/* Set the transmit descriptor write-back policy */
1683 	if (hw->mac_type > e1000_82544) {
1684 		ctrl = E1000_READ_REG(hw, TXDCTL);
1685 		ctrl =
1686 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1687 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1688 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1689 	}
1690 
1691 	switch (hw->mac_type) {
1692 	default:
1693 		break;
1694 	case e1000_80003es2lan:
1695 		/* Enable retransmit on late collisions */
1696 		reg_data = E1000_READ_REG(hw, TCTL);
1697 		reg_data |= E1000_TCTL_RTLC;
1698 		E1000_WRITE_REG(hw, TCTL, reg_data);
1699 
1700 		/* Configure Gigabit Carry Extend Padding */
1701 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1702 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1703 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1704 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1705 
1706 		/* Configure Transmit Inter-Packet Gap */
1707 		reg_data = E1000_READ_REG(hw, TIPG);
1708 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1709 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1710 		E1000_WRITE_REG(hw, TIPG, reg_data);
1711 
1712 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1713 		reg_data &= ~0x00100000;
1714 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1715 		/* Fall through */
1716 	case e1000_82571:
1717 	case e1000_82572:
1718 	case e1000_ich8lan:
1719 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1720 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1721 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1722 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1723 		break;
1724 	case e1000_82573:
1725 	case e1000_82574:
1726 		reg_data = E1000_READ_REG(hw, GCR);
1727 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1728 		E1000_WRITE_REG(hw, GCR, reg_data);
1729 	}
1730 
1731 #if 0
1732 	/* Clear all of the statistics registers (clear on read).  It is
1733 	 * important that we do this after we have tried to establish link
1734 	 * because the symbol error count will increment wildly if there
1735 	 * is no link.
1736 	 */
1737 	e1000_clear_hw_cntrs(hw);
1738 
1739 	/* ICH8 No-snoop bits are opposite polarity.
1740 	 * Set to snoop by default after reset. */
1741 	if (hw->mac_type == e1000_ich8lan)
1742 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1743 #endif
1744 
1745 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1746 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1747 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1748 		/* Relaxed ordering must be disabled to avoid a parity
1749 		 * error crash in a PCI slot. */
1750 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1751 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1752 	}
1753 
1754 	return ret_val;
1755 }
1756 
1757 /******************************************************************************
1758  * Configures flow control and link settings.
1759  *
1760  * hw - Struct containing variables accessed by shared code
1761  *
1762  * Determines which flow control settings to use. Calls the apropriate media-
1763  * specific link configuration function. Configures the flow control settings.
1764  * Assuming the adapter has a valid link partner, a valid link should be
1765  * established. Assumes the hardware has previously been reset and the
1766  * transmitter and receiver are not enabled.
1767  *****************************************************************************/
1768 static int
1769 e1000_setup_link(struct eth_device *nic)
1770 {
1771 	struct e1000_hw *hw = nic->priv;
1772 	uint32_t ctrl_ext;
1773 	int32_t ret_val;
1774 	uint16_t eeprom_data;
1775 
1776 	DEBUGFUNC();
1777 
1778 	/* In the case of the phy reset being blocked, we already have a link.
1779 	 * We do not have to set it up again. */
1780 	if (e1000_check_phy_reset_block(hw))
1781 		return E1000_SUCCESS;
1782 
1783 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1784 	 * that determine the hardware's default PAUSE (flow control) mode,
1785 	 * a bit that determines whether the HW defaults to enabling or
1786 	 * disabling auto-negotiation, and the direction of the
1787 	 * SW defined pins. If there is no SW over-ride of the flow
1788 	 * control setting, then the variable hw->fc will
1789 	 * be initialized based on a value in the EEPROM.
1790 	 */
1791 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1792 				&eeprom_data) < 0) {
1793 		DEBUGOUT("EEPROM Read Error\n");
1794 		return -E1000_ERR_EEPROM;
1795 	}
1796 
1797 	if (hw->fc == e1000_fc_default) {
1798 		switch (hw->mac_type) {
1799 		case e1000_ich8lan:
1800 		case e1000_82573:
1801 		case e1000_82574:
1802 			hw->fc = e1000_fc_full;
1803 			break;
1804 		default:
1805 			ret_val = e1000_read_eeprom(hw,
1806 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1807 			if (ret_val) {
1808 				DEBUGOUT("EEPROM Read Error\n");
1809 				return -E1000_ERR_EEPROM;
1810 			}
1811 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1812 				hw->fc = e1000_fc_none;
1813 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1814 				    EEPROM_WORD0F_ASM_DIR)
1815 				hw->fc = e1000_fc_tx_pause;
1816 			else
1817 				hw->fc = e1000_fc_full;
1818 			break;
1819 		}
1820 	}
1821 
1822 	/* We want to save off the original Flow Control configuration just
1823 	 * in case we get disconnected and then reconnected into a different
1824 	 * hub or switch with different Flow Control capabilities.
1825 	 */
1826 	if (hw->mac_type == e1000_82542_rev2_0)
1827 		hw->fc &= (~e1000_fc_tx_pause);
1828 
1829 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1830 		hw->fc &= (~e1000_fc_rx_pause);
1831 
1832 	hw->original_fc = hw->fc;
1833 
1834 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1835 
1836 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1837 	 * polarity value for the SW controlled pins, and setup the
1838 	 * Extended Device Control reg with that info.
1839 	 * This is needed because one of the SW controlled pins is used for
1840 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1841 	 * or e1000_phy_setup() is called.
1842 	 */
1843 	if (hw->mac_type == e1000_82543) {
1844 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1845 			    SWDPIO__EXT_SHIFT);
1846 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1847 	}
1848 
1849 	/* Call the necessary subroutine to configure the link. */
1850 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1851 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1852 	if (ret_val < 0) {
1853 		return ret_val;
1854 	}
1855 
1856 	/* Initialize the flow control address, type, and PAUSE timer
1857 	 * registers to their default values.  This is done even if flow
1858 	 * control is disabled, because it does not hurt anything to
1859 	 * initialize these registers.
1860 	 */
1861 	DEBUGOUT("Initializing the Flow Control address, type"
1862 			"and timer regs\n");
1863 
1864 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1865 	if (hw->mac_type != e1000_ich8lan) {
1866 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1867 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1868 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1869 	}
1870 
1871 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1872 
1873 	/* Set the flow control receive threshold registers.  Normally,
1874 	 * these registers will be set to a default threshold that may be
1875 	 * adjusted later by the driver's runtime code.  However, if the
1876 	 * ability to transmit pause frames in not enabled, then these
1877 	 * registers will be set to 0.
1878 	 */
1879 	if (!(hw->fc & e1000_fc_tx_pause)) {
1880 		E1000_WRITE_REG(hw, FCRTL, 0);
1881 		E1000_WRITE_REG(hw, FCRTH, 0);
1882 	} else {
1883 		/* We need to set up the Receive Threshold high and low water marks
1884 		 * as well as (optionally) enabling the transmission of XON frames.
1885 		 */
1886 		if (hw->fc_send_xon) {
1887 			E1000_WRITE_REG(hw, FCRTL,
1888 					(hw->fc_low_water | E1000_FCRTL_XONE));
1889 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1890 		} else {
1891 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1892 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1893 		}
1894 	}
1895 	return ret_val;
1896 }
1897 
1898 /******************************************************************************
1899  * Sets up link for a fiber based adapter
1900  *
1901  * hw - Struct containing variables accessed by shared code
1902  *
1903  * Manipulates Physical Coding Sublayer functions in order to configure
1904  * link. Assumes the hardware has been previously reset and the transmitter
1905  * and receiver are not enabled.
1906  *****************************************************************************/
1907 static int
1908 e1000_setup_fiber_link(struct eth_device *nic)
1909 {
1910 	struct e1000_hw *hw = nic->priv;
1911 	uint32_t ctrl;
1912 	uint32_t status;
1913 	uint32_t txcw = 0;
1914 	uint32_t i;
1915 	uint32_t signal;
1916 	int32_t ret_val;
1917 
1918 	DEBUGFUNC();
1919 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1920 	 * set when the optics detect a signal. On older adapters, it will be
1921 	 * cleared when there is a signal
1922 	 */
1923 	ctrl = E1000_READ_REG(hw, CTRL);
1924 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1925 		signal = E1000_CTRL_SWDPIN1;
1926 	else
1927 		signal = 0;
1928 
1929 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1930 	       ctrl);
1931 	/* Take the link out of reset */
1932 	ctrl &= ~(E1000_CTRL_LRST);
1933 
1934 	e1000_config_collision_dist(hw);
1935 
1936 	/* Check for a software override of the flow control settings, and setup
1937 	 * the device accordingly.  If auto-negotiation is enabled, then software
1938 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1939 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1940 	 * auto-negotiation is disabled, then software will have to manually
1941 	 * configure the two flow control enable bits in the CTRL register.
1942 	 *
1943 	 * The possible values of the "fc" parameter are:
1944 	 *	0:  Flow control is completely disabled
1945 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1946 	 *	    not send pause frames).
1947 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1948 	 *	    not support receiving pause frames).
1949 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1950 	 */
1951 	switch (hw->fc) {
1952 	case e1000_fc_none:
1953 		/* Flow control is completely disabled by a software over-ride. */
1954 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1955 		break;
1956 	case e1000_fc_rx_pause:
1957 		/* RX Flow control is enabled and TX Flow control is disabled by a
1958 		 * software over-ride. Since there really isn't a way to advertise
1959 		 * that we are capable of RX Pause ONLY, we will advertise that we
1960 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1961 		 *  disable the adapter's ability to send PAUSE frames.
1962 		 */
1963 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1964 		break;
1965 	case e1000_fc_tx_pause:
1966 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
1967 		 * software over-ride.
1968 		 */
1969 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1970 		break;
1971 	case e1000_fc_full:
1972 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
1973 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1974 		break;
1975 	default:
1976 		DEBUGOUT("Flow control param set incorrectly\n");
1977 		return -E1000_ERR_CONFIG;
1978 		break;
1979 	}
1980 
1981 	/* Since auto-negotiation is enabled, take the link out of reset (the link
1982 	 * will be in reset, because we previously reset the chip). This will
1983 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
1984 	 * link-up status bit will be set and the flow control enable bits (RFCE
1985 	 * and TFCE) will be set according to their negotiated value.
1986 	 */
1987 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1988 
1989 	E1000_WRITE_REG(hw, TXCW, txcw);
1990 	E1000_WRITE_REG(hw, CTRL, ctrl);
1991 	E1000_WRITE_FLUSH(hw);
1992 
1993 	hw->txcw = txcw;
1994 	mdelay(1);
1995 
1996 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1997 	 * indication in the Device Status Register.  Time-out if a link isn't
1998 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1999 	 * less than 500 milliseconds even if the other end is doing it in SW).
2000 	 */
2001 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2002 		DEBUGOUT("Looking for Link\n");
2003 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2004 			mdelay(10);
2005 			status = E1000_READ_REG(hw, STATUS);
2006 			if (status & E1000_STATUS_LU)
2007 				break;
2008 		}
2009 		if (i == (LINK_UP_TIMEOUT / 10)) {
2010 			/* AutoNeg failed to achieve a link, so we'll call
2011 			 * e1000_check_for_link. This routine will force the link up if we
2012 			 * detect a signal. This will allow us to communicate with
2013 			 * non-autonegotiating link partners.
2014 			 */
2015 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2016 			hw->autoneg_failed = 1;
2017 			ret_val = e1000_check_for_link(nic);
2018 			if (ret_val < 0) {
2019 				DEBUGOUT("Error while checking for link\n");
2020 				return ret_val;
2021 			}
2022 			hw->autoneg_failed = 0;
2023 		} else {
2024 			hw->autoneg_failed = 0;
2025 			DEBUGOUT("Valid Link Found\n");
2026 		}
2027 	} else {
2028 		DEBUGOUT("No Signal Detected\n");
2029 		return -E1000_ERR_NOLINK;
2030 	}
2031 	return 0;
2032 }
2033 
2034 /******************************************************************************
2035 * Make sure we have a valid PHY and change PHY mode before link setup.
2036 *
2037 * hw - Struct containing variables accessed by shared code
2038 ******************************************************************************/
2039 static int32_t
2040 e1000_copper_link_preconfig(struct e1000_hw *hw)
2041 {
2042 	uint32_t ctrl;
2043 	int32_t ret_val;
2044 	uint16_t phy_data;
2045 
2046 	DEBUGFUNC();
2047 
2048 	ctrl = E1000_READ_REG(hw, CTRL);
2049 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2050 	 * the PHY speed and duplex configuration is. In addition, we need to
2051 	 * perform a hardware reset on the PHY to take it out of reset.
2052 	 */
2053 	if (hw->mac_type > e1000_82543) {
2054 		ctrl |= E1000_CTRL_SLU;
2055 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2056 		E1000_WRITE_REG(hw, CTRL, ctrl);
2057 	} else {
2058 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2059 				| E1000_CTRL_SLU);
2060 		E1000_WRITE_REG(hw, CTRL, ctrl);
2061 		ret_val = e1000_phy_hw_reset(hw);
2062 		if (ret_val)
2063 			return ret_val;
2064 	}
2065 
2066 	/* Make sure we have a valid PHY */
2067 	ret_val = e1000_detect_gig_phy(hw);
2068 	if (ret_val) {
2069 		DEBUGOUT("Error, did not detect valid phy.\n");
2070 		return ret_val;
2071 	}
2072 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2073 
2074 	/* Set PHY to class A mode (if necessary) */
2075 	ret_val = e1000_set_phy_mode(hw);
2076 	if (ret_val)
2077 		return ret_val;
2078 	if ((hw->mac_type == e1000_82545_rev_3) ||
2079 		(hw->mac_type == e1000_82546_rev_3)) {
2080 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2081 				&phy_data);
2082 		phy_data |= 0x00000008;
2083 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2084 				phy_data);
2085 	}
2086 
2087 	if (hw->mac_type <= e1000_82543 ||
2088 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2089 		hw->mac_type == e1000_82541_rev_2
2090 		|| hw->mac_type == e1000_82547_rev_2)
2091 			hw->phy_reset_disable = FALSE;
2092 
2093 	return E1000_SUCCESS;
2094 }
2095 
2096 /*****************************************************************************
2097  *
2098  * This function sets the lplu state according to the active flag.  When
2099  * activating lplu this function also disables smart speed and vise versa.
2100  * lplu will not be activated unless the device autonegotiation advertisment
2101  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2102  * hw: Struct containing variables accessed by shared code
2103  * active - true to enable lplu false to disable lplu.
2104  *
2105  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2106  *            E1000_SUCCESS at any other case.
2107  *
2108  ****************************************************************************/
2109 
2110 static int32_t
2111 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2112 {
2113 	uint32_t phy_ctrl = 0;
2114 	int32_t ret_val;
2115 	uint16_t phy_data;
2116 	DEBUGFUNC();
2117 
2118 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2119 	    && hw->phy_type != e1000_phy_igp_3)
2120 		return E1000_SUCCESS;
2121 
2122 	/* During driver activity LPLU should not be used or it will attain link
2123 	 * from the lowest speeds starting from 10Mbps. The capability is used
2124 	 * for Dx transitions and states */
2125 	if (hw->mac_type == e1000_82541_rev_2
2126 			|| hw->mac_type == e1000_82547_rev_2) {
2127 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2128 				&phy_data);
2129 		if (ret_val)
2130 			return ret_val;
2131 	} else if (hw->mac_type == e1000_ich8lan) {
2132 		/* MAC writes into PHY register based on the state transition
2133 		 * and start auto-negotiation. SW driver can overwrite the
2134 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2135 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2136 	} else {
2137 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2138 				&phy_data);
2139 		if (ret_val)
2140 			return ret_val;
2141 	}
2142 
2143 	if (!active) {
2144 		if (hw->mac_type == e1000_82541_rev_2 ||
2145 			hw->mac_type == e1000_82547_rev_2) {
2146 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2147 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2148 					phy_data);
2149 			if (ret_val)
2150 				return ret_val;
2151 		} else {
2152 			if (hw->mac_type == e1000_ich8lan) {
2153 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2154 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2155 			} else {
2156 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2157 				ret_val = e1000_write_phy_reg(hw,
2158 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2159 				if (ret_val)
2160 					return ret_val;
2161 			}
2162 		}
2163 
2164 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2165 	 * Dx states where the power conservation is most important.  During
2166 	 * driver activity we should enable SmartSpeed, so performance is
2167 	 * maintained. */
2168 		if (hw->smart_speed == e1000_smart_speed_on) {
2169 			ret_val = e1000_read_phy_reg(hw,
2170 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2171 			if (ret_val)
2172 				return ret_val;
2173 
2174 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2175 			ret_val = e1000_write_phy_reg(hw,
2176 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2177 			if (ret_val)
2178 				return ret_val;
2179 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2180 			ret_val = e1000_read_phy_reg(hw,
2181 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2182 			if (ret_val)
2183 				return ret_val;
2184 
2185 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2186 			ret_val = e1000_write_phy_reg(hw,
2187 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2188 			if (ret_val)
2189 				return ret_val;
2190 		}
2191 
2192 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2193 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2194 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2195 
2196 		if (hw->mac_type == e1000_82541_rev_2 ||
2197 		    hw->mac_type == e1000_82547_rev_2) {
2198 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2199 			ret_val = e1000_write_phy_reg(hw,
2200 					IGP01E1000_GMII_FIFO, phy_data);
2201 			if (ret_val)
2202 				return ret_val;
2203 		} else {
2204 			if (hw->mac_type == e1000_ich8lan) {
2205 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2206 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2207 			} else {
2208 				phy_data |= IGP02E1000_PM_D3_LPLU;
2209 				ret_val = e1000_write_phy_reg(hw,
2210 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2211 				if (ret_val)
2212 					return ret_val;
2213 			}
2214 		}
2215 
2216 		/* When LPLU is enabled we should disable SmartSpeed */
2217 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2218 				&phy_data);
2219 		if (ret_val)
2220 			return ret_val;
2221 
2222 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2223 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2224 				phy_data);
2225 		if (ret_val)
2226 			return ret_val;
2227 	}
2228 	return E1000_SUCCESS;
2229 }
2230 
2231 /*****************************************************************************
2232  *
2233  * This function sets the lplu d0 state according to the active flag.  When
2234  * activating lplu this function also disables smart speed and vise versa.
2235  * lplu will not be activated unless the device autonegotiation advertisment
2236  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2237  * hw: Struct containing variables accessed by shared code
2238  * active - true to enable lplu false to disable lplu.
2239  *
2240  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2241  *            E1000_SUCCESS at any other case.
2242  *
2243  ****************************************************************************/
2244 
2245 static int32_t
2246 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2247 {
2248 	uint32_t phy_ctrl = 0;
2249 	int32_t ret_val;
2250 	uint16_t phy_data;
2251 	DEBUGFUNC();
2252 
2253 	if (hw->mac_type <= e1000_82547_rev_2)
2254 		return E1000_SUCCESS;
2255 
2256 	if (hw->mac_type == e1000_ich8lan) {
2257 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2258 	} else {
2259 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2260 				&phy_data);
2261 		if (ret_val)
2262 			return ret_val;
2263 	}
2264 
2265 	if (!active) {
2266 		if (hw->mac_type == e1000_ich8lan) {
2267 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2268 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2269 		} else {
2270 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2271 			ret_val = e1000_write_phy_reg(hw,
2272 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2273 			if (ret_val)
2274 				return ret_val;
2275 		}
2276 
2277 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2278 	 * Dx states where the power conservation is most important.  During
2279 	 * driver activity we should enable SmartSpeed, so performance is
2280 	 * maintained. */
2281 		if (hw->smart_speed == e1000_smart_speed_on) {
2282 			ret_val = e1000_read_phy_reg(hw,
2283 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2284 			if (ret_val)
2285 				return ret_val;
2286 
2287 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2288 			ret_val = e1000_write_phy_reg(hw,
2289 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2290 			if (ret_val)
2291 				return ret_val;
2292 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2293 			ret_val = e1000_read_phy_reg(hw,
2294 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2295 			if (ret_val)
2296 				return ret_val;
2297 
2298 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2299 			ret_val = e1000_write_phy_reg(hw,
2300 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2301 			if (ret_val)
2302 				return ret_val;
2303 		}
2304 
2305 
2306 	} else {
2307 
2308 		if (hw->mac_type == e1000_ich8lan) {
2309 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2310 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2311 		} else {
2312 			phy_data |= IGP02E1000_PM_D0_LPLU;
2313 			ret_val = e1000_write_phy_reg(hw,
2314 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2315 			if (ret_val)
2316 				return ret_val;
2317 		}
2318 
2319 		/* When LPLU is enabled we should disable SmartSpeed */
2320 		ret_val = e1000_read_phy_reg(hw,
2321 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2322 		if (ret_val)
2323 			return ret_val;
2324 
2325 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2326 		ret_val = e1000_write_phy_reg(hw,
2327 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2328 		if (ret_val)
2329 			return ret_val;
2330 
2331 	}
2332 	return E1000_SUCCESS;
2333 }
2334 
2335 /********************************************************************
2336 * Copper link setup for e1000_phy_igp series.
2337 *
2338 * hw - Struct containing variables accessed by shared code
2339 *********************************************************************/
2340 static int32_t
2341 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2342 {
2343 	uint32_t led_ctrl;
2344 	int32_t ret_val;
2345 	uint16_t phy_data;
2346 
2347 	DEBUGFUNC();
2348 
2349 	if (hw->phy_reset_disable)
2350 		return E1000_SUCCESS;
2351 
2352 	ret_val = e1000_phy_reset(hw);
2353 	if (ret_val) {
2354 		DEBUGOUT("Error Resetting the PHY\n");
2355 		return ret_val;
2356 	}
2357 
2358 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2359 	mdelay(15);
2360 	if (hw->mac_type != e1000_ich8lan) {
2361 		/* Configure activity LED after PHY reset */
2362 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2363 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2364 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2365 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2366 	}
2367 
2368 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2369 	if (hw->phy_type == e1000_phy_igp) {
2370 		/* disable lplu d3 during driver init */
2371 		ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2372 		if (ret_val) {
2373 			DEBUGOUT("Error Disabling LPLU D3\n");
2374 			return ret_val;
2375 		}
2376 	}
2377 
2378 	/* disable lplu d0 during driver init */
2379 	ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2380 	if (ret_val) {
2381 		DEBUGOUT("Error Disabling LPLU D0\n");
2382 		return ret_val;
2383 	}
2384 	/* Configure mdi-mdix settings */
2385 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2386 	if (ret_val)
2387 		return ret_val;
2388 
2389 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2390 		hw->dsp_config_state = e1000_dsp_config_disabled;
2391 		/* Force MDI for earlier revs of the IGP PHY */
2392 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2393 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2394 		hw->mdix = 1;
2395 
2396 	} else {
2397 		hw->dsp_config_state = e1000_dsp_config_enabled;
2398 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2399 
2400 		switch (hw->mdix) {
2401 		case 1:
2402 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2403 			break;
2404 		case 2:
2405 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2406 			break;
2407 		case 0:
2408 		default:
2409 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2410 			break;
2411 		}
2412 	}
2413 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2414 	if (ret_val)
2415 		return ret_val;
2416 
2417 	/* set auto-master slave resolution settings */
2418 	if (hw->autoneg) {
2419 		e1000_ms_type phy_ms_setting = hw->master_slave;
2420 
2421 		if (hw->ffe_config_state == e1000_ffe_config_active)
2422 			hw->ffe_config_state = e1000_ffe_config_enabled;
2423 
2424 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2425 			hw->dsp_config_state = e1000_dsp_config_enabled;
2426 
2427 		/* when autonegotiation advertisment is only 1000Mbps then we
2428 		  * should disable SmartSpeed and enable Auto MasterSlave
2429 		  * resolution as hardware default. */
2430 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2431 			/* Disable SmartSpeed */
2432 			ret_val = e1000_read_phy_reg(hw,
2433 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2434 			if (ret_val)
2435 				return ret_val;
2436 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2437 			ret_val = e1000_write_phy_reg(hw,
2438 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2439 			if (ret_val)
2440 				return ret_val;
2441 			/* Set auto Master/Slave resolution process */
2442 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2443 					&phy_data);
2444 			if (ret_val)
2445 				return ret_val;
2446 			phy_data &= ~CR_1000T_MS_ENABLE;
2447 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2448 					phy_data);
2449 			if (ret_val)
2450 				return ret_val;
2451 		}
2452 
2453 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2454 		if (ret_val)
2455 			return ret_val;
2456 
2457 		/* load defaults for future use */
2458 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2459 				((phy_data & CR_1000T_MS_VALUE) ?
2460 				e1000_ms_force_master :
2461 				e1000_ms_force_slave) :
2462 				e1000_ms_auto;
2463 
2464 		switch (phy_ms_setting) {
2465 		case e1000_ms_force_master:
2466 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2467 			break;
2468 		case e1000_ms_force_slave:
2469 			phy_data |= CR_1000T_MS_ENABLE;
2470 			phy_data &= ~(CR_1000T_MS_VALUE);
2471 			break;
2472 		case e1000_ms_auto:
2473 			phy_data &= ~CR_1000T_MS_ENABLE;
2474 		default:
2475 			break;
2476 		}
2477 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2478 		if (ret_val)
2479 			return ret_val;
2480 	}
2481 
2482 	return E1000_SUCCESS;
2483 }
2484 
2485 /*****************************************************************************
2486  * This function checks the mode of the firmware.
2487  *
2488  * returns  - TRUE when the mode is IAMT or FALSE.
2489  ****************************************************************************/
2490 boolean_t
2491 e1000_check_mng_mode(struct e1000_hw *hw)
2492 {
2493 	uint32_t fwsm;
2494 	DEBUGFUNC();
2495 
2496 	fwsm = E1000_READ_REG(hw, FWSM);
2497 
2498 	if (hw->mac_type == e1000_ich8lan) {
2499 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2500 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2501 			return TRUE;
2502 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2503 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2504 			return TRUE;
2505 
2506 	return FALSE;
2507 }
2508 
2509 static int32_t
2510 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2511 {
2512 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2513 	uint32_t reg_val;
2514 	DEBUGFUNC();
2515 
2516 	if (e1000_is_second_port(hw))
2517 		swfw = E1000_SWFW_PHY1_SM;
2518 
2519 	if (e1000_swfw_sync_acquire(hw, swfw))
2520 		return -E1000_ERR_SWFW_SYNC;
2521 
2522 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2523 			& E1000_KUMCTRLSTA_OFFSET) | data;
2524 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2525 	udelay(2);
2526 
2527 	return E1000_SUCCESS;
2528 }
2529 
2530 static int32_t
2531 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2532 {
2533 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2534 	uint32_t reg_val;
2535 	DEBUGFUNC();
2536 
2537 	if (e1000_is_second_port(hw))
2538 		swfw = E1000_SWFW_PHY1_SM;
2539 
2540 	if (e1000_swfw_sync_acquire(hw, swfw))
2541 		return -E1000_ERR_SWFW_SYNC;
2542 
2543 	/* Write register address */
2544 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2545 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2546 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2547 	udelay(2);
2548 
2549 	/* Read the data returned */
2550 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2551 	*data = (uint16_t)reg_val;
2552 
2553 	return E1000_SUCCESS;
2554 }
2555 
2556 /********************************************************************
2557 * Copper link setup for e1000_phy_gg82563 series.
2558 *
2559 * hw - Struct containing variables accessed by shared code
2560 *********************************************************************/
2561 static int32_t
2562 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2563 {
2564 	int32_t ret_val;
2565 	uint16_t phy_data;
2566 	uint32_t reg_data;
2567 
2568 	DEBUGFUNC();
2569 
2570 	if (!hw->phy_reset_disable) {
2571 		/* Enable CRS on TX for half-duplex operation. */
2572 		ret_val = e1000_read_phy_reg(hw,
2573 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2574 		if (ret_val)
2575 			return ret_val;
2576 
2577 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2578 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2579 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2580 
2581 		ret_val = e1000_write_phy_reg(hw,
2582 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2583 		if (ret_val)
2584 			return ret_val;
2585 
2586 		/* Options:
2587 		 *   MDI/MDI-X = 0 (default)
2588 		 *   0 - Auto for all speeds
2589 		 *   1 - MDI mode
2590 		 *   2 - MDI-X mode
2591 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2592 		 */
2593 		ret_val = e1000_read_phy_reg(hw,
2594 				GG82563_PHY_SPEC_CTRL, &phy_data);
2595 		if (ret_val)
2596 			return ret_val;
2597 
2598 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2599 
2600 		switch (hw->mdix) {
2601 		case 1:
2602 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2603 			break;
2604 		case 2:
2605 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2606 			break;
2607 		case 0:
2608 		default:
2609 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2610 			break;
2611 		}
2612 
2613 		/* Options:
2614 		 *   disable_polarity_correction = 0 (default)
2615 		 *       Automatic Correction for Reversed Cable Polarity
2616 		 *   0 - Disabled
2617 		 *   1 - Enabled
2618 		 */
2619 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2620 		ret_val = e1000_write_phy_reg(hw,
2621 				GG82563_PHY_SPEC_CTRL, phy_data);
2622 
2623 		if (ret_val)
2624 			return ret_val;
2625 
2626 		/* SW Reset the PHY so all changes take effect */
2627 		ret_val = e1000_phy_reset(hw);
2628 		if (ret_val) {
2629 			DEBUGOUT("Error Resetting the PHY\n");
2630 			return ret_val;
2631 		}
2632 	} /* phy_reset_disable */
2633 
2634 	if (hw->mac_type == e1000_80003es2lan) {
2635 		/* Bypass RX and TX FIFO's */
2636 		ret_val = e1000_write_kmrn_reg(hw,
2637 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2638 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2639 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2640 		if (ret_val)
2641 			return ret_val;
2642 
2643 		ret_val = e1000_read_phy_reg(hw,
2644 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2645 		if (ret_val)
2646 			return ret_val;
2647 
2648 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2649 		ret_val = e1000_write_phy_reg(hw,
2650 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2651 
2652 		if (ret_val)
2653 			return ret_val;
2654 
2655 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2656 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2657 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2658 
2659 		ret_val = e1000_read_phy_reg(hw,
2660 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2661 		if (ret_val)
2662 			return ret_val;
2663 
2664 	/* Do not init these registers when the HW is in IAMT mode, since the
2665 	 * firmware will have already initialized them.  We only initialize
2666 	 * them if the HW is not in IAMT mode.
2667 	 */
2668 		if (e1000_check_mng_mode(hw) == FALSE) {
2669 			/* Enable Electrical Idle on the PHY */
2670 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2671 			ret_val = e1000_write_phy_reg(hw,
2672 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2673 			if (ret_val)
2674 				return ret_val;
2675 
2676 			ret_val = e1000_read_phy_reg(hw,
2677 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2678 			if (ret_val)
2679 				return ret_val;
2680 
2681 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2682 			ret_val = e1000_write_phy_reg(hw,
2683 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2684 
2685 			if (ret_val)
2686 				return ret_val;
2687 		}
2688 
2689 		/* Workaround: Disable padding in Kumeran interface in the MAC
2690 		 * and in the PHY to avoid CRC errors.
2691 		 */
2692 		ret_val = e1000_read_phy_reg(hw,
2693 				GG82563_PHY_INBAND_CTRL, &phy_data);
2694 		if (ret_val)
2695 			return ret_val;
2696 		phy_data |= GG82563_ICR_DIS_PADDING;
2697 		ret_val = e1000_write_phy_reg(hw,
2698 				GG82563_PHY_INBAND_CTRL, phy_data);
2699 		if (ret_val)
2700 			return ret_val;
2701 	}
2702 	return E1000_SUCCESS;
2703 }
2704 
2705 /********************************************************************
2706 * Copper link setup for e1000_phy_m88 series.
2707 *
2708 * hw - Struct containing variables accessed by shared code
2709 *********************************************************************/
2710 static int32_t
2711 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2712 {
2713 	int32_t ret_val;
2714 	uint16_t phy_data;
2715 
2716 	DEBUGFUNC();
2717 
2718 	if (hw->phy_reset_disable)
2719 		return E1000_SUCCESS;
2720 
2721 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2722 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2723 	if (ret_val)
2724 		return ret_val;
2725 
2726 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2727 
2728 	/* Options:
2729 	 *   MDI/MDI-X = 0 (default)
2730 	 *   0 - Auto for all speeds
2731 	 *   1 - MDI mode
2732 	 *   2 - MDI-X mode
2733 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2734 	 */
2735 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2736 
2737 	switch (hw->mdix) {
2738 	case 1:
2739 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2740 		break;
2741 	case 2:
2742 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2743 		break;
2744 	case 3:
2745 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2746 		break;
2747 	case 0:
2748 	default:
2749 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2750 		break;
2751 	}
2752 
2753 	/* Options:
2754 	 *   disable_polarity_correction = 0 (default)
2755 	 *       Automatic Correction for Reversed Cable Polarity
2756 	 *   0 - Disabled
2757 	 *   1 - Enabled
2758 	 */
2759 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2760 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2761 	if (ret_val)
2762 		return ret_val;
2763 
2764 	if (hw->phy_revision < M88E1011_I_REV_4) {
2765 		/* Force TX_CLK in the Extended PHY Specific Control Register
2766 		 * to 25MHz clock.
2767 		 */
2768 		ret_val = e1000_read_phy_reg(hw,
2769 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2770 		if (ret_val)
2771 			return ret_val;
2772 
2773 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2774 
2775 		if ((hw->phy_revision == E1000_REVISION_2) &&
2776 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2777 			/* Vidalia Phy, set the downshift counter to 5x */
2778 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2779 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2780 			ret_val = e1000_write_phy_reg(hw,
2781 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2782 			if (ret_val)
2783 				return ret_val;
2784 		} else {
2785 			/* Configure Master and Slave downshift values */
2786 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2787 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2788 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2789 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2790 			ret_val = e1000_write_phy_reg(hw,
2791 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2792 			if (ret_val)
2793 				return ret_val;
2794 		}
2795 	}
2796 
2797 	/* SW Reset the PHY so all changes take effect */
2798 	ret_val = e1000_phy_reset(hw);
2799 	if (ret_val) {
2800 		DEBUGOUT("Error Resetting the PHY\n");
2801 		return ret_val;
2802 	}
2803 
2804 	return E1000_SUCCESS;
2805 }
2806 
2807 /********************************************************************
2808 * Setup auto-negotiation and flow control advertisements,
2809 * and then perform auto-negotiation.
2810 *
2811 * hw - Struct containing variables accessed by shared code
2812 *********************************************************************/
2813 static int32_t
2814 e1000_copper_link_autoneg(struct e1000_hw *hw)
2815 {
2816 	int32_t ret_val;
2817 	uint16_t phy_data;
2818 
2819 	DEBUGFUNC();
2820 
2821 	/* Perform some bounds checking on the hw->autoneg_advertised
2822 	 * parameter.  If this variable is zero, then set it to the default.
2823 	 */
2824 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2825 
2826 	/* If autoneg_advertised is zero, we assume it was not defaulted
2827 	 * by the calling code so we set to advertise full capability.
2828 	 */
2829 	if (hw->autoneg_advertised == 0)
2830 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2831 
2832 	/* IFE phy only supports 10/100 */
2833 	if (hw->phy_type == e1000_phy_ife)
2834 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2835 
2836 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2837 	ret_val = e1000_phy_setup_autoneg(hw);
2838 	if (ret_val) {
2839 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2840 		return ret_val;
2841 	}
2842 	DEBUGOUT("Restarting Auto-Neg\n");
2843 
2844 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2845 	 * the Auto Neg Restart bit in the PHY control register.
2846 	 */
2847 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2848 	if (ret_val)
2849 		return ret_val;
2850 
2851 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2852 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2853 	if (ret_val)
2854 		return ret_val;
2855 
2856 	/* Does the user want to wait for Auto-Neg to complete here, or
2857 	 * check at a later time (for example, callback routine).
2858 	 */
2859 	/* If we do not wait for autonegtation to complete I
2860 	 * do not see a valid link status.
2861 	 * wait_autoneg_complete = 1 .
2862 	 */
2863 	if (hw->wait_autoneg_complete) {
2864 		ret_val = e1000_wait_autoneg(hw);
2865 		if (ret_val) {
2866 			DEBUGOUT("Error while waiting for autoneg"
2867 					"to complete\n");
2868 			return ret_val;
2869 		}
2870 	}
2871 
2872 	hw->get_link_status = TRUE;
2873 
2874 	return E1000_SUCCESS;
2875 }
2876 
2877 /******************************************************************************
2878 * Config the MAC and the PHY after link is up.
2879 *   1) Set up the MAC to the current PHY speed/duplex
2880 *      if we are on 82543.  If we
2881 *      are on newer silicon, we only need to configure
2882 *      collision distance in the Transmit Control Register.
2883 *   2) Set up flow control on the MAC to that established with
2884 *      the link partner.
2885 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2886 *
2887 * hw - Struct containing variables accessed by shared code
2888 ******************************************************************************/
2889 static int32_t
2890 e1000_copper_link_postconfig(struct e1000_hw *hw)
2891 {
2892 	int32_t ret_val;
2893 	DEBUGFUNC();
2894 
2895 	if (hw->mac_type >= e1000_82544) {
2896 		e1000_config_collision_dist(hw);
2897 	} else {
2898 		ret_val = e1000_config_mac_to_phy(hw);
2899 		if (ret_val) {
2900 			DEBUGOUT("Error configuring MAC to PHY settings\n");
2901 			return ret_val;
2902 		}
2903 	}
2904 	ret_val = e1000_config_fc_after_link_up(hw);
2905 	if (ret_val) {
2906 		DEBUGOUT("Error Configuring Flow Control\n");
2907 		return ret_val;
2908 	}
2909 	return E1000_SUCCESS;
2910 }
2911 
2912 /******************************************************************************
2913 * Detects which PHY is present and setup the speed and duplex
2914 *
2915 * hw - Struct containing variables accessed by shared code
2916 ******************************************************************************/
2917 static int
2918 e1000_setup_copper_link(struct eth_device *nic)
2919 {
2920 	struct e1000_hw *hw = nic->priv;
2921 	int32_t ret_val;
2922 	uint16_t i;
2923 	uint16_t phy_data;
2924 	uint16_t reg_data;
2925 
2926 	DEBUGFUNC();
2927 
2928 	switch (hw->mac_type) {
2929 	case e1000_80003es2lan:
2930 	case e1000_ich8lan:
2931 		/* Set the mac to wait the maximum time between each
2932 		 * iteration and increase the max iterations when
2933 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2934 		ret_val = e1000_write_kmrn_reg(hw,
2935 				GG82563_REG(0x34, 4), 0xFFFF);
2936 		if (ret_val)
2937 			return ret_val;
2938 		ret_val = e1000_read_kmrn_reg(hw,
2939 				GG82563_REG(0x34, 9), &reg_data);
2940 		if (ret_val)
2941 			return ret_val;
2942 		reg_data |= 0x3F;
2943 		ret_val = e1000_write_kmrn_reg(hw,
2944 				GG82563_REG(0x34, 9), reg_data);
2945 		if (ret_val)
2946 			return ret_val;
2947 	default:
2948 		break;
2949 	}
2950 
2951 	/* Check if it is a valid PHY and set PHY mode if necessary. */
2952 	ret_val = e1000_copper_link_preconfig(hw);
2953 	if (ret_val)
2954 		return ret_val;
2955 	switch (hw->mac_type) {
2956 	case e1000_80003es2lan:
2957 		/* Kumeran registers are written-only */
2958 		reg_data =
2959 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2960 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2961 		ret_val = e1000_write_kmrn_reg(hw,
2962 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2963 		if (ret_val)
2964 			return ret_val;
2965 		break;
2966 	default:
2967 		break;
2968 	}
2969 
2970 	if (hw->phy_type == e1000_phy_igp ||
2971 		hw->phy_type == e1000_phy_igp_3 ||
2972 		hw->phy_type == e1000_phy_igp_2) {
2973 		ret_val = e1000_copper_link_igp_setup(hw);
2974 		if (ret_val)
2975 			return ret_val;
2976 	} else if (hw->phy_type == e1000_phy_m88) {
2977 		ret_val = e1000_copper_link_mgp_setup(hw);
2978 		if (ret_val)
2979 			return ret_val;
2980 	} else if (hw->phy_type == e1000_phy_gg82563) {
2981 		ret_val = e1000_copper_link_ggp_setup(hw);
2982 		if (ret_val)
2983 			return ret_val;
2984 	}
2985 
2986 	/* always auto */
2987 	/* Setup autoneg and flow control advertisement
2988 	  * and perform autonegotiation */
2989 	ret_val = e1000_copper_link_autoneg(hw);
2990 	if (ret_val)
2991 		return ret_val;
2992 
2993 	/* Check link status. Wait up to 100 microseconds for link to become
2994 	 * valid.
2995 	 */
2996 	for (i = 0; i < 10; i++) {
2997 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2998 		if (ret_val)
2999 			return ret_val;
3000 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3001 		if (ret_val)
3002 			return ret_val;
3003 
3004 		if (phy_data & MII_SR_LINK_STATUS) {
3005 			/* Config the MAC and PHY after link is up */
3006 			ret_val = e1000_copper_link_postconfig(hw);
3007 			if (ret_val)
3008 				return ret_val;
3009 
3010 			DEBUGOUT("Valid link established!!!\n");
3011 			return E1000_SUCCESS;
3012 		}
3013 		udelay(10);
3014 	}
3015 
3016 	DEBUGOUT("Unable to establish link!!!\n");
3017 	return E1000_SUCCESS;
3018 }
3019 
3020 /******************************************************************************
3021 * Configures PHY autoneg and flow control advertisement settings
3022 *
3023 * hw - Struct containing variables accessed by shared code
3024 ******************************************************************************/
3025 int32_t
3026 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3027 {
3028 	int32_t ret_val;
3029 	uint16_t mii_autoneg_adv_reg;
3030 	uint16_t mii_1000t_ctrl_reg;
3031 
3032 	DEBUGFUNC();
3033 
3034 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3035 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3036 	if (ret_val)
3037 		return ret_val;
3038 
3039 	if (hw->phy_type != e1000_phy_ife) {
3040 		/* Read the MII 1000Base-T Control Register (Address 9). */
3041 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3042 				&mii_1000t_ctrl_reg);
3043 		if (ret_val)
3044 			return ret_val;
3045 	} else
3046 		mii_1000t_ctrl_reg = 0;
3047 
3048 	/* Need to parse both autoneg_advertised and fc and set up
3049 	 * the appropriate PHY registers.  First we will parse for
3050 	 * autoneg_advertised software override.  Since we can advertise
3051 	 * a plethora of combinations, we need to check each bit
3052 	 * individually.
3053 	 */
3054 
3055 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3056 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3057 	 * the  1000Base-T Control Register (Address 9).
3058 	 */
3059 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3060 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3061 
3062 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3063 
3064 	/* Do we want to advertise 10 Mb Half Duplex? */
3065 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3066 		DEBUGOUT("Advertise 10mb Half duplex\n");
3067 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3068 	}
3069 
3070 	/* Do we want to advertise 10 Mb Full Duplex? */
3071 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3072 		DEBUGOUT("Advertise 10mb Full duplex\n");
3073 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3074 	}
3075 
3076 	/* Do we want to advertise 100 Mb Half Duplex? */
3077 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3078 		DEBUGOUT("Advertise 100mb Half duplex\n");
3079 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3080 	}
3081 
3082 	/* Do we want to advertise 100 Mb Full Duplex? */
3083 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3084 		DEBUGOUT("Advertise 100mb Full duplex\n");
3085 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3086 	}
3087 
3088 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3089 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3090 		DEBUGOUT
3091 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3092 	}
3093 
3094 	/* Do we want to advertise 1000 Mb Full Duplex? */
3095 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3096 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3097 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3098 	}
3099 
3100 	/* Check for a software override of the flow control settings, and
3101 	 * setup the PHY advertisement registers accordingly.  If
3102 	 * auto-negotiation is enabled, then software will have to set the
3103 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3104 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3105 	 *
3106 	 * The possible values of the "fc" parameter are:
3107 	 *	0:  Flow control is completely disabled
3108 	 *	1:  Rx flow control is enabled (we can receive pause frames
3109 	 *	    but not send pause frames).
3110 	 *	2:  Tx flow control is enabled (we can send pause frames
3111 	 *	    but we do not support receiving pause frames).
3112 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3113 	 *  other:  No software override.  The flow control configuration
3114 	 *	    in the EEPROM is used.
3115 	 */
3116 	switch (hw->fc) {
3117 	case e1000_fc_none:	/* 0 */
3118 		/* Flow control (RX & TX) is completely disabled by a
3119 		 * software over-ride.
3120 		 */
3121 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3122 		break;
3123 	case e1000_fc_rx_pause:	/* 1 */
3124 		/* RX Flow control is enabled, and TX Flow control is
3125 		 * disabled, by a software over-ride.
3126 		 */
3127 		/* Since there really isn't a way to advertise that we are
3128 		 * capable of RX Pause ONLY, we will advertise that we
3129 		 * support both symmetric and asymmetric RX PAUSE.  Later
3130 		 * (in e1000_config_fc_after_link_up) we will disable the
3131 		 *hw's ability to send PAUSE frames.
3132 		 */
3133 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3134 		break;
3135 	case e1000_fc_tx_pause:	/* 2 */
3136 		/* TX Flow control is enabled, and RX Flow control is
3137 		 * disabled, by a software over-ride.
3138 		 */
3139 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3140 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3141 		break;
3142 	case e1000_fc_full:	/* 3 */
3143 		/* Flow control (both RX and TX) is enabled by a software
3144 		 * over-ride.
3145 		 */
3146 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3147 		break;
3148 	default:
3149 		DEBUGOUT("Flow control param set incorrectly\n");
3150 		return -E1000_ERR_CONFIG;
3151 	}
3152 
3153 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3154 	if (ret_val)
3155 		return ret_val;
3156 
3157 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3158 
3159 	if (hw->phy_type != e1000_phy_ife) {
3160 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3161 				mii_1000t_ctrl_reg);
3162 		if (ret_val)
3163 			return ret_val;
3164 	}
3165 
3166 	return E1000_SUCCESS;
3167 }
3168 
3169 /******************************************************************************
3170 * Sets the collision distance in the Transmit Control register
3171 *
3172 * hw - Struct containing variables accessed by shared code
3173 *
3174 * Link should have been established previously. Reads the speed and duplex
3175 * information from the Device Status register.
3176 ******************************************************************************/
3177 static void
3178 e1000_config_collision_dist(struct e1000_hw *hw)
3179 {
3180 	uint32_t tctl, coll_dist;
3181 
3182 	DEBUGFUNC();
3183 
3184 	if (hw->mac_type < e1000_82543)
3185 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3186 	else
3187 		coll_dist = E1000_COLLISION_DISTANCE;
3188 
3189 	tctl = E1000_READ_REG(hw, TCTL);
3190 
3191 	tctl &= ~E1000_TCTL_COLD;
3192 	tctl |= coll_dist << E1000_COLD_SHIFT;
3193 
3194 	E1000_WRITE_REG(hw, TCTL, tctl);
3195 	E1000_WRITE_FLUSH(hw);
3196 }
3197 
3198 /******************************************************************************
3199 * Sets MAC speed and duplex settings to reflect the those in the PHY
3200 *
3201 * hw - Struct containing variables accessed by shared code
3202 * mii_reg - data to write to the MII control register
3203 *
3204 * The contents of the PHY register containing the needed information need to
3205 * be passed in.
3206 ******************************************************************************/
3207 static int
3208 e1000_config_mac_to_phy(struct e1000_hw *hw)
3209 {
3210 	uint32_t ctrl;
3211 	uint16_t phy_data;
3212 
3213 	DEBUGFUNC();
3214 
3215 	/* Read the Device Control Register and set the bits to Force Speed
3216 	 * and Duplex.
3217 	 */
3218 	ctrl = E1000_READ_REG(hw, CTRL);
3219 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3220 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3221 
3222 	/* Set up duplex in the Device Control and Transmit Control
3223 	 * registers depending on negotiated values.
3224 	 */
3225 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3226 		DEBUGOUT("PHY Read Error\n");
3227 		return -E1000_ERR_PHY;
3228 	}
3229 	if (phy_data & M88E1000_PSSR_DPLX)
3230 		ctrl |= E1000_CTRL_FD;
3231 	else
3232 		ctrl &= ~E1000_CTRL_FD;
3233 
3234 	e1000_config_collision_dist(hw);
3235 
3236 	/* Set up speed in the Device Control register depending on
3237 	 * negotiated values.
3238 	 */
3239 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3240 		ctrl |= E1000_CTRL_SPD_1000;
3241 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3242 		ctrl |= E1000_CTRL_SPD_100;
3243 	/* Write the configured values back to the Device Control Reg. */
3244 	E1000_WRITE_REG(hw, CTRL, ctrl);
3245 	return 0;
3246 }
3247 
3248 /******************************************************************************
3249  * Forces the MAC's flow control settings.
3250  *
3251  * hw - Struct containing variables accessed by shared code
3252  *
3253  * Sets the TFCE and RFCE bits in the device control register to reflect
3254  * the adapter settings. TFCE and RFCE need to be explicitly set by
3255  * software when a Copper PHY is used because autonegotiation is managed
3256  * by the PHY rather than the MAC. Software must also configure these
3257  * bits when link is forced on a fiber connection.
3258  *****************************************************************************/
3259 static int
3260 e1000_force_mac_fc(struct e1000_hw *hw)
3261 {
3262 	uint32_t ctrl;
3263 
3264 	DEBUGFUNC();
3265 
3266 	/* Get the current configuration of the Device Control Register */
3267 	ctrl = E1000_READ_REG(hw, CTRL);
3268 
3269 	/* Because we didn't get link via the internal auto-negotiation
3270 	 * mechanism (we either forced link or we got link via PHY
3271 	 * auto-neg), we have to manually enable/disable transmit an
3272 	 * receive flow control.
3273 	 *
3274 	 * The "Case" statement below enables/disable flow control
3275 	 * according to the "hw->fc" parameter.
3276 	 *
3277 	 * The possible values of the "fc" parameter are:
3278 	 *	0:  Flow control is completely disabled
3279 	 *	1:  Rx flow control is enabled (we can receive pause
3280 	 *	    frames but not send pause frames).
3281 	 *	2:  Tx flow control is enabled (we can send pause frames
3282 	 *	    frames but we do not receive pause frames).
3283 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3284 	 *  other:  No other values should be possible at this point.
3285 	 */
3286 
3287 	switch (hw->fc) {
3288 	case e1000_fc_none:
3289 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3290 		break;
3291 	case e1000_fc_rx_pause:
3292 		ctrl &= (~E1000_CTRL_TFCE);
3293 		ctrl |= E1000_CTRL_RFCE;
3294 		break;
3295 	case e1000_fc_tx_pause:
3296 		ctrl &= (~E1000_CTRL_RFCE);
3297 		ctrl |= E1000_CTRL_TFCE;
3298 		break;
3299 	case e1000_fc_full:
3300 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3301 		break;
3302 	default:
3303 		DEBUGOUT("Flow control param set incorrectly\n");
3304 		return -E1000_ERR_CONFIG;
3305 	}
3306 
3307 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3308 	if (hw->mac_type == e1000_82542_rev2_0)
3309 		ctrl &= (~E1000_CTRL_TFCE);
3310 
3311 	E1000_WRITE_REG(hw, CTRL, ctrl);
3312 	return 0;
3313 }
3314 
3315 /******************************************************************************
3316  * Configures flow control settings after link is established
3317  *
3318  * hw - Struct containing variables accessed by shared code
3319  *
3320  * Should be called immediately after a valid link has been established.
3321  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3322  * and autonegotiation is enabled, the MAC flow control settings will be set
3323  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3324  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3325  *****************************************************************************/
3326 static int32_t
3327 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3328 {
3329 	int32_t ret_val;
3330 	uint16_t mii_status_reg;
3331 	uint16_t mii_nway_adv_reg;
3332 	uint16_t mii_nway_lp_ability_reg;
3333 	uint16_t speed;
3334 	uint16_t duplex;
3335 
3336 	DEBUGFUNC();
3337 
3338 	/* Check for the case where we have fiber media and auto-neg failed
3339 	 * so we had to force link.  In this case, we need to force the
3340 	 * configuration of the MAC to match the "fc" parameter.
3341 	 */
3342 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3343 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3344 		&& (hw->autoneg_failed))
3345 		|| ((hw->media_type == e1000_media_type_copper)
3346 		&& (!hw->autoneg))) {
3347 		ret_val = e1000_force_mac_fc(hw);
3348 		if (ret_val < 0) {
3349 			DEBUGOUT("Error forcing flow control settings\n");
3350 			return ret_val;
3351 		}
3352 	}
3353 
3354 	/* Check for the case where we have copper media and auto-neg is
3355 	 * enabled.  In this case, we need to check and see if Auto-Neg
3356 	 * has completed, and if so, how the PHY and link partner has
3357 	 * flow control configured.
3358 	 */
3359 	if (hw->media_type == e1000_media_type_copper) {
3360 		/* Read the MII Status Register and check to see if AutoNeg
3361 		 * has completed.  We read this twice because this reg has
3362 		 * some "sticky" (latched) bits.
3363 		 */
3364 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3365 			DEBUGOUT("PHY Read Error \n");
3366 			return -E1000_ERR_PHY;
3367 		}
3368 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3369 			DEBUGOUT("PHY Read Error \n");
3370 			return -E1000_ERR_PHY;
3371 		}
3372 
3373 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3374 			/* The AutoNeg process has completed, so we now need to
3375 			 * read both the Auto Negotiation Advertisement Register
3376 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3377 			 * Register (Address 5) to determine how flow control was
3378 			 * negotiated.
3379 			 */
3380 			if (e1000_read_phy_reg
3381 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3382 				DEBUGOUT("PHY Read Error\n");
3383 				return -E1000_ERR_PHY;
3384 			}
3385 			if (e1000_read_phy_reg
3386 			    (hw, PHY_LP_ABILITY,
3387 			     &mii_nway_lp_ability_reg) < 0) {
3388 				DEBUGOUT("PHY Read Error\n");
3389 				return -E1000_ERR_PHY;
3390 			}
3391 
3392 			/* Two bits in the Auto Negotiation Advertisement Register
3393 			 * (Address 4) and two bits in the Auto Negotiation Base
3394 			 * Page Ability Register (Address 5) determine flow control
3395 			 * for both the PHY and the link partner.  The following
3396 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3397 			 * 1999, describes these PAUSE resolution bits and how flow
3398 			 * control is determined based upon these settings.
3399 			 * NOTE:  DC = Don't Care
3400 			 *
3401 			 *   LOCAL DEVICE  |   LINK PARTNER
3402 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3403 			 *-------|---------|-------|---------|--------------------
3404 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3405 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3406 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3407 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3408 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3409 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3410 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3411 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3412 			 *
3413 			 */
3414 			/* Are both PAUSE bits set to 1?  If so, this implies
3415 			 * Symmetric Flow Control is enabled at both ends.  The
3416 			 * ASM_DIR bits are irrelevant per the spec.
3417 			 *
3418 			 * For Symmetric Flow Control:
3419 			 *
3420 			 *   LOCAL DEVICE  |   LINK PARTNER
3421 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3422 			 *-------|---------|-------|---------|--------------------
3423 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3424 			 *
3425 			 */
3426 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3427 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3428 				/* Now we need to check if the user selected RX ONLY
3429 				 * of pause frames.  In this case, we had to advertise
3430 				 * FULL flow control because we could not advertise RX
3431 				 * ONLY. Hence, we must now check to see if we need to
3432 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3433 				 */
3434 				if (hw->original_fc == e1000_fc_full) {
3435 					hw->fc = e1000_fc_full;
3436 					DEBUGOUT("Flow Control = FULL.\r\n");
3437 				} else {
3438 					hw->fc = e1000_fc_rx_pause;
3439 					DEBUGOUT
3440 					    ("Flow Control = RX PAUSE frames only.\r\n");
3441 				}
3442 			}
3443 			/* For receiving PAUSE frames ONLY.
3444 			 *
3445 			 *   LOCAL DEVICE  |   LINK PARTNER
3446 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3447 			 *-------|---------|-------|---------|--------------------
3448 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3449 			 *
3450 			 */
3451 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3452 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3453 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3454 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3455 			{
3456 				hw->fc = e1000_fc_tx_pause;
3457 				DEBUGOUT
3458 				    ("Flow Control = TX PAUSE frames only.\r\n");
3459 			}
3460 			/* For transmitting PAUSE frames ONLY.
3461 			 *
3462 			 *   LOCAL DEVICE  |   LINK PARTNER
3463 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3464 			 *-------|---------|-------|---------|--------------------
3465 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3466 			 *
3467 			 */
3468 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3469 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3470 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3471 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3472 			{
3473 				hw->fc = e1000_fc_rx_pause;
3474 				DEBUGOUT
3475 				    ("Flow Control = RX PAUSE frames only.\r\n");
3476 			}
3477 			/* Per the IEEE spec, at this point flow control should be
3478 			 * disabled.  However, we want to consider that we could
3479 			 * be connected to a legacy switch that doesn't advertise
3480 			 * desired flow control, but can be forced on the link
3481 			 * partner.  So if we advertised no flow control, that is
3482 			 * what we will resolve to.  If we advertised some kind of
3483 			 * receive capability (Rx Pause Only or Full Flow Control)
3484 			 * and the link partner advertised none, we will configure
3485 			 * ourselves to enable Rx Flow Control only.  We can do
3486 			 * this safely for two reasons:  If the link partner really
3487 			 * didn't want flow control enabled, and we enable Rx, no
3488 			 * harm done since we won't be receiving any PAUSE frames
3489 			 * anyway.  If the intent on the link partner was to have
3490 			 * flow control enabled, then by us enabling RX only, we
3491 			 * can at least receive pause frames and process them.
3492 			 * This is a good idea because in most cases, since we are
3493 			 * predominantly a server NIC, more times than not we will
3494 			 * be asked to delay transmission of packets than asking
3495 			 * our link partner to pause transmission of frames.
3496 			 */
3497 			else if (hw->original_fc == e1000_fc_none ||
3498 				 hw->original_fc == e1000_fc_tx_pause) {
3499 				hw->fc = e1000_fc_none;
3500 				DEBUGOUT("Flow Control = NONE.\r\n");
3501 			} else {
3502 				hw->fc = e1000_fc_rx_pause;
3503 				DEBUGOUT
3504 				    ("Flow Control = RX PAUSE frames only.\r\n");
3505 			}
3506 
3507 			/* Now we need to do one last check...	If we auto-
3508 			 * negotiated to HALF DUPLEX, flow control should not be
3509 			 * enabled per IEEE 802.3 spec.
3510 			 */
3511 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3512 
3513 			if (duplex == HALF_DUPLEX)
3514 				hw->fc = e1000_fc_none;
3515 
3516 			/* Now we call a subroutine to actually force the MAC
3517 			 * controller to use the correct flow control settings.
3518 			 */
3519 			ret_val = e1000_force_mac_fc(hw);
3520 			if (ret_val < 0) {
3521 				DEBUGOUT
3522 				    ("Error forcing flow control settings\n");
3523 				return ret_val;
3524 			}
3525 		} else {
3526 			DEBUGOUT
3527 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3528 		}
3529 	}
3530 	return E1000_SUCCESS;
3531 }
3532 
3533 /******************************************************************************
3534  * Checks to see if the link status of the hardware has changed.
3535  *
3536  * hw - Struct containing variables accessed by shared code
3537  *
3538  * Called by any function that needs to check the link status of the adapter.
3539  *****************************************************************************/
3540 static int
3541 e1000_check_for_link(struct eth_device *nic)
3542 {
3543 	struct e1000_hw *hw = nic->priv;
3544 	uint32_t rxcw;
3545 	uint32_t ctrl;
3546 	uint32_t status;
3547 	uint32_t rctl;
3548 	uint32_t signal;
3549 	int32_t ret_val;
3550 	uint16_t phy_data;
3551 	uint16_t lp_capability;
3552 
3553 	DEBUGFUNC();
3554 
3555 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3556 	 * set when the optics detect a signal. On older adapters, it will be
3557 	 * cleared when there is a signal
3558 	 */
3559 	ctrl = E1000_READ_REG(hw, CTRL);
3560 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3561 		signal = E1000_CTRL_SWDPIN1;
3562 	else
3563 		signal = 0;
3564 
3565 	status = E1000_READ_REG(hw, STATUS);
3566 	rxcw = E1000_READ_REG(hw, RXCW);
3567 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3568 
3569 	/* If we have a copper PHY then we only want to go out to the PHY
3570 	 * registers to see if Auto-Neg has completed and/or if our link
3571 	 * status has changed.	The get_link_status flag will be set if we
3572 	 * receive a Link Status Change interrupt or we have Rx Sequence
3573 	 * Errors.
3574 	 */
3575 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3576 		/* First we want to see if the MII Status Register reports
3577 		 * link.  If so, then we want to get the current speed/duplex
3578 		 * of the PHY.
3579 		 * Read the register twice since the link bit is sticky.
3580 		 */
3581 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3582 			DEBUGOUT("PHY Read Error\n");
3583 			return -E1000_ERR_PHY;
3584 		}
3585 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3586 			DEBUGOUT("PHY Read Error\n");
3587 			return -E1000_ERR_PHY;
3588 		}
3589 
3590 		if (phy_data & MII_SR_LINK_STATUS) {
3591 			hw->get_link_status = FALSE;
3592 		} else {
3593 			/* No link detected */
3594 			return -E1000_ERR_NOLINK;
3595 		}
3596 
3597 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3598 		 * have Si on board that is 82544 or newer, Auto
3599 		 * Speed Detection takes care of MAC speed/duplex
3600 		 * configuration.  So we only need to configure Collision
3601 		 * Distance in the MAC.  Otherwise, we need to force
3602 		 * speed/duplex on the MAC to the current PHY speed/duplex
3603 		 * settings.
3604 		 */
3605 		if (hw->mac_type >= e1000_82544)
3606 			e1000_config_collision_dist(hw);
3607 		else {
3608 			ret_val = e1000_config_mac_to_phy(hw);
3609 			if (ret_val < 0) {
3610 				DEBUGOUT
3611 				    ("Error configuring MAC to PHY settings\n");
3612 				return ret_val;
3613 			}
3614 		}
3615 
3616 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3617 		 * need to restore the desired flow control settings because we may
3618 		 * have had to re-autoneg with a different link partner.
3619 		 */
3620 		ret_val = e1000_config_fc_after_link_up(hw);
3621 		if (ret_val < 0) {
3622 			DEBUGOUT("Error configuring flow control\n");
3623 			return ret_val;
3624 		}
3625 
3626 		/* At this point we know that we are on copper and we have
3627 		 * auto-negotiated link.  These are conditions for checking the link
3628 		 * parter capability register.	We use the link partner capability to
3629 		 * determine if TBI Compatibility needs to be turned on or off.  If
3630 		 * the link partner advertises any speed in addition to Gigabit, then
3631 		 * we assume that they are GMII-based, and TBI compatibility is not
3632 		 * needed. If no other speeds are advertised, we assume the link
3633 		 * partner is TBI-based, and we turn on TBI Compatibility.
3634 		 */
3635 		if (hw->tbi_compatibility_en) {
3636 			if (e1000_read_phy_reg
3637 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3638 				DEBUGOUT("PHY Read Error\n");
3639 				return -E1000_ERR_PHY;
3640 			}
3641 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3642 					     NWAY_LPAR_10T_FD_CAPS |
3643 					     NWAY_LPAR_100TX_HD_CAPS |
3644 					     NWAY_LPAR_100TX_FD_CAPS |
3645 					     NWAY_LPAR_100T4_CAPS)) {
3646 				/* If our link partner advertises anything in addition to
3647 				 * gigabit, we do not need to enable TBI compatibility.
3648 				 */
3649 				if (hw->tbi_compatibility_on) {
3650 					/* If we previously were in the mode, turn it off. */
3651 					rctl = E1000_READ_REG(hw, RCTL);
3652 					rctl &= ~E1000_RCTL_SBP;
3653 					E1000_WRITE_REG(hw, RCTL, rctl);
3654 					hw->tbi_compatibility_on = FALSE;
3655 				}
3656 			} else {
3657 				/* If TBI compatibility is was previously off, turn it on. For
3658 				 * compatibility with a TBI link partner, we will store bad
3659 				 * packets. Some frames have an additional byte on the end and
3660 				 * will look like CRC errors to to the hardware.
3661 				 */
3662 				if (!hw->tbi_compatibility_on) {
3663 					hw->tbi_compatibility_on = TRUE;
3664 					rctl = E1000_READ_REG(hw, RCTL);
3665 					rctl |= E1000_RCTL_SBP;
3666 					E1000_WRITE_REG(hw, RCTL, rctl);
3667 				}
3668 			}
3669 		}
3670 	}
3671 	/* If we don't have link (auto-negotiation failed or link partner cannot
3672 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3673 	 * link partner is not trying to auto-negotiate with us (we are receiving
3674 	 * idles or data), we need to force link up. We also need to give
3675 	 * auto-negotiation time to complete, in case the cable was just plugged
3676 	 * in. The autoneg_failed flag does this.
3677 	 */
3678 	else if ((hw->media_type == e1000_media_type_fiber) &&
3679 		 (!(status & E1000_STATUS_LU)) &&
3680 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3681 		 (!(rxcw & E1000_RXCW_C))) {
3682 		if (hw->autoneg_failed == 0) {
3683 			hw->autoneg_failed = 1;
3684 			return 0;
3685 		}
3686 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3687 
3688 		/* Disable auto-negotiation in the TXCW register */
3689 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3690 
3691 		/* Force link-up and also force full-duplex. */
3692 		ctrl = E1000_READ_REG(hw, CTRL);
3693 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3694 		E1000_WRITE_REG(hw, CTRL, ctrl);
3695 
3696 		/* Configure Flow Control after forcing link up. */
3697 		ret_val = e1000_config_fc_after_link_up(hw);
3698 		if (ret_val < 0) {
3699 			DEBUGOUT("Error configuring flow control\n");
3700 			return ret_val;
3701 		}
3702 	}
3703 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3704 	 * auto-negotiation in the TXCW register and disable forced link in the
3705 	 * Device Control register in an attempt to auto-negotiate with our link
3706 	 * partner.
3707 	 */
3708 	else if ((hw->media_type == e1000_media_type_fiber) &&
3709 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3710 		DEBUGOUT
3711 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3712 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3713 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3714 	}
3715 	return 0;
3716 }
3717 
3718 /******************************************************************************
3719 * Configure the MAC-to-PHY interface for 10/100Mbps
3720 *
3721 * hw - Struct containing variables accessed by shared code
3722 ******************************************************************************/
3723 static int32_t
3724 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3725 {
3726 	int32_t ret_val = E1000_SUCCESS;
3727 	uint32_t tipg;
3728 	uint16_t reg_data;
3729 
3730 	DEBUGFUNC();
3731 
3732 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3733 	ret_val = e1000_write_kmrn_reg(hw,
3734 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3735 	if (ret_val)
3736 		return ret_val;
3737 
3738 	/* Configure Transmit Inter-Packet Gap */
3739 	tipg = E1000_READ_REG(hw, TIPG);
3740 	tipg &= ~E1000_TIPG_IPGT_MASK;
3741 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3742 	E1000_WRITE_REG(hw, TIPG, tipg);
3743 
3744 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3745 
3746 	if (ret_val)
3747 		return ret_val;
3748 
3749 	if (duplex == HALF_DUPLEX)
3750 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3751 	else
3752 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3753 
3754 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3755 
3756 	return ret_val;
3757 }
3758 
3759 static int32_t
3760 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3761 {
3762 	int32_t ret_val = E1000_SUCCESS;
3763 	uint16_t reg_data;
3764 	uint32_t tipg;
3765 
3766 	DEBUGFUNC();
3767 
3768 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3769 	ret_val = e1000_write_kmrn_reg(hw,
3770 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3771 	if (ret_val)
3772 		return ret_val;
3773 
3774 	/* Configure Transmit Inter-Packet Gap */
3775 	tipg = E1000_READ_REG(hw, TIPG);
3776 	tipg &= ~E1000_TIPG_IPGT_MASK;
3777 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3778 	E1000_WRITE_REG(hw, TIPG, tipg);
3779 
3780 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3781 
3782 	if (ret_val)
3783 		return ret_val;
3784 
3785 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3786 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3787 
3788 	return ret_val;
3789 }
3790 
3791 /******************************************************************************
3792  * Detects the current speed and duplex settings of the hardware.
3793  *
3794  * hw - Struct containing variables accessed by shared code
3795  * speed - Speed of the connection
3796  * duplex - Duplex setting of the connection
3797  *****************************************************************************/
3798 static int
3799 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3800 		uint16_t *duplex)
3801 {
3802 	uint32_t status;
3803 	int32_t ret_val;
3804 	uint16_t phy_data;
3805 
3806 	DEBUGFUNC();
3807 
3808 	if (hw->mac_type >= e1000_82543) {
3809 		status = E1000_READ_REG(hw, STATUS);
3810 		if (status & E1000_STATUS_SPEED_1000) {
3811 			*speed = SPEED_1000;
3812 			DEBUGOUT("1000 Mbs, ");
3813 		} else if (status & E1000_STATUS_SPEED_100) {
3814 			*speed = SPEED_100;
3815 			DEBUGOUT("100 Mbs, ");
3816 		} else {
3817 			*speed = SPEED_10;
3818 			DEBUGOUT("10 Mbs, ");
3819 		}
3820 
3821 		if (status & E1000_STATUS_FD) {
3822 			*duplex = FULL_DUPLEX;
3823 			DEBUGOUT("Full Duplex\r\n");
3824 		} else {
3825 			*duplex = HALF_DUPLEX;
3826 			DEBUGOUT(" Half Duplex\r\n");
3827 		}
3828 	} else {
3829 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3830 		*speed = SPEED_1000;
3831 		*duplex = FULL_DUPLEX;
3832 	}
3833 
3834 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3835 	 * even if it is operating at half duplex.  Here we set the duplex
3836 	 * settings to match the duplex in the link partner's capabilities.
3837 	 */
3838 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3839 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3840 		if (ret_val)
3841 			return ret_val;
3842 
3843 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3844 			*duplex = HALF_DUPLEX;
3845 		else {
3846 			ret_val = e1000_read_phy_reg(hw,
3847 					PHY_LP_ABILITY, &phy_data);
3848 			if (ret_val)
3849 				return ret_val;
3850 			if ((*speed == SPEED_100 &&
3851 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3852 				|| (*speed == SPEED_10
3853 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3854 				*duplex = HALF_DUPLEX;
3855 		}
3856 	}
3857 
3858 	if ((hw->mac_type == e1000_80003es2lan) &&
3859 		(hw->media_type == e1000_media_type_copper)) {
3860 		if (*speed == SPEED_1000)
3861 			ret_val = e1000_configure_kmrn_for_1000(hw);
3862 		else
3863 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3864 		if (ret_val)
3865 			return ret_val;
3866 	}
3867 	return E1000_SUCCESS;
3868 }
3869 
3870 /******************************************************************************
3871 * Blocks until autoneg completes or times out (~4.5 seconds)
3872 *
3873 * hw - Struct containing variables accessed by shared code
3874 ******************************************************************************/
3875 static int
3876 e1000_wait_autoneg(struct e1000_hw *hw)
3877 {
3878 	uint16_t i;
3879 	uint16_t phy_data;
3880 
3881 	DEBUGFUNC();
3882 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3883 
3884 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
3885 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3886 		/* Read the MII Status Register and wait for Auto-Neg
3887 		 * Complete bit to be set.
3888 		 */
3889 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3890 			DEBUGOUT("PHY Read Error\n");
3891 			return -E1000_ERR_PHY;
3892 		}
3893 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3894 			DEBUGOUT("PHY Read Error\n");
3895 			return -E1000_ERR_PHY;
3896 		}
3897 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3898 			DEBUGOUT("Auto-Neg complete.\n");
3899 			return 0;
3900 		}
3901 		mdelay(100);
3902 	}
3903 	DEBUGOUT("Auto-Neg timedout.\n");
3904 	return -E1000_ERR_TIMEOUT;
3905 }
3906 
3907 /******************************************************************************
3908 * Raises the Management Data Clock
3909 *
3910 * hw - Struct containing variables accessed by shared code
3911 * ctrl - Device control register's current value
3912 ******************************************************************************/
3913 static void
3914 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3915 {
3916 	/* Raise the clock input to the Management Data Clock (by setting the MDC
3917 	 * bit), and then delay 2 microseconds.
3918 	 */
3919 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3920 	E1000_WRITE_FLUSH(hw);
3921 	udelay(2);
3922 }
3923 
3924 /******************************************************************************
3925 * Lowers the Management Data Clock
3926 *
3927 * hw - Struct containing variables accessed by shared code
3928 * ctrl - Device control register's current value
3929 ******************************************************************************/
3930 static void
3931 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3932 {
3933 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
3934 	 * bit), and then delay 2 microseconds.
3935 	 */
3936 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3937 	E1000_WRITE_FLUSH(hw);
3938 	udelay(2);
3939 }
3940 
3941 /******************************************************************************
3942 * Shifts data bits out to the PHY
3943 *
3944 * hw - Struct containing variables accessed by shared code
3945 * data - Data to send out to the PHY
3946 * count - Number of bits to shift out
3947 *
3948 * Bits are shifted out in MSB to LSB order.
3949 ******************************************************************************/
3950 static void
3951 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3952 {
3953 	uint32_t ctrl;
3954 	uint32_t mask;
3955 
3956 	/* We need to shift "count" number of bits out to the PHY. So, the value
3957 	 * in the "data" parameter will be shifted out to the PHY one bit at a
3958 	 * time. In order to do this, "data" must be broken down into bits.
3959 	 */
3960 	mask = 0x01;
3961 	mask <<= (count - 1);
3962 
3963 	ctrl = E1000_READ_REG(hw, CTRL);
3964 
3965 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3966 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3967 
3968 	while (mask) {
3969 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3970 		 * then raising and lowering the Management Data Clock. A "0" is
3971 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
3972 		 * raising and lowering the clock.
3973 		 */
3974 		if (data & mask)
3975 			ctrl |= E1000_CTRL_MDIO;
3976 		else
3977 			ctrl &= ~E1000_CTRL_MDIO;
3978 
3979 		E1000_WRITE_REG(hw, CTRL, ctrl);
3980 		E1000_WRITE_FLUSH(hw);
3981 
3982 		udelay(2);
3983 
3984 		e1000_raise_mdi_clk(hw, &ctrl);
3985 		e1000_lower_mdi_clk(hw, &ctrl);
3986 
3987 		mask = mask >> 1;
3988 	}
3989 }
3990 
3991 /******************************************************************************
3992 * Shifts data bits in from the PHY
3993 *
3994 * hw - Struct containing variables accessed by shared code
3995 *
3996 * Bits are shifted in in MSB to LSB order.
3997 ******************************************************************************/
3998 static uint16_t
3999 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4000 {
4001 	uint32_t ctrl;
4002 	uint16_t data = 0;
4003 	uint8_t i;
4004 
4005 	/* In order to read a register from the PHY, we need to shift in a total
4006 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4007 	 * to avoid contention on the MDIO pin when a read operation is performed.
4008 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4009 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4010 	 * and then reading the value of the MDIO bit.
4011 	 */
4012 	ctrl = E1000_READ_REG(hw, CTRL);
4013 
4014 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4015 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4016 	ctrl &= ~E1000_CTRL_MDIO;
4017 
4018 	E1000_WRITE_REG(hw, CTRL, ctrl);
4019 	E1000_WRITE_FLUSH(hw);
4020 
4021 	/* Raise and Lower the clock before reading in the data. This accounts for
4022 	 * the turnaround bits. The first clock occurred when we clocked out the
4023 	 * last bit of the Register Address.
4024 	 */
4025 	e1000_raise_mdi_clk(hw, &ctrl);
4026 	e1000_lower_mdi_clk(hw, &ctrl);
4027 
4028 	for (data = 0, i = 0; i < 16; i++) {
4029 		data = data << 1;
4030 		e1000_raise_mdi_clk(hw, &ctrl);
4031 		ctrl = E1000_READ_REG(hw, CTRL);
4032 		/* Check to see if we shifted in a "1". */
4033 		if (ctrl & E1000_CTRL_MDIO)
4034 			data |= 1;
4035 		e1000_lower_mdi_clk(hw, &ctrl);
4036 	}
4037 
4038 	e1000_raise_mdi_clk(hw, &ctrl);
4039 	e1000_lower_mdi_clk(hw, &ctrl);
4040 
4041 	return data;
4042 }
4043 
4044 /*****************************************************************************
4045 * Reads the value from a PHY register
4046 *
4047 * hw - Struct containing variables accessed by shared code
4048 * reg_addr - address of the PHY register to read
4049 ******************************************************************************/
4050 static int
4051 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4052 {
4053 	uint32_t i;
4054 	uint32_t mdic = 0;
4055 	const uint32_t phy_addr = 1;
4056 
4057 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4058 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4059 		return -E1000_ERR_PARAM;
4060 	}
4061 
4062 	if (hw->mac_type > e1000_82543) {
4063 		/* Set up Op-code, Phy Address, and register address in the MDI
4064 		 * Control register.  The MAC will take care of interfacing with the
4065 		 * PHY to retrieve the desired data.
4066 		 */
4067 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4068 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4069 			(E1000_MDIC_OP_READ));
4070 
4071 		E1000_WRITE_REG(hw, MDIC, mdic);
4072 
4073 		/* Poll the ready bit to see if the MDI read completed */
4074 		for (i = 0; i < 64; i++) {
4075 			udelay(10);
4076 			mdic = E1000_READ_REG(hw, MDIC);
4077 			if (mdic & E1000_MDIC_READY)
4078 				break;
4079 		}
4080 		if (!(mdic & E1000_MDIC_READY)) {
4081 			DEBUGOUT("MDI Read did not complete\n");
4082 			return -E1000_ERR_PHY;
4083 		}
4084 		if (mdic & E1000_MDIC_ERROR) {
4085 			DEBUGOUT("MDI Error\n");
4086 			return -E1000_ERR_PHY;
4087 		}
4088 		*phy_data = (uint16_t) mdic;
4089 	} else {
4090 		/* We must first send a preamble through the MDIO pin to signal the
4091 		 * beginning of an MII instruction.  This is done by sending 32
4092 		 * consecutive "1" bits.
4093 		 */
4094 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4095 
4096 		/* Now combine the next few fields that are required for a read
4097 		 * operation.  We use this method instead of calling the
4098 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4099 		 * a MII read instruction consists of a shift out of 14 bits and is
4100 		 * defined as follows:
4101 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4102 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4103 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4104 		 * READ operation is performed.  These two bits are thrown away
4105 		 * followed by a shift in of 16 bits which contains the desired data.
4106 		 */
4107 		mdic = ((reg_addr) | (phy_addr << 5) |
4108 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4109 
4110 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4111 
4112 		/* Now that we've shifted out the read command to the MII, we need to
4113 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4114 		 * register address.
4115 		 */
4116 		*phy_data = e1000_shift_in_mdi_bits(hw);
4117 	}
4118 	return 0;
4119 }
4120 
4121 /******************************************************************************
4122 * Writes a value to a PHY register
4123 *
4124 * hw - Struct containing variables accessed by shared code
4125 * reg_addr - address of the PHY register to write
4126 * data - data to write to the PHY
4127 ******************************************************************************/
4128 static int
4129 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4130 {
4131 	uint32_t i;
4132 	uint32_t mdic = 0;
4133 	const uint32_t phy_addr = 1;
4134 
4135 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4136 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4137 		return -E1000_ERR_PARAM;
4138 	}
4139 
4140 	if (hw->mac_type > e1000_82543) {
4141 		/* Set up Op-code, Phy Address, register address, and data intended
4142 		 * for the PHY register in the MDI Control register.  The MAC will take
4143 		 * care of interfacing with the PHY to send the desired data.
4144 		 */
4145 		mdic = (((uint32_t) phy_data) |
4146 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4147 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4148 			(E1000_MDIC_OP_WRITE));
4149 
4150 		E1000_WRITE_REG(hw, MDIC, mdic);
4151 
4152 		/* Poll the ready bit to see if the MDI read completed */
4153 		for (i = 0; i < 64; i++) {
4154 			udelay(10);
4155 			mdic = E1000_READ_REG(hw, MDIC);
4156 			if (mdic & E1000_MDIC_READY)
4157 				break;
4158 		}
4159 		if (!(mdic & E1000_MDIC_READY)) {
4160 			DEBUGOUT("MDI Write did not complete\n");
4161 			return -E1000_ERR_PHY;
4162 		}
4163 	} else {
4164 		/* We'll need to use the SW defined pins to shift the write command
4165 		 * out to the PHY. We first send a preamble to the PHY to signal the
4166 		 * beginning of the MII instruction.  This is done by sending 32
4167 		 * consecutive "1" bits.
4168 		 */
4169 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4170 
4171 		/* Now combine the remaining required fields that will indicate a
4172 		 * write operation. We use this method instead of calling the
4173 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4174 		 * format of a MII write instruction is as follows:
4175 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4176 		 */
4177 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4178 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4179 		mdic <<= 16;
4180 		mdic |= (uint32_t) phy_data;
4181 
4182 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4183 	}
4184 	return 0;
4185 }
4186 
4187 /******************************************************************************
4188  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4189  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4190  * the caller to figure out how to deal with it.
4191  *
4192  * hw - Struct containing variables accessed by shared code
4193  *
4194  * returns: - E1000_BLK_PHY_RESET
4195  *            E1000_SUCCESS
4196  *
4197  *****************************************************************************/
4198 int32_t
4199 e1000_check_phy_reset_block(struct e1000_hw *hw)
4200 {
4201 	uint32_t manc = 0;
4202 	uint32_t fwsm = 0;
4203 
4204 	if (hw->mac_type == e1000_ich8lan) {
4205 		fwsm = E1000_READ_REG(hw, FWSM);
4206 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4207 						: E1000_BLK_PHY_RESET;
4208 	}
4209 
4210 	if (hw->mac_type > e1000_82547_rev_2)
4211 		manc = E1000_READ_REG(hw, MANC);
4212 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4213 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4214 }
4215 
4216 /***************************************************************************
4217  * Checks if the PHY configuration is done
4218  *
4219  * hw: Struct containing variables accessed by shared code
4220  *
4221  * returns: - E1000_ERR_RESET if fail to reset MAC
4222  *            E1000_SUCCESS at any other case.
4223  *
4224  ***************************************************************************/
4225 static int32_t
4226 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4227 {
4228 	int32_t timeout = PHY_CFG_TIMEOUT;
4229 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4230 
4231 	DEBUGFUNC();
4232 
4233 	switch (hw->mac_type) {
4234 	default:
4235 		mdelay(10);
4236 		break;
4237 
4238 	case e1000_80003es2lan:
4239 		/* Separate *_CFG_DONE_* bit for each port */
4240 		if (e1000_is_second_port(hw))
4241 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4242 		/* Fall Through */
4243 
4244 	case e1000_82571:
4245 	case e1000_82572:
4246 		while (timeout) {
4247 			if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4248 				break;
4249 			else
4250 				mdelay(1);
4251 			timeout--;
4252 		}
4253 		if (!timeout) {
4254 			DEBUGOUT("MNG configuration cycle has not "
4255 					"completed.\n");
4256 			return -E1000_ERR_RESET;
4257 		}
4258 		break;
4259 	}
4260 
4261 	return E1000_SUCCESS;
4262 }
4263 
4264 /******************************************************************************
4265 * Returns the PHY to the power-on reset state
4266 *
4267 * hw - Struct containing variables accessed by shared code
4268 ******************************************************************************/
4269 int32_t
4270 e1000_phy_hw_reset(struct e1000_hw *hw)
4271 {
4272 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4273 	uint32_t ctrl, ctrl_ext;
4274 	uint32_t led_ctrl;
4275 	int32_t ret_val;
4276 
4277 	DEBUGFUNC();
4278 
4279 	/* In the case of the phy reset being blocked, it's not an error, we
4280 	 * simply return success without performing the reset. */
4281 	ret_val = e1000_check_phy_reset_block(hw);
4282 	if (ret_val)
4283 		return E1000_SUCCESS;
4284 
4285 	DEBUGOUT("Resetting Phy...\n");
4286 
4287 	if (hw->mac_type > e1000_82543) {
4288 		if (e1000_is_second_port(hw))
4289 			swfw = E1000_SWFW_PHY1_SM;
4290 
4291 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4292 			DEBUGOUT("Unable to acquire swfw sync\n");
4293 			return -E1000_ERR_SWFW_SYNC;
4294 		}
4295 
4296 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4297 		 * bit. Then, take it out of reset.
4298 		 */
4299 		ctrl = E1000_READ_REG(hw, CTRL);
4300 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4301 		E1000_WRITE_FLUSH(hw);
4302 
4303 		if (hw->mac_type < e1000_82571)
4304 			udelay(10);
4305 		else
4306 			udelay(100);
4307 
4308 		E1000_WRITE_REG(hw, CTRL, ctrl);
4309 		E1000_WRITE_FLUSH(hw);
4310 
4311 		if (hw->mac_type >= e1000_82571)
4312 			mdelay(10);
4313 
4314 	} else {
4315 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4316 		 * bit to put the PHY into reset. Then, take it out of reset.
4317 		 */
4318 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4319 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4320 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4321 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4322 		E1000_WRITE_FLUSH(hw);
4323 		mdelay(10);
4324 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4325 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4326 		E1000_WRITE_FLUSH(hw);
4327 	}
4328 	udelay(150);
4329 
4330 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4331 		/* Configure activity LED after PHY reset */
4332 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4333 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4334 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4335 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4336 	}
4337 
4338 	/* Wait for FW to finish PHY configuration. */
4339 	ret_val = e1000_get_phy_cfg_done(hw);
4340 	if (ret_val != E1000_SUCCESS)
4341 		return ret_val;
4342 
4343 	return ret_val;
4344 }
4345 
4346 /******************************************************************************
4347  * IGP phy init script - initializes the GbE PHY
4348  *
4349  * hw - Struct containing variables accessed by shared code
4350  *****************************************************************************/
4351 static void
4352 e1000_phy_init_script(struct e1000_hw *hw)
4353 {
4354 	uint32_t ret_val;
4355 	uint16_t phy_saved_data;
4356 	DEBUGFUNC();
4357 
4358 	if (hw->phy_init_script) {
4359 		mdelay(20);
4360 
4361 		/* Save off the current value of register 0x2F5B to be
4362 		 * restored at the end of this routine. */
4363 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4364 
4365 		/* Disabled the PHY transmitter */
4366 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4367 
4368 		mdelay(20);
4369 
4370 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4371 
4372 		mdelay(5);
4373 
4374 		switch (hw->mac_type) {
4375 		case e1000_82541:
4376 		case e1000_82547:
4377 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4378 
4379 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4380 
4381 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4382 
4383 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4384 
4385 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4386 
4387 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4388 
4389 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4390 
4391 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4392 
4393 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4394 			break;
4395 
4396 		case e1000_82541_rev_2:
4397 		case e1000_82547_rev_2:
4398 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4399 			break;
4400 		default:
4401 			break;
4402 		}
4403 
4404 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4405 
4406 		mdelay(20);
4407 
4408 		/* Now enable the transmitter */
4409 		if (!ret_val)
4410 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4411 
4412 		if (hw->mac_type == e1000_82547) {
4413 			uint16_t fused, fine, coarse;
4414 
4415 			/* Move to analog registers page */
4416 			e1000_read_phy_reg(hw,
4417 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4418 
4419 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4420 				e1000_read_phy_reg(hw,
4421 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4422 
4423 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4424 				coarse = fused
4425 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4426 
4427 				if (coarse >
4428 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4429 					coarse -=
4430 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4431 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4432 				} else if (coarse
4433 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4434 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4435 
4436 				fused = (fused
4437 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4438 					(fine
4439 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4440 					(coarse
4441 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4442 
4443 				e1000_write_phy_reg(hw,
4444 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4445 				e1000_write_phy_reg(hw,
4446 					IGP01E1000_ANALOG_FUSE_BYPASS,
4447 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4448 			}
4449 		}
4450 	}
4451 }
4452 
4453 /******************************************************************************
4454 * Resets the PHY
4455 *
4456 * hw - Struct containing variables accessed by shared code
4457 *
4458 * Sets bit 15 of the MII Control register
4459 ******************************************************************************/
4460 int32_t
4461 e1000_phy_reset(struct e1000_hw *hw)
4462 {
4463 	int32_t ret_val;
4464 	uint16_t phy_data;
4465 
4466 	DEBUGFUNC();
4467 
4468 	/* In the case of the phy reset being blocked, it's not an error, we
4469 	 * simply return success without performing the reset. */
4470 	ret_val = e1000_check_phy_reset_block(hw);
4471 	if (ret_val)
4472 		return E1000_SUCCESS;
4473 
4474 	switch (hw->phy_type) {
4475 	case e1000_phy_igp:
4476 	case e1000_phy_igp_2:
4477 	case e1000_phy_igp_3:
4478 	case e1000_phy_ife:
4479 		ret_val = e1000_phy_hw_reset(hw);
4480 		if (ret_val)
4481 			return ret_val;
4482 		break;
4483 	default:
4484 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4485 		if (ret_val)
4486 			return ret_val;
4487 
4488 		phy_data |= MII_CR_RESET;
4489 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4490 		if (ret_val)
4491 			return ret_val;
4492 
4493 		udelay(1);
4494 		break;
4495 	}
4496 
4497 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4498 		e1000_phy_init_script(hw);
4499 
4500 	return E1000_SUCCESS;
4501 }
4502 
4503 static int e1000_set_phy_type (struct e1000_hw *hw)
4504 {
4505 	DEBUGFUNC ();
4506 
4507 	if (hw->mac_type == e1000_undefined)
4508 		return -E1000_ERR_PHY_TYPE;
4509 
4510 	switch (hw->phy_id) {
4511 	case M88E1000_E_PHY_ID:
4512 	case M88E1000_I_PHY_ID:
4513 	case M88E1011_I_PHY_ID:
4514 	case M88E1111_I_PHY_ID:
4515 		hw->phy_type = e1000_phy_m88;
4516 		break;
4517 	case IGP01E1000_I_PHY_ID:
4518 		if (hw->mac_type == e1000_82541 ||
4519 			hw->mac_type == e1000_82541_rev_2 ||
4520 			hw->mac_type == e1000_82547 ||
4521 			hw->mac_type == e1000_82547_rev_2) {
4522 			hw->phy_type = e1000_phy_igp;
4523 			hw->phy_type = e1000_phy_igp;
4524 			break;
4525 		}
4526 	case IGP03E1000_E_PHY_ID:
4527 		hw->phy_type = e1000_phy_igp_3;
4528 		break;
4529 	case IFE_E_PHY_ID:
4530 	case IFE_PLUS_E_PHY_ID:
4531 	case IFE_C_E_PHY_ID:
4532 		hw->phy_type = e1000_phy_ife;
4533 		break;
4534 	case GG82563_E_PHY_ID:
4535 		if (hw->mac_type == e1000_80003es2lan) {
4536 			hw->phy_type = e1000_phy_gg82563;
4537 			break;
4538 		}
4539 	case BME1000_E_PHY_ID:
4540 		hw->phy_type = e1000_phy_bm;
4541 		break;
4542 		/* Fall Through */
4543 	default:
4544 		/* Should never have loaded on this device */
4545 		hw->phy_type = e1000_phy_undefined;
4546 		return -E1000_ERR_PHY_TYPE;
4547 	}
4548 
4549 	return E1000_SUCCESS;
4550 }
4551 
4552 /******************************************************************************
4553 * Probes the expected PHY address for known PHY IDs
4554 *
4555 * hw - Struct containing variables accessed by shared code
4556 ******************************************************************************/
4557 static int32_t
4558 e1000_detect_gig_phy(struct e1000_hw *hw)
4559 {
4560 	int32_t phy_init_status, ret_val;
4561 	uint16_t phy_id_high, phy_id_low;
4562 	boolean_t match = FALSE;
4563 
4564 	DEBUGFUNC();
4565 
4566 	/* The 82571 firmware may still be configuring the PHY.  In this
4567 	 * case, we cannot access the PHY until the configuration is done.  So
4568 	 * we explicitly set the PHY values. */
4569 	if (hw->mac_type == e1000_82571 ||
4570 		hw->mac_type == e1000_82572) {
4571 		hw->phy_id = IGP01E1000_I_PHY_ID;
4572 		hw->phy_type = e1000_phy_igp_2;
4573 		return E1000_SUCCESS;
4574 	}
4575 
4576 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4577 	 * work- around that forces PHY page 0 to be set or the reads fail.
4578 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4579 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4580 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4581 	 * the routines below will figure this out as well. */
4582 	if (hw->mac_type == e1000_80003es2lan)
4583 		hw->phy_type = e1000_phy_gg82563;
4584 
4585 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4586 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4587 	if (ret_val)
4588 		return ret_val;
4589 
4590 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4591 	udelay(20);
4592 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4593 	if (ret_val)
4594 		return ret_val;
4595 
4596 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4597 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4598 
4599 	switch (hw->mac_type) {
4600 	case e1000_82543:
4601 		if (hw->phy_id == M88E1000_E_PHY_ID)
4602 			match = TRUE;
4603 		break;
4604 	case e1000_82544:
4605 		if (hw->phy_id == M88E1000_I_PHY_ID)
4606 			match = TRUE;
4607 		break;
4608 	case e1000_82540:
4609 	case e1000_82545:
4610 	case e1000_82545_rev_3:
4611 	case e1000_82546:
4612 	case e1000_82546_rev_3:
4613 		if (hw->phy_id == M88E1011_I_PHY_ID)
4614 			match = TRUE;
4615 		break;
4616 	case e1000_82541:
4617 	case e1000_82541_rev_2:
4618 	case e1000_82547:
4619 	case e1000_82547_rev_2:
4620 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4621 			match = TRUE;
4622 
4623 		break;
4624 	case e1000_82573:
4625 		if (hw->phy_id == M88E1111_I_PHY_ID)
4626 			match = TRUE;
4627 		break;
4628 	case e1000_82574:
4629 		if (hw->phy_id == BME1000_E_PHY_ID)
4630 			match = TRUE;
4631 		break;
4632 	case e1000_80003es2lan:
4633 		if (hw->phy_id == GG82563_E_PHY_ID)
4634 			match = TRUE;
4635 		break;
4636 	case e1000_ich8lan:
4637 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4638 			match = TRUE;
4639 		if (hw->phy_id == IFE_E_PHY_ID)
4640 			match = TRUE;
4641 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4642 			match = TRUE;
4643 		if (hw->phy_id == IFE_C_E_PHY_ID)
4644 			match = TRUE;
4645 		break;
4646 	default:
4647 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4648 		return -E1000_ERR_CONFIG;
4649 	}
4650 
4651 	phy_init_status = e1000_set_phy_type(hw);
4652 
4653 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4654 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4655 		return 0;
4656 	}
4657 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4658 	return -E1000_ERR_PHY;
4659 }
4660 
4661 /*****************************************************************************
4662  * Set media type and TBI compatibility.
4663  *
4664  * hw - Struct containing variables accessed by shared code
4665  * **************************************************************************/
4666 void
4667 e1000_set_media_type(struct e1000_hw *hw)
4668 {
4669 	uint32_t status;
4670 
4671 	DEBUGFUNC();
4672 
4673 	if (hw->mac_type != e1000_82543) {
4674 		/* tbi_compatibility is only valid on 82543 */
4675 		hw->tbi_compatibility_en = FALSE;
4676 	}
4677 
4678 	switch (hw->device_id) {
4679 	case E1000_DEV_ID_82545GM_SERDES:
4680 	case E1000_DEV_ID_82546GB_SERDES:
4681 	case E1000_DEV_ID_82571EB_SERDES:
4682 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4683 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4684 	case E1000_DEV_ID_82572EI_SERDES:
4685 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4686 		hw->media_type = e1000_media_type_internal_serdes;
4687 		break;
4688 	default:
4689 		switch (hw->mac_type) {
4690 		case e1000_82542_rev2_0:
4691 		case e1000_82542_rev2_1:
4692 			hw->media_type = e1000_media_type_fiber;
4693 			break;
4694 		case e1000_ich8lan:
4695 		case e1000_82573:
4696 		case e1000_82574:
4697 			/* The STATUS_TBIMODE bit is reserved or reused
4698 			 * for the this device.
4699 			 */
4700 			hw->media_type = e1000_media_type_copper;
4701 			break;
4702 		default:
4703 			status = E1000_READ_REG(hw, STATUS);
4704 			if (status & E1000_STATUS_TBIMODE) {
4705 				hw->media_type = e1000_media_type_fiber;
4706 				/* tbi_compatibility not valid on fiber */
4707 				hw->tbi_compatibility_en = FALSE;
4708 			} else {
4709 				hw->media_type = e1000_media_type_copper;
4710 			}
4711 			break;
4712 		}
4713 	}
4714 }
4715 
4716 /**
4717  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4718  *
4719  * e1000_sw_init initializes the Adapter private data structure.
4720  * Fields are initialized based on PCI device information and
4721  * OS network device settings (MTU size).
4722  **/
4723 
4724 static int
4725 e1000_sw_init(struct eth_device *nic)
4726 {
4727 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4728 	int result;
4729 
4730 	/* PCI config space info */
4731 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4732 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4733 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4734 			     &hw->subsystem_vendor_id);
4735 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4736 
4737 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4738 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4739 
4740 	/* identify the MAC */
4741 	result = e1000_set_mac_type(hw);
4742 	if (result) {
4743 		E1000_ERR(hw->nic, "Unknown MAC Type\n");
4744 		return result;
4745 	}
4746 
4747 	switch (hw->mac_type) {
4748 	default:
4749 		break;
4750 	case e1000_82541:
4751 	case e1000_82547:
4752 	case e1000_82541_rev_2:
4753 	case e1000_82547_rev_2:
4754 		hw->phy_init_script = 1;
4755 		break;
4756 	}
4757 
4758 	/* flow control settings */
4759 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4760 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4761 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4762 	hw->fc_send_xon = 1;
4763 
4764 	/* Media type - copper or fiber */
4765 	e1000_set_media_type(hw);
4766 
4767 	if (hw->mac_type >= e1000_82543) {
4768 		uint32_t status = E1000_READ_REG(hw, STATUS);
4769 
4770 		if (status & E1000_STATUS_TBIMODE) {
4771 			DEBUGOUT("fiber interface\n");
4772 			hw->media_type = e1000_media_type_fiber;
4773 		} else {
4774 			DEBUGOUT("copper interface\n");
4775 			hw->media_type = e1000_media_type_copper;
4776 		}
4777 	} else {
4778 		hw->media_type = e1000_media_type_fiber;
4779 	}
4780 
4781 	hw->tbi_compatibility_en = TRUE;
4782 	hw->wait_autoneg_complete = TRUE;
4783 	if (hw->mac_type < e1000_82543)
4784 		hw->report_tx_early = 0;
4785 	else
4786 		hw->report_tx_early = 1;
4787 
4788 	return E1000_SUCCESS;
4789 }
4790 
4791 void
4792 fill_rx(struct e1000_hw *hw)
4793 {
4794 	struct e1000_rx_desc *rd;
4795 
4796 	rx_last = rx_tail;
4797 	rd = rx_base + rx_tail;
4798 	rx_tail = (rx_tail + 1) % 8;
4799 	memset(rd, 0, 16);
4800 	rd->buffer_addr = cpu_to_le64((u32) & packet);
4801 	E1000_WRITE_REG(hw, RDT, rx_tail);
4802 }
4803 
4804 /**
4805  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4806  * @adapter: board private structure
4807  *
4808  * Configure the Tx unit of the MAC after a reset.
4809  **/
4810 
4811 static void
4812 e1000_configure_tx(struct e1000_hw *hw)
4813 {
4814 	unsigned long ptr;
4815 	unsigned long tctl;
4816 	unsigned long tipg, tarc;
4817 	uint32_t ipgr1, ipgr2;
4818 
4819 	ptr = (u32) tx_pool;
4820 	if (ptr & 0xf)
4821 		ptr = (ptr + 0x10) & (~0xf);
4822 
4823 	tx_base = (typeof(tx_base)) ptr;
4824 
4825 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4826 	E1000_WRITE_REG(hw, TDBAH, 0);
4827 
4828 	E1000_WRITE_REG(hw, TDLEN, 128);
4829 
4830 	/* Setup the HW Tx Head and Tail descriptor pointers */
4831 	E1000_WRITE_REG(hw, TDH, 0);
4832 	E1000_WRITE_REG(hw, TDT, 0);
4833 	tx_tail = 0;
4834 
4835 	/* Set the default values for the Tx Inter Packet Gap timer */
4836 	if (hw->mac_type <= e1000_82547_rev_2 &&
4837 	    (hw->media_type == e1000_media_type_fiber ||
4838 	     hw->media_type == e1000_media_type_internal_serdes))
4839 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4840 	else
4841 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4842 
4843 	/* Set the default values for the Tx Inter Packet Gap timer */
4844 	switch (hw->mac_type) {
4845 	case e1000_82542_rev2_0:
4846 	case e1000_82542_rev2_1:
4847 		tipg = DEFAULT_82542_TIPG_IPGT;
4848 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4849 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4850 		break;
4851 	case e1000_80003es2lan:
4852 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4853 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4854 		break;
4855 	default:
4856 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4857 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4858 		break;
4859 	}
4860 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4861 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4862 	E1000_WRITE_REG(hw, TIPG, tipg);
4863 	/* Program the Transmit Control Register */
4864 	tctl = E1000_READ_REG(hw, TCTL);
4865 	tctl &= ~E1000_TCTL_CT;
4866 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4867 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4868 
4869 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4870 		tarc = E1000_READ_REG(hw, TARC0);
4871 		/* set the speed mode bit, we'll clear it if we're not at
4872 		 * gigabit link later */
4873 		/* git bit can be set to 1*/
4874 	} else if (hw->mac_type == e1000_80003es2lan) {
4875 		tarc = E1000_READ_REG(hw, TARC0);
4876 		tarc |= 1;
4877 		E1000_WRITE_REG(hw, TARC0, tarc);
4878 		tarc = E1000_READ_REG(hw, TARC1);
4879 		tarc |= 1;
4880 		E1000_WRITE_REG(hw, TARC1, tarc);
4881 	}
4882 
4883 
4884 	e1000_config_collision_dist(hw);
4885 	/* Setup Transmit Descriptor Settings for eop descriptor */
4886 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4887 
4888 	/* Need to set up RS bit */
4889 	if (hw->mac_type < e1000_82543)
4890 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
4891 	else
4892 		hw->txd_cmd |= E1000_TXD_CMD_RS;
4893 	E1000_WRITE_REG(hw, TCTL, tctl);
4894 }
4895 
4896 /**
4897  * e1000_setup_rctl - configure the receive control register
4898  * @adapter: Board private structure
4899  **/
4900 static void
4901 e1000_setup_rctl(struct e1000_hw *hw)
4902 {
4903 	uint32_t rctl;
4904 
4905 	rctl = E1000_READ_REG(hw, RCTL);
4906 
4907 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4908 
4909 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4910 		| E1000_RCTL_RDMTS_HALF;	/* |
4911 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4912 
4913 	if (hw->tbi_compatibility_on == 1)
4914 		rctl |= E1000_RCTL_SBP;
4915 	else
4916 		rctl &= ~E1000_RCTL_SBP;
4917 
4918 	rctl &= ~(E1000_RCTL_SZ_4096);
4919 		rctl |= E1000_RCTL_SZ_2048;
4920 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4921 	E1000_WRITE_REG(hw, RCTL, rctl);
4922 }
4923 
4924 /**
4925  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4926  * @adapter: board private structure
4927  *
4928  * Configure the Rx unit of the MAC after a reset.
4929  **/
4930 static void
4931 e1000_configure_rx(struct e1000_hw *hw)
4932 {
4933 	unsigned long ptr;
4934 	unsigned long rctl, ctrl_ext;
4935 	rx_tail = 0;
4936 	/* make sure receives are disabled while setting up the descriptors */
4937 	rctl = E1000_READ_REG(hw, RCTL);
4938 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4939 	if (hw->mac_type >= e1000_82540) {
4940 		/* Set the interrupt throttling rate.  Value is calculated
4941 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4942 #define MAX_INTS_PER_SEC	8000
4943 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
4944 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4945 	}
4946 
4947 	if (hw->mac_type >= e1000_82571) {
4948 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4949 		/* Reset delay timers after every interrupt */
4950 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4951 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4952 		E1000_WRITE_FLUSH(hw);
4953 	}
4954 	/* Setup the Base and Length of the Rx Descriptor Ring */
4955 	ptr = (u32) rx_pool;
4956 	if (ptr & 0xf)
4957 		ptr = (ptr + 0x10) & (~0xf);
4958 	rx_base = (typeof(rx_base)) ptr;
4959 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4960 	E1000_WRITE_REG(hw, RDBAH, 0);
4961 
4962 	E1000_WRITE_REG(hw, RDLEN, 128);
4963 
4964 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
4965 	E1000_WRITE_REG(hw, RDH, 0);
4966 	E1000_WRITE_REG(hw, RDT, 0);
4967 	/* Enable Receives */
4968 
4969 	E1000_WRITE_REG(hw, RCTL, rctl);
4970 	fill_rx(hw);
4971 }
4972 
4973 /**************************************************************************
4974 POLL - Wait for a frame
4975 ***************************************************************************/
4976 static int
4977 e1000_poll(struct eth_device *nic)
4978 {
4979 	struct e1000_hw *hw = nic->priv;
4980 	struct e1000_rx_desc *rd;
4981 	/* return true if there's an ethernet packet ready to read */
4982 	rd = rx_base + rx_last;
4983 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4984 		return 0;
4985 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
4986 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
4987 	fill_rx(hw);
4988 	return 1;
4989 }
4990 
4991 /**************************************************************************
4992 TRANSMIT - Transmit a frame
4993 ***************************************************************************/
4994 static int e1000_transmit(struct eth_device *nic, void *packet, int length)
4995 {
4996 	void *nv_packet = (void *)packet;
4997 	struct e1000_hw *hw = nic->priv;
4998 	struct e1000_tx_desc *txp;
4999 	int i = 0;
5000 
5001 	txp = tx_base + tx_tail;
5002 	tx_tail = (tx_tail + 1) % 8;
5003 
5004 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5005 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5006 	txp->upper.data = 0;
5007 	E1000_WRITE_REG(hw, TDT, tx_tail);
5008 
5009 	E1000_WRITE_FLUSH(hw);
5010 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5011 		if (i++ > TOUT_LOOP) {
5012 			DEBUGOUT("e1000: tx timeout\n");
5013 			return 0;
5014 		}
5015 		udelay(10);	/* give the nic a chance to write to the register */
5016 	}
5017 	return 1;
5018 }
5019 
5020 /*reset function*/
5021 static inline int
5022 e1000_reset(struct eth_device *nic)
5023 {
5024 	struct e1000_hw *hw = nic->priv;
5025 
5026 	e1000_reset_hw(hw);
5027 	if (hw->mac_type >= e1000_82544) {
5028 		E1000_WRITE_REG(hw, WUC, 0);
5029 	}
5030 	return e1000_init_hw(nic);
5031 }
5032 
5033 /**************************************************************************
5034 DISABLE - Turn off ethernet interface
5035 ***************************************************************************/
5036 static void
5037 e1000_disable(struct eth_device *nic)
5038 {
5039 	struct e1000_hw *hw = nic->priv;
5040 
5041 	/* Turn off the ethernet interface */
5042 	E1000_WRITE_REG(hw, RCTL, 0);
5043 	E1000_WRITE_REG(hw, TCTL, 0);
5044 
5045 	/* Clear the transmit ring */
5046 	E1000_WRITE_REG(hw, TDH, 0);
5047 	E1000_WRITE_REG(hw, TDT, 0);
5048 
5049 	/* Clear the receive ring */
5050 	E1000_WRITE_REG(hw, RDH, 0);
5051 	E1000_WRITE_REG(hw, RDT, 0);
5052 
5053 	/* put the card in its initial state */
5054 #if 0
5055 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5056 #endif
5057 	mdelay(10);
5058 
5059 }
5060 
5061 /**************************************************************************
5062 INIT - set up ethernet interface(s)
5063 ***************************************************************************/
5064 static int
5065 e1000_init(struct eth_device *nic, bd_t * bis)
5066 {
5067 	struct e1000_hw *hw = nic->priv;
5068 	int ret_val = 0;
5069 
5070 	ret_val = e1000_reset(nic);
5071 	if (ret_val < 0) {
5072 		if ((ret_val == -E1000_ERR_NOLINK) ||
5073 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5074 			E1000_ERR(hw->nic, "Valid Link not detected\n");
5075 		} else {
5076 			E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5077 		}
5078 		return 0;
5079 	}
5080 	e1000_configure_tx(hw);
5081 	e1000_setup_rctl(hw);
5082 	e1000_configure_rx(hw);
5083 	return 1;
5084 }
5085 
5086 /******************************************************************************
5087  * Gets the current PCI bus type of hardware
5088  *
5089  * hw - Struct containing variables accessed by shared code
5090  *****************************************************************************/
5091 void e1000_get_bus_type(struct e1000_hw *hw)
5092 {
5093 	uint32_t status;
5094 
5095 	switch (hw->mac_type) {
5096 	case e1000_82542_rev2_0:
5097 	case e1000_82542_rev2_1:
5098 		hw->bus_type = e1000_bus_type_pci;
5099 		break;
5100 	case e1000_82571:
5101 	case e1000_82572:
5102 	case e1000_82573:
5103 	case e1000_82574:
5104 	case e1000_80003es2lan:
5105 		hw->bus_type = e1000_bus_type_pci_express;
5106 		break;
5107 	case e1000_ich8lan:
5108 		hw->bus_type = e1000_bus_type_pci_express;
5109 		break;
5110 	default:
5111 		status = E1000_READ_REG(hw, STATUS);
5112 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5113 				e1000_bus_type_pcix : e1000_bus_type_pci;
5114 		break;
5115 	}
5116 }
5117 
5118 /* A list of all registered e1000 devices */
5119 static LIST_HEAD(e1000_hw_list);
5120 
5121 /**************************************************************************
5122 PROBE - Look for an adapter, this routine's visible to the outside
5123 You should omit the last argument struct pci_device * for a non-PCI NIC
5124 ***************************************************************************/
5125 int
5126 e1000_initialize(bd_t * bis)
5127 {
5128 	unsigned int i;
5129 	pci_dev_t devno;
5130 
5131 	DEBUGFUNC();
5132 
5133 	/* Find and probe all the matching PCI devices */
5134 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5135 		u32 val;
5136 
5137 		/*
5138 		 * These will never get freed due to errors, this allows us to
5139 		 * perform SPI EEPROM programming from U-boot, for example.
5140 		 */
5141 		struct eth_device *nic = malloc(sizeof(*nic));
5142 		struct e1000_hw *hw = malloc(sizeof(*hw));
5143 		if (!nic || !hw) {
5144 			printf("e1000#%u: Out of Memory!\n", i);
5145 			free(nic);
5146 			free(hw);
5147 			continue;
5148 		}
5149 
5150 		/* Make sure all of the fields are initially zeroed */
5151 		memset(nic, 0, sizeof(*nic));
5152 		memset(hw, 0, sizeof(*hw));
5153 
5154 		/* Assign the passed-in values */
5155 		hw->cardnum = i;
5156 		hw->pdev = devno;
5157 		hw->nic = nic;
5158 		nic->priv = hw;
5159 
5160 		/* Generate a card name */
5161 		sprintf(nic->name, "e1000#%u", hw->cardnum);
5162 
5163 		/* Print a debug message with the IO base address */
5164 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5165 		E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5166 
5167 		/* Try to enable I/O accesses and bus-mastering */
5168 		val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5169 		pci_write_config_dword(devno, PCI_COMMAND, val);
5170 
5171 		/* Make sure it worked */
5172 		pci_read_config_dword(devno, PCI_COMMAND, &val);
5173 		if (!(val & PCI_COMMAND_MEMORY)) {
5174 			E1000_ERR(nic, "Can't enable I/O memory\n");
5175 			continue;
5176 		}
5177 		if (!(val & PCI_COMMAND_MASTER)) {
5178 			E1000_ERR(nic, "Can't enable bus-mastering\n");
5179 			continue;
5180 		}
5181 
5182 		/* Are these variables needed? */
5183 		hw->fc = e1000_fc_default;
5184 		hw->original_fc = e1000_fc_default;
5185 		hw->autoneg_failed = 0;
5186 		hw->autoneg = 1;
5187 		hw->get_link_status = TRUE;
5188 		hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5189 							PCI_REGION_MEM);
5190 		hw->mac_type = e1000_undefined;
5191 
5192 		/* MAC and Phy settings */
5193 		if (e1000_sw_init(nic) < 0) {
5194 			E1000_ERR(nic, "Software init failed\n");
5195 			continue;
5196 		}
5197 		if (e1000_check_phy_reset_block(hw))
5198 			E1000_ERR(nic, "PHY Reset is blocked!\n");
5199 
5200 		/* Basic init was OK, reset the hardware and allow SPI access */
5201 		e1000_reset_hw(hw);
5202 		list_add_tail(&hw->list_node, &e1000_hw_list);
5203 
5204 		/* Validate the EEPROM and get chipset information */
5205 #if !defined(CONFIG_MVBC_1G)
5206 		if (e1000_init_eeprom_params(hw)) {
5207 			E1000_ERR(nic, "EEPROM is invalid!\n");
5208 			continue;
5209 		}
5210 		if (e1000_validate_eeprom_checksum(hw))
5211 			continue;
5212 #endif
5213 		e1000_read_mac_addr(nic);
5214 		e1000_get_bus_type(hw);
5215 
5216 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5217 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5218 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5219 
5220 		/* Set up the function pointers and register the device */
5221 		nic->init = e1000_init;
5222 		nic->recv = e1000_poll;
5223 		nic->send = e1000_transmit;
5224 		nic->halt = e1000_disable;
5225 		eth_register(nic);
5226 	}
5227 
5228 	return i;
5229 }
5230 
5231 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5232 {
5233 	struct e1000_hw *hw;
5234 
5235 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5236 		if (hw->cardnum == cardnum)
5237 			return hw;
5238 
5239 	return NULL;
5240 }
5241 
5242 #ifdef CONFIG_CMD_E1000
5243 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5244 		int argc, char * const argv[])
5245 {
5246 	struct e1000_hw *hw;
5247 
5248 	if (argc < 3) {
5249 		cmd_usage(cmdtp);
5250 		return 1;
5251 	}
5252 
5253 	/* Make sure we can find the requested e1000 card */
5254 	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5255 	if (!hw) {
5256 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5257 		return 1;
5258 	}
5259 
5260 	if (!strcmp(argv[2], "print-mac-address")) {
5261 		unsigned char *mac = hw->nic->enetaddr;
5262 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5263 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5264 		return 0;
5265 	}
5266 
5267 #ifdef CONFIG_E1000_SPI
5268 	/* Handle the "SPI" subcommand */
5269 	if (!strcmp(argv[2], "spi"))
5270 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5271 #endif
5272 
5273 	cmd_usage(cmdtp);
5274 	return 1;
5275 }
5276 
5277 U_BOOT_CMD(
5278 	e1000, 7, 0, do_e1000,
5279 	"Intel e1000 controller management",
5280 	/*  */"<card#> print-mac-address\n"
5281 #ifdef CONFIG_E1000_SPI
5282 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5283 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5284 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5285 	"e1000 <card#> spi checksum [update]\n"
5286 #endif
5287 	"       - Manage the Intel E1000 PCI device"
5288 );
5289 #endif /* not CONFIG_CMD_E1000 */
5290