xref: /openbmc/u-boot/drivers/net/dc2114x.c (revision f62fb99941c625605aa16a0097b396a5c16d2c88)
1 /*
2  * See file CREDITS for list of people who contributed to this
3  * project.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20 
21 #include <common.h>
22 #include <malloc.h>
23 #include <net.h>
24 #include <netdev.h>
25 #include <pci.h>
26 
27 #undef DEBUG_SROM
28 #undef DEBUG_SROM2
29 
30 #undef UPDATE_SROM
31 
32 /* PCI Registers.
33  */
34 #define PCI_CFDA_PSM		0x43
35 
36 #define CFRV_RN		0x000000f0	/* Revision Number */
37 
38 #define WAKEUP		0x00		/* Power Saving Wakeup */
39 #define SLEEP		0x80		/* Power Saving Sleep Mode */
40 
41 #define DC2114x_BRK	0x0020		/* CFRV break between DC21142 & DC21143 */
42 
43 /* Ethernet chip registers.
44  */
45 #define DE4X5_BMR	0x000		/* Bus Mode Register */
46 #define DE4X5_TPD	0x008		/* Transmit Poll Demand Reg */
47 #define DE4X5_RRBA	0x018		/* RX Ring Base Address Reg */
48 #define DE4X5_TRBA	0x020		/* TX Ring Base Address Reg */
49 #define DE4X5_STS	0x028		/* Status Register */
50 #define DE4X5_OMR	0x030		/* Operation Mode Register */
51 #define DE4X5_SICR	0x068		/* SIA Connectivity Register */
52 #define DE4X5_APROM	0x048		/* Ethernet Address PROM */
53 
54 /* Register bits.
55  */
56 #define BMR_SWR		0x00000001	/* Software Reset */
57 #define STS_TS		0x00700000	/* Transmit Process State */
58 #define STS_RS		0x000e0000	/* Receive Process State */
59 #define OMR_ST		0x00002000	/* Start/Stop Transmission Command */
60 #define OMR_SR		0x00000002	/* Start/Stop Receive */
61 #define OMR_PS		0x00040000	/* Port Select */
62 #define OMR_SDP		0x02000000	/* SD Polarity - MUST BE ASSERTED */
63 #define OMR_PM		0x00000080	/* Pass All Multicast */
64 
65 /* Descriptor bits.
66  */
67 #define R_OWN		0x80000000	/* Own Bit */
68 #define RD_RER		0x02000000	/* Receive End Of Ring */
69 #define RD_LS		0x00000100	/* Last Descriptor */
70 #define RD_ES		0x00008000	/* Error Summary */
71 #define TD_TER		0x02000000	/* Transmit End Of Ring */
72 #define T_OWN		0x80000000	/* Own Bit */
73 #define TD_LS		0x40000000	/* Last Segment */
74 #define TD_FS		0x20000000	/* First Segment */
75 #define TD_ES		0x00008000	/* Error Summary */
76 #define TD_SET		0x08000000	/* Setup Packet */
77 
78 /* The EEPROM commands include the alway-set leading bit. */
79 #define SROM_WRITE_CMD	5
80 #define SROM_READ_CMD	6
81 #define SROM_ERASE_CMD	7
82 
83 #define SROM_HWADD	    0x0014	/* Hardware Address offset in SROM */
84 #define SROM_RD		0x00004000	/* Read from Boot ROM */
85 #define EE_DATA_WRITE	      0x04	/* EEPROM chip data in. */
86 #define EE_WRITE_0	    0x4801
87 #define EE_WRITE_1	    0x4805
88 #define EE_DATA_READ	      0x08	/* EEPROM chip data out. */
89 #define SROM_SR		0x00000800	/* Select Serial ROM when set */
90 
91 #define DT_IN		0x00000004	/* Serial Data In */
92 #define DT_CLK		0x00000002	/* Serial ROM Clock */
93 #define DT_CS		0x00000001	/* Serial ROM Chip Select */
94 
95 #define POLL_DEMAND	1
96 
97 #ifdef CONFIG_TULIP_FIX_DAVICOM
98 #define RESET_DM9102(dev) {\
99     unsigned long i;\
100     i=INL(dev, 0x0);\
101     udelay(1000);\
102     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
103     udelay(1000);\
104 }
105 #else
106 #define RESET_DE4X5(dev) {\
107     int i;\
108     i=INL(dev, DE4X5_BMR);\
109     udelay(1000);\
110     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
111     udelay(1000);\
112     OUTL(dev, i, DE4X5_BMR);\
113     udelay(1000);\
114     for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
115     udelay(1000);\
116 }
117 #endif
118 
119 #define START_DE4X5(dev) {\
120     s32 omr; \
121     omr = INL(dev, DE4X5_OMR);\
122     omr |= OMR_ST | OMR_SR;\
123     OUTL(dev, omr, DE4X5_OMR);		/* Enable the TX and/or RX */\
124 }
125 
126 #define STOP_DE4X5(dev) {\
127     s32 omr; \
128     omr = INL(dev, DE4X5_OMR);\
129     omr &= ~(OMR_ST|OMR_SR);\
130     OUTL(dev, omr, DE4X5_OMR);		/* Disable the TX and/or RX */ \
131 }
132 
133 #define NUM_RX_DESC PKTBUFSRX
134 #ifndef CONFIG_TULIP_FIX_DAVICOM
135 	#define NUM_TX_DESC 1			/* Number of TX descriptors   */
136 #else
137 	#define NUM_TX_DESC 4
138 #endif
139 #define RX_BUFF_SZ  PKTSIZE_ALIGN
140 
141 #define TOUT_LOOP   1000000
142 
143 #define SETUP_FRAME_LEN 192
144 #define ETH_ALEN	6
145 
146 struct de4x5_desc {
147 	volatile s32 status;
148 	u32 des1;
149 	u32 buf;
150 	u32 next;
151 };
152 
153 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
154 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
155 static int rx_new;                             /* RX descriptor ring pointer */
156 static int tx_new;                             /* TX descriptor ring pointer */
157 
158 static char rxRingSize;
159 static char txRingSize;
160 
161 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
162 static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
163 static int   getfrom_srom(struct eth_device* dev, u_long addr);
164 static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
165 static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
166 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
167 #ifdef UPDATE_SROM
168 static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
169 static void  update_srom(struct eth_device *dev, bd_t *bis);
170 #endif
171 #ifndef CONFIG_TULIP_FIX_DAVICOM
172 static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
173 static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
174 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
175 static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
176 
177 static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
178 static int   dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
179 static int   dc21x4x_recv(struct eth_device* dev);
180 static void  dc21x4x_halt(struct eth_device* dev);
181 #ifdef CONFIG_TULIP_SELECT_MEDIA
182 extern void  dc21x4x_select_media(struct eth_device* dev);
183 #endif
184 
185 #if defined(CONFIG_E500)
186 #define phys_to_bus(a) (a)
187 #else
188 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
189 #endif
190 
191 static int INL(struct eth_device* dev, u_long addr)
192 {
193 	return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
194 }
195 
196 static void OUTL(struct eth_device* dev, int command, u_long addr)
197 {
198 	*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
199 }
200 
201 static struct pci_device_id supported[] = {
202 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
203 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
204 #ifdef CONFIG_TULIP_FIX_DAVICOM
205 	{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
206 #endif
207 	{ }
208 };
209 
210 int dc21x4x_initialize(bd_t *bis)
211 {
212 	int			idx=0;
213 	int			card_number = 0;
214 	unsigned int		cfrv;
215 	unsigned char		timer;
216 	pci_dev_t		devbusfn;
217 	unsigned int		iobase;
218 	unsigned short		status;
219 	struct eth_device*	dev;
220 
221 	while(1) {
222 		devbusfn =  pci_find_devices(supported, idx++);
223 		if (devbusfn == -1) {
224 			break;
225 		}
226 
227 		/* Get the chip configuration revision register. */
228 		pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
229 
230 #ifndef CONFIG_TULIP_FIX_DAVICOM
231 		if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
232 			printf("Error: The chip is not DC21143.\n");
233 			continue;
234 		}
235 #endif
236 
237 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
238 		status |=
239 #ifdef CONFIG_TULIP_USE_IO
240 		  PCI_COMMAND_IO |
241 #else
242 		  PCI_COMMAND_MEMORY |
243 #endif
244 		  PCI_COMMAND_MASTER;
245 		pci_write_config_word(devbusfn, PCI_COMMAND, status);
246 
247 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
248 		if (!(status & PCI_COMMAND_IO)) {
249 			printf("Error: Can not enable I/O access.\n");
250 			continue;
251 		}
252 
253 		if (!(status & PCI_COMMAND_IO)) {
254 			printf("Error: Can not enable I/O access.\n");
255 			continue;
256 		}
257 
258 		if (!(status & PCI_COMMAND_MASTER)) {
259 			printf("Error: Can not enable Bus Mastering.\n");
260 			continue;
261 		}
262 
263 		/* Check the latency timer for values >= 0x60. */
264 		pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
265 
266 		if (timer < 0x60) {
267 			pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
268 		}
269 
270 #ifdef CONFIG_TULIP_USE_IO
271 		/* read BAR for memory space access */
272 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
273 		iobase &= PCI_BASE_ADDRESS_IO_MASK;
274 #else
275 		/* read BAR for memory space access */
276 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
277 		iobase &= PCI_BASE_ADDRESS_MEM_MASK;
278 #endif
279 		debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
280 
281 		dev = (struct eth_device*) malloc(sizeof *dev);
282 
283 #ifdef CONFIG_TULIP_FIX_DAVICOM
284 		sprintf(dev->name, "Davicom#%d", card_number);
285 #else
286 		sprintf(dev->name, "dc21x4x#%d", card_number);
287 #endif
288 
289 #ifdef CONFIG_TULIP_USE_IO
290 		dev->iobase = pci_io_to_phys(devbusfn, iobase);
291 #else
292 		dev->iobase = pci_mem_to_phys(devbusfn, iobase);
293 #endif
294 		dev->priv   = (void*) devbusfn;
295 		dev->init   = dc21x4x_init;
296 		dev->halt   = dc21x4x_halt;
297 		dev->send   = dc21x4x_send;
298 		dev->recv   = dc21x4x_recv;
299 
300 		/* Ensure we're not sleeping. */
301 		pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
302 
303 		udelay(10 * 1000);
304 
305 #ifndef CONFIG_TULIP_FIX_DAVICOM
306 		read_hw_addr(dev, bis);
307 #endif
308 		eth_register(dev);
309 
310 		card_number++;
311 	}
312 
313 	return card_number;
314 }
315 
316 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
317 {
318 	int		i;
319 	int		devbusfn = (int) dev->priv;
320 
321 	/* Ensure we're not sleeping. */
322 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
323 
324 #ifdef CONFIG_TULIP_FIX_DAVICOM
325 	RESET_DM9102(dev);
326 #else
327 	RESET_DE4X5(dev);
328 #endif
329 
330 	if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
331 		printf("Error: Cannot reset ethernet controller.\n");
332 		return -1;
333 	}
334 
335 #ifdef CONFIG_TULIP_SELECT_MEDIA
336 	dc21x4x_select_media(dev);
337 #else
338 	OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
339 #endif
340 
341 	for (i = 0; i < NUM_RX_DESC; i++) {
342 		rx_ring[i].status = cpu_to_le32(R_OWN);
343 		rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
344 		rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
345 #ifdef CONFIG_TULIP_FIX_DAVICOM
346 		rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
347 #else
348 		rx_ring[i].next = 0;
349 #endif
350 	}
351 
352 	for (i=0; i < NUM_TX_DESC; i++) {
353 		tx_ring[i].status = 0;
354 		tx_ring[i].des1 = 0;
355 		tx_ring[i].buf = 0;
356 
357 #ifdef CONFIG_TULIP_FIX_DAVICOM
358 	tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
359 #else
360 		tx_ring[i].next = 0;
361 #endif
362 	}
363 
364 	rxRingSize = NUM_RX_DESC;
365 	txRingSize = NUM_TX_DESC;
366 
367 	/* Write the end of list marker to the descriptor lists. */
368 	rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
369 	tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
370 
371 	/* Tell the adapter where the TX/RX rings are located. */
372 	OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
373 	OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
374 
375 	START_DE4X5(dev);
376 
377 	tx_new = 0;
378 	rx_new = 0;
379 
380 	send_setup_frame(dev, bis);
381 
382 	return 0;
383 }
384 
385 static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
386 {
387 	int		status = -1;
388 	int		i;
389 
390 	if (length <= 0) {
391 		printf("%s: bad packet size: %d\n", dev->name, length);
392 		goto Done;
393 	}
394 
395 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
396 		if (i >= TOUT_LOOP) {
397 			printf("%s: tx error buffer not ready\n", dev->name);
398 			goto Done;
399 		}
400 	}
401 
402 	tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
403 	tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
404 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
405 
406 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
407 
408 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
409 		if (i >= TOUT_LOOP) {
410 			printf(".%s: tx buffer not ready\n", dev->name);
411 			goto Done;
412 		}
413 	}
414 
415 	if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
416 #if 0 /* test-only */
417 		printf("TX error status = 0x%08X\n",
418 			le32_to_cpu(tx_ring[tx_new].status));
419 #endif
420 		tx_ring[tx_new].status = 0x0;
421 		goto Done;
422 	}
423 
424 	status = length;
425 
426  Done:
427     tx_new = (tx_new+1) % NUM_TX_DESC;
428 	return status;
429 }
430 
431 static int dc21x4x_recv(struct eth_device* dev)
432 {
433 	s32		status;
434 	int		length    = 0;
435 
436 	for ( ; ; ) {
437 		status = (s32)le32_to_cpu(rx_ring[rx_new].status);
438 
439 		if (status & R_OWN) {
440 			break;
441 		}
442 
443 		if (status & RD_LS) {
444 			/* Valid frame status.
445 			 */
446 			if (status & RD_ES) {
447 
448 				/* There was an error.
449 				 */
450 				printf("RX error status = 0x%08X\n", status);
451 			} else {
452 				/* A valid frame received.
453 				 */
454 				length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
455 
456 				/* Pass the packet up to the protocol
457 				 * layers.
458 				 */
459 				NetReceive(NetRxPackets[rx_new], length - 4);
460 			}
461 
462 			/* Change buffer ownership for this frame, back
463 			 * to the adapter.
464 			 */
465 			rx_ring[rx_new].status = cpu_to_le32(R_OWN);
466 		}
467 
468 		/* Update entry information.
469 		 */
470 		rx_new = (rx_new + 1) % rxRingSize;
471 	}
472 
473 	return length;
474 }
475 
476 static void dc21x4x_halt(struct eth_device* dev)
477 {
478 	int		devbusfn = (int) dev->priv;
479 
480 	STOP_DE4X5(dev);
481 	OUTL(dev, 0, DE4X5_SICR);
482 
483 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
484 }
485 
486 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
487 {
488 	int		i;
489 	char	setup_frame[SETUP_FRAME_LEN];
490 	char	*pa = &setup_frame[0];
491 
492 	memset(pa, 0xff, SETUP_FRAME_LEN);
493 
494 	for (i = 0; i < ETH_ALEN; i++) {
495 		*(pa + (i & 1)) = dev->enetaddr[i];
496 		if (i & 0x01) {
497 			pa += 4;
498 		}
499 	}
500 
501 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
502 		if (i >= TOUT_LOOP) {
503 			printf("%s: tx error buffer not ready\n", dev->name);
504 			goto Done;
505 		}
506 	}
507 
508 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
509 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
510 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
511 
512 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
513 
514 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
515 		if (i >= TOUT_LOOP) {
516 			printf("%s: tx buffer not ready\n", dev->name);
517 			goto Done;
518 		}
519 	}
520 
521 	if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
522 		printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
523 	}
524 	tx_new = (tx_new+1) % NUM_TX_DESC;
525 
526 Done:
527 	return;
528 }
529 
530 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
531 /* SROM Read and write routines.
532  */
533 static void
534 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
535 {
536 	OUTL(dev, command, addr);
537 	udelay(1);
538 }
539 
540 static int
541 getfrom_srom(struct eth_device* dev, u_long addr)
542 {
543 	s32 tmp;
544 
545 	tmp = INL(dev, addr);
546 	udelay(1);
547 
548 	return tmp;
549 }
550 
551 /* Note: this routine returns extra data bits for size detection. */
552 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
553 {
554 	int i;
555 	unsigned retval = 0;
556 	int read_cmd = location | (SROM_READ_CMD << addr_len);
557 
558 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
559 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
560 
561 #ifdef DEBUG_SROM
562 	printf(" EEPROM read at %d ", location);
563 #endif
564 
565 	/* Shift the read command bits out. */
566 	for (i = 4 + addr_len; i >= 0; i--) {
567 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
568 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
569 		udelay(10);
570 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
571 		udelay(10);
572 #ifdef DEBUG_SROM2
573 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
574 #endif
575 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
576 	}
577 
578 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
579 
580 #ifdef DEBUG_SROM2
581 	printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
582 #endif
583 
584 	for (i = 16; i > 0; i--) {
585 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
586 		udelay(10);
587 #ifdef DEBUG_SROM2
588 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
589 #endif
590 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
591 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
592 		udelay(10);
593 	}
594 
595 	/* Terminate the EEPROM access. */
596 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
597 
598 #ifdef DEBUG_SROM2
599 	printf(" EEPROM value at %d is %5.5x.\n", location, retval);
600 #endif
601 
602 	return retval;
603 }
604 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
605 
606 /* This executes a generic EEPROM command, typically a write or write
607  * enable. It returns the data output from the EEPROM, and thus may
608  * also be used for reads.
609  */
610 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
611 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
612 {
613 	unsigned retval = 0;
614 
615 #ifdef DEBUG_SROM
616 	printf(" EEPROM op 0x%x: ", cmd);
617 #endif
618 
619 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
620 
621 	/* Shift the command bits out. */
622 	do {
623 		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
624 		sendto_srom(dev,dataval, ioaddr);
625 		udelay(10);
626 
627 #ifdef DEBUG_SROM2
628 		printf("%X", getfrom_srom(dev,ioaddr) & 15);
629 #endif
630 
631 		sendto_srom(dev,dataval | DT_CLK, ioaddr);
632 		udelay(10);
633 		retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
634 	} while (--cmd_len >= 0);
635 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
636 
637 	/* Terminate the EEPROM access. */
638 	sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
639 
640 #ifdef DEBUG_SROM
641 	printf(" EEPROM result is 0x%5.5x.\n", retval);
642 #endif
643 
644 	return retval;
645 }
646 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
647 
648 #ifndef CONFIG_TULIP_FIX_DAVICOM
649 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
650 {
651 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
652 
653 	return do_eeprom_cmd(dev, ioaddr,
654 			     (((SROM_READ_CMD << ee_addr_size) | index) << 16)
655 			     | 0xffff, 3 + ee_addr_size + 16);
656 }
657 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
658 
659 #ifdef UPDATE_SROM
660 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
661 {
662 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
663 	int i;
664 	unsigned short newval;
665 
666 	udelay(10*1000); /* test-only */
667 
668 #ifdef DEBUG_SROM
669 	printf("ee_addr_size=%d.\n", ee_addr_size);
670 	printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
671 #endif
672 
673 	/* Enable programming modes. */
674 	do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
675 
676 	/* Do the actual write. */
677 	do_eeprom_cmd(dev, ioaddr,
678 		      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
679 		      3 + ee_addr_size + 16);
680 
681 	/* Poll for write finished. */
682 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
683 	for (i = 0; i < 10000; i++)			/* Typical 2000 ticks */
684 		if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
685 			break;
686 
687 #ifdef DEBUG_SROM
688 	printf(" Write finished after %d ticks.\n", i);
689 #endif
690 
691 	/* Disable programming. */
692 	do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
693 
694 	/* And read the result. */
695 	newval = do_eeprom_cmd(dev, ioaddr,
696 			       (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
697 			       | 0xffff, 3 + ee_addr_size + 16);
698 #ifdef DEBUG_SROM
699 	printf("  New value at offset %d is %4.4x.\n", index, newval);
700 #endif
701 	return 1;
702 }
703 #endif
704 
705 #ifndef CONFIG_TULIP_FIX_DAVICOM
706 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
707 {
708 	u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
709 	int i, j = 0;
710 
711 	for (i = 0; i < (ETH_ALEN >> 1); i++) {
712 		tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
713 		*p = le16_to_cpu(tmp);
714 		j += *p++;
715 	}
716 
717 	if ((j == 0) || (j == 0x2fffd)) {
718 		memset (dev->enetaddr, 0, ETH_ALEN);
719 		debug ("Warning: can't read HW address from SROM.\n");
720 		goto Done;
721 	}
722 
723 	return;
724 
725 Done:
726 #ifdef UPDATE_SROM
727 	update_srom(dev, bis);
728 #endif
729 	return;
730 }
731 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
732 
733 #ifdef UPDATE_SROM
734 static void update_srom(struct eth_device *dev, bd_t *bis)
735 {
736 	int i;
737 	static unsigned short eeprom[0x40] = {
738 		0x140b, 0x6610, 0x0000, 0x0000,	/* 00 */
739 		0x0000, 0x0000, 0x0000, 0x0000,	/* 04 */
740 		0x00a3, 0x0103, 0x0000, 0x0000,	/* 08 */
741 		0x0000, 0x1f00, 0x0000, 0x0000,	/* 0c */
742 		0x0108, 0x038d, 0x0000, 0x0000,	/* 10 */
743 		0xe078, 0x0001, 0x0040, 0x0018,	/* 14 */
744 		0x0000, 0x0000, 0x0000, 0x0000,	/* 18 */
745 		0x0000, 0x0000, 0x0000, 0x0000,	/* 1c */
746 		0x0000, 0x0000, 0x0000, 0x0000,	/* 20 */
747 		0x0000, 0x0000, 0x0000, 0x0000,	/* 24 */
748 		0x0000, 0x0000, 0x0000, 0x0000,	/* 28 */
749 		0x0000, 0x0000, 0x0000, 0x0000,	/* 2c */
750 		0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
751 		0x0000, 0x0000, 0x0000, 0x0000,	/* 34 */
752 		0x0000, 0x0000, 0x0000, 0x0000,	/* 38 */
753 		0x0000, 0x0000, 0x0000, 0x4e07,	/* 3c */
754 	};
755 	uchar enetaddr[6];
756 
757 	/* Ethernet Addr... */
758 	if (!eth_getenv_enetaddr("ethaddr", enetaddr))
759 		return;
760 	eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
761 	eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
762 	eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
763 
764 	for (i=0; i<0x40; i++) {
765 		write_srom(dev, DE4X5_APROM, i, eeprom[i]);
766 	}
767 }
768 #endif	/* UPDATE_SROM */
769