xref: /openbmc/u-boot/drivers/net/altera_tse.c (revision 1a4596601fd395f3afb8f82f3f840c5e00bdd57a)
1 /*
2  * Altera 10/100/1000 triple speed ethernet mac driver
3  *
4  * Copyright (C) 2008 Altera Corporation.
5  * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <config.h>
12 #include <common.h>
13 #include <malloc.h>
14 #include <net.h>
15 #include <command.h>
16 #include <asm/cache.h>
17 #include <asm/dma-mapping.h>
18 #include <miiphy.h>
19 #include "altera_tse.h"
20 
21 /* sgdma debug - print descriptor */
22 static void alt_sgdma_print_desc(volatile struct alt_sgdma_descriptor *desc)
23 {
24 	debug("SGDMA DEBUG :\n");
25 	debug("desc->source : 0x%x \n", (unsigned int)desc->source);
26 	debug("desc->destination : 0x%x \n", (unsigned int)desc->destination);
27 	debug("desc->next : 0x%x \n", (unsigned int)desc->next);
28 	debug("desc->source_pad : 0x%x \n", (unsigned int)desc->source_pad);
29 	debug("desc->destination_pad : 0x%x \n",
30 	      (unsigned int)desc->destination_pad);
31 	debug("desc->next_pad : 0x%x \n", (unsigned int)desc->next_pad);
32 	debug("desc->bytes_to_transfer : 0x%x \n",
33 	      (unsigned int)desc->bytes_to_transfer);
34 	debug("desc->actual_bytes_transferred : 0x%x \n",
35 	      (unsigned int)desc->actual_bytes_transferred);
36 	debug("desc->descriptor_status : 0x%x \n",
37 	      (unsigned int)desc->descriptor_status);
38 	debug("desc->descriptor_control : 0x%x \n",
39 	      (unsigned int)desc->descriptor_control);
40 }
41 
42 /* This is a generic routine that the SGDMA mode-specific routines
43  * call to populate a descriptor.
44  * arg1	    :pointer to first SGDMA descriptor.
45  * arg2	    :pointer to next  SGDMA descriptor.
46  * arg3	    :Address to where data to be written.
47  * arg4	    :Address from where data to be read.
48  * arg5	    :no of byte to transaction.
49  * arg6	    :variable indicating to generate start of packet or not
50  * arg7	    :read fixed
51  * arg8	    :write fixed
52  * arg9	    :read burst
53  * arg10    :write burst
54  * arg11    :atlantic_channel number
55  */
56 static void alt_sgdma_construct_descriptor_burst(
57 	volatile struct alt_sgdma_descriptor *desc,
58 	volatile struct alt_sgdma_descriptor *next,
59 	unsigned int *read_addr,
60 	unsigned int *write_addr,
61 	unsigned short length_or_eop,
62 	int generate_eop,
63 	int read_fixed,
64 	int write_fixed_or_sop,
65 	int read_burst,
66 	int write_burst,
67 	unsigned char atlantic_channel)
68 {
69 	/*
70 	 * Mark the "next" descriptor as "not" owned by hardware. This prevents
71 	 * The SGDMA controller from continuing to process the chain. This is
72 	 * done as a single IO write to bypass cache, without flushing
73 	 * the entire descriptor, since only the 8-bit descriptor status must
74 	 * be flushed.
75 	 */
76 	if (!next)
77 		debug("Next descriptor not defined!!\n");
78 
79 	next->descriptor_control = (next->descriptor_control &
80 		~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK);
81 
82 	desc->source = (unsigned int *)((unsigned int)read_addr & 0x1FFFFFFF);
83 	desc->destination =
84 	    (unsigned int *)((unsigned int)write_addr & 0x1FFFFFFF);
85 	desc->next = (unsigned int *)((unsigned int)next & 0x1FFFFFFF);
86 	desc->source_pad = 0x0;
87 	desc->destination_pad = 0x0;
88 	desc->next_pad = 0x0;
89 	desc->bytes_to_transfer = length_or_eop;
90 	desc->actual_bytes_transferred = 0;
91 	desc->descriptor_status = 0x0;
92 
93 	/* SGDMA burst not currently supported */
94 	desc->read_burst = 0;
95 	desc->write_burst = 0;
96 
97 	/*
98 	 * Set the descriptor control block as follows:
99 	 * - Set "owned by hardware" bit
100 	 * - Optionally set "generate EOP" bit
101 	 * - Optionally set the "read from fixed address" bit
102 	 * - Optionally set the "write to fixed address bit (which serves
103 	 *   serves as a "generate SOP" control bit in memory-to-stream mode).
104 	 * - Set the 4-bit atlantic channel, if specified
105 	 *
106 	 * Note this step is performed after all other descriptor information
107 	 * has been filled out so that, if the controller already happens to be
108 	 * pointing at this descriptor, it will not run (via the "owned by
109 	 * hardware" bit) until all other descriptor has been set up.
110 	 */
111 
112 	desc->descriptor_control =
113 	    ((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
114 	     (generate_eop ?
115 	      ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0x0) |
116 	     (read_fixed ?
117 	      ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0x0) |
118 	     (write_fixed_or_sop ?
119 	      ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0x0) |
120 	     (atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0)
121 		    );
122 }
123 
124 static int alt_sgdma_do_sync_transfer(volatile struct alt_sgdma_registers *dev,
125 			       volatile struct alt_sgdma_descriptor *desc)
126 {
127 	unsigned int status;
128 	int counter = 0;
129 
130 	/* Wait for any pending transfers to complete */
131 	alt_sgdma_print_desc(desc);
132 	status = dev->status;
133 
134 	counter = 0;
135 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
136 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
137 			break;
138 	}
139 
140 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
141 		debug("Timeout waiting sgdma in do sync!\n");
142 
143 	/*
144 	 * Clear any (previous) status register information
145 	 * that might occlude our error checking later.
146 	 */
147 	dev->status = 0xFF;
148 
149 	/* Point the controller at the descriptor */
150 	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
151 	debug("next desc in sgdma 0x%x\n",
152 	      (unsigned int)dev->next_descriptor_pointer);
153 
154 	/*
155 	 * Set up SGDMA controller to:
156 	 * - Disable interrupt generation
157 	 * - Run once a valid descriptor is written to controller
158 	 * - Stop on an error with any particular descriptor
159 	 */
160 	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
161 			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
162 
163 	/* Wait for the descriptor (chain) to complete */
164 	status = dev->status;
165 	debug("wait for sgdma....");
166 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK)
167 		;
168 	debug("done\n");
169 
170 	/* Clear Run */
171 	dev->control = (dev->control & (~ALT_SGDMA_CONTROL_RUN_MSK));
172 
173 	/* Get & clear status register contents */
174 	status = dev->status;
175 	dev->status = 0xFF;
176 
177 	/* we really should check if the transfer completes properly */
178 	debug("tx sgdma status = 0x%x", status);
179 	return 0;
180 }
181 
182 static int alt_sgdma_do_async_transfer(volatile struct alt_sgdma_registers *dev,
183 				volatile struct alt_sgdma_descriptor *desc)
184 {
185 	unsigned int status;
186 	int counter = 0;
187 
188 	/* Wait for any pending transfers to complete */
189 	alt_sgdma_print_desc(desc);
190 	status = dev->status;
191 
192 	counter = 0;
193 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
194 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
195 			break;
196 	}
197 
198 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
199 		debug("Timeout waiting sgdma in do async!\n");
200 
201 	/*
202 	 * Clear the RUN bit in the control register. This is needed
203 	 * to restart the SGDMA engine later on.
204 	 */
205 	dev->control = 0;
206 
207 	/*
208 	 * Clear any (previous) status register information
209 	 * that might occlude our error checking later.
210 	 */
211 	dev->status = 0xFF;
212 
213 	/* Point the controller at the descriptor */
214 	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
215 
216 	/*
217 	 * Set up SGDMA controller to:
218 	 * - Disable interrupt generation
219 	 * - Run once a valid descriptor is written to controller
220 	 * - Stop on an error with any particular descriptor
221 	 */
222 	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
223 			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
224 
225 	/* we really should check if the transfer completes properly */
226 	return 0;
227 }
228 
229 /* u-boot interface */
230 static int tse_adjust_link(struct altera_tse_priv *priv)
231 {
232 	unsigned int refvar;
233 
234 	refvar = priv->mac_dev->command_config.image;
235 
236 	if (!(priv->duplexity))
237 		refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
238 	else
239 		refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;
240 
241 	switch (priv->speed) {
242 	case 1000:
243 		refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
244 		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
245 		break;
246 	case 100:
247 		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
248 		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
249 		break;
250 	case 10:
251 		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
252 		refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
253 		break;
254 	}
255 	priv->mac_dev->command_config.image = refvar;
256 
257 	return 0;
258 }
259 
260 static int tse_eth_send(struct eth_device *dev, void *packet, int length)
261 {
262 	struct altera_tse_priv *priv = dev->priv;
263 	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
264 	volatile struct alt_sgdma_descriptor *tx_desc =
265 	    (volatile struct alt_sgdma_descriptor *)priv->tx_desc;
266 
267 	volatile struct alt_sgdma_descriptor *tx_desc_cur =
268 	    (volatile struct alt_sgdma_descriptor *)&tx_desc[0];
269 
270 	flush_dcache_range((unsigned long)packet,
271 			(unsigned long)packet + length);
272 	alt_sgdma_construct_descriptor_burst(
273 		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
274 		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
275 		(unsigned int *)packet,	/* read addr */
276 		(unsigned int *)0,
277 		length,	/* length or EOP ,will change for each tx */
278 		0x1,	/* gen eop */
279 		0x0,	/* read fixed */
280 		0x1,	/* write fixed or sop */
281 		0x0,	/* read burst */
282 		0x0,	/* write burst */
283 		0x0	/* channel */
284 		);
285 	debug("TX Packet @ 0x%x,0x%x bytes", (unsigned int)packet, length);
286 
287 	/* send the packet */
288 	debug("sending packet\n");
289 	alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
290 	debug("sent %d bytes\n", tx_desc_cur->actual_bytes_transferred);
291 	return tx_desc_cur->actual_bytes_transferred;
292 }
293 
294 static int tse_eth_rx(struct eth_device *dev)
295 {
296 	int packet_length = 0;
297 	struct altera_tse_priv *priv = dev->priv;
298 	volatile struct alt_sgdma_descriptor *rx_desc =
299 	    (volatile struct alt_sgdma_descriptor *)priv->rx_desc;
300 	volatile struct alt_sgdma_descriptor *rx_desc_cur = &rx_desc[0];
301 
302 	if (rx_desc_cur->descriptor_status &
303 	    ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
304 		debug("got packet\n");
305 		packet_length = rx_desc->actual_bytes_transferred;
306 		NetReceive(NetRxPackets[0], packet_length);
307 
308 		/* start descriptor again */
309 		flush_dcache_range((unsigned long)(NetRxPackets[0]),
310 			(unsigned long)(NetRxPackets[0]) + PKTSIZE_ALIGN);
311 		alt_sgdma_construct_descriptor_burst(
312 			(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
313 			(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
314 			(unsigned int)0x0,	/* read addr */
315 			(unsigned int *)NetRxPackets[0],
316 			0x0,	/* length or EOP */
317 			0x0,	/* gen eop */
318 			0x0,	/* read fixed */
319 			0x0,	/* write fixed or sop */
320 			0x0,	/* read burst */
321 			0x0,	/* write burst */
322 			0x0	/* channel */
323 		    );
324 
325 		/* setup the sgdma */
326 		alt_sgdma_do_async_transfer(priv->sgdma_rx, &rx_desc[0]);
327 
328 		return packet_length;
329 	}
330 
331 	return -1;
332 }
333 
334 static void tse_eth_halt(struct eth_device *dev)
335 {
336 	/* don't do anything! */
337 	/* this gets called after each uboot  */
338 	/* network command.  don't need to reset the thing all of the time */
339 }
340 
341 static void tse_eth_reset(struct eth_device *dev)
342 {
343 	/* stop sgdmas, disable tse receive */
344 	struct altera_tse_priv *priv = dev->priv;
345 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
346 	volatile struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
347 	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
348 	int counter;
349 	volatile struct alt_sgdma_descriptor *rx_desc =
350 	    (volatile struct alt_sgdma_descriptor *)&priv->rx_desc[0];
351 
352 	/* clear rx desc & wait for sgdma to complete */
353 	rx_desc->descriptor_control = 0;
354 	rx_sgdma->control = 0;
355 	counter = 0;
356 	while (rx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
357 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
358 			break;
359 	}
360 
361 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
362 		debug("Timeout waiting for rx sgdma!\n");
363 		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
364 		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
365 	}
366 
367 	counter = 0;
368 	tx_sgdma->control = 0;
369 	while (tx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
370 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
371 			break;
372 	}
373 
374 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
375 		debug("Timeout waiting for tx sgdma!\n");
376 		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
377 		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
378 	}
379 	/* reset the mac */
380 	mac_dev->command_config.bits.transmit_enable = 1;
381 	mac_dev->command_config.bits.receive_enable = 1;
382 	mac_dev->command_config.bits.software_reset = 1;
383 
384 	counter = 0;
385 	while (mac_dev->command_config.bits.software_reset) {
386 		if (counter++ > ALT_TSE_SW_RESET_WATCHDOG_CNTR)
387 			break;
388 	}
389 
390 	if (counter >= ALT_TSE_SW_RESET_WATCHDOG_CNTR)
391 		debug("TSEMAC SW reset bit never cleared!\n");
392 }
393 
394 static int tse_mdio_read(struct altera_tse_priv *priv, unsigned int regnum)
395 {
396 	volatile struct alt_tse_mac *mac_dev;
397 	unsigned int *mdio_regs;
398 	unsigned int data;
399 	u16 value;
400 
401 	mac_dev = priv->mac_dev;
402 
403 	/* set mdio address */
404 	mac_dev->mdio_phy1_addr = priv->phyaddr;
405 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
406 
407 	/* get the data */
408 	data = mdio_regs[regnum];
409 
410 	value = data & 0xffff;
411 
412 	return value;
413 }
414 
415 static int tse_mdio_write(struct altera_tse_priv *priv, unsigned int regnum,
416 		   unsigned int value)
417 {
418 	volatile struct alt_tse_mac *mac_dev;
419 	unsigned int *mdio_regs;
420 	unsigned int data;
421 
422 	mac_dev = priv->mac_dev;
423 
424 	/* set mdio address */
425 	mac_dev->mdio_phy1_addr = priv->phyaddr;
426 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
427 
428 	/* get the data */
429 	data = (unsigned int)value;
430 
431 	mdio_regs[regnum] = data;
432 
433 	return 0;
434 }
435 
436 /* MDIO access to phy */
437 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
438 static int altera_tse_miiphy_write(const char *devname, unsigned char addr,
439 				   unsigned char reg, unsigned short value)
440 {
441 	struct eth_device *dev;
442 	struct altera_tse_priv *priv;
443 	dev = eth_get_dev_by_name(devname);
444 	priv = dev->priv;
445 
446 	tse_mdio_write(priv, (uint) reg, (uint) value);
447 
448 	return 0;
449 }
450 
451 static int altera_tse_miiphy_read(const char *devname, unsigned char addr,
452 				  unsigned char reg, unsigned short *value)
453 {
454 	struct eth_device *dev;
455 	struct altera_tse_priv *priv;
456 	volatile struct alt_tse_mac *mac_dev;
457 	unsigned int *mdio_regs;
458 
459 	dev = eth_get_dev_by_name(devname);
460 	priv = dev->priv;
461 
462 	mac_dev = priv->mac_dev;
463 	mac_dev->mdio_phy1_addr = (int)addr;
464 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
465 
466 	*value = 0xffff & mdio_regs[reg];
467 
468 	return 0;
469 
470 }
471 #endif
472 
473 /*
474  * Also copied from tsec.c
475  */
476 /* Parse the status register for link, and then do
477  * auto-negotiation
478  */
479 static uint mii_parse_sr(uint mii_reg, struct altera_tse_priv *priv)
480 {
481 	/*
482 	 * Wait if the link is up, and autonegotiation is in progress
483 	 * (ie - we're capable and it's not done)
484 	 */
485 	mii_reg = tse_mdio_read(priv, MIIM_STATUS);
486 
487 	if (!(mii_reg & MIIM_STATUS_LINK) && (mii_reg & BMSR_ANEGCAPABLE)
488 	    && !(mii_reg & BMSR_ANEGCOMPLETE)) {
489 		int i = 0;
490 
491 		puts("Waiting for PHY auto negotiation to complete");
492 		while (!(mii_reg & BMSR_ANEGCOMPLETE)) {
493 			/*
494 			 * Timeout reached ?
495 			 */
496 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
497 				puts(" TIMEOUT !\n");
498 				priv->link = 0;
499 				return 0;
500 			}
501 
502 			if ((i++ % 1000) == 0)
503 				putc('.');
504 			udelay(1000);	/* 1 ms */
505 			mii_reg = tse_mdio_read(priv, MIIM_STATUS);
506 		}
507 		puts(" done\n");
508 		priv->link = 1;
509 		udelay(500000);	/* another 500 ms (results in faster booting) */
510 	} else {
511 		if (mii_reg & MIIM_STATUS_LINK) {
512 			debug("Link is up\n");
513 			priv->link = 1;
514 		} else {
515 			debug("Link is down\n");
516 			priv->link = 0;
517 		}
518 	}
519 
520 	return 0;
521 }
522 
523 /* Parse the 88E1011's status register for speed and duplex
524  * information
525  */
526 static uint mii_parse_88E1011_psr(uint mii_reg, struct altera_tse_priv *priv)
527 {
528 	uint speed;
529 
530 	mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
531 
532 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
533 	    !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
534 		int i = 0;
535 
536 		puts("Waiting for PHY realtime link");
537 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
538 			/* Timeout reached ? */
539 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
540 				puts(" TIMEOUT !\n");
541 				priv->link = 0;
542 				break;
543 			}
544 
545 			if ((i++ == 1000) == 0) {
546 				i = 0;
547 				puts(".");
548 			}
549 			udelay(1000);	/* 1 ms */
550 			mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
551 		}
552 		puts(" done\n");
553 		udelay(500000);	/* another 500 ms (results in faster booting) */
554 	} else {
555 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
556 			priv->link = 1;
557 		else
558 			priv->link = 0;
559 	}
560 
561 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
562 		priv->duplexity = 1;
563 	else
564 		priv->duplexity = 0;
565 
566 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
567 
568 	switch (speed) {
569 	case MIIM_88E1011_PHYSTAT_GBIT:
570 		priv->speed = 1000;
571 		debug("PHY Speed is 1000Mbit\n");
572 		break;
573 	case MIIM_88E1011_PHYSTAT_100:
574 		debug("PHY Speed is 100Mbit\n");
575 		priv->speed = 100;
576 		break;
577 	default:
578 		debug("PHY Speed is 10Mbit\n");
579 		priv->speed = 10;
580 	}
581 
582 	return 0;
583 }
584 
585 static uint mii_m88e1111s_setmode_sr(uint mii_reg, struct altera_tse_priv *priv)
586 {
587 	uint mii_data = tse_mdio_read(priv, mii_reg);
588 	mii_data &= 0xfff0;
589 	if ((priv->flags >= 1) && (priv->flags <= 4))
590 		mii_data |= 0xb;
591 	else if (priv->flags == 5)
592 		mii_data |= 0x4;
593 
594 	return mii_data;
595 }
596 
597 static uint mii_m88e1111s_setmode_cr(uint mii_reg, struct altera_tse_priv *priv)
598 {
599 	uint mii_data = tse_mdio_read(priv, mii_reg);
600 	mii_data &= ~0x82;
601 	if ((priv->flags >= 1) && (priv->flags <= 4))
602 		mii_data |= 0x82;
603 
604 	return mii_data;
605 }
606 
607 /*
608  * Returns which value to write to the control register.
609  * For 10/100, the value is slightly different
610  */
611 static uint mii_cr_init(uint mii_reg, struct altera_tse_priv *priv)
612 {
613 	return MIIM_CONTROL_INIT;
614 }
615 
616 /*
617  * PHY & MDIO code
618  * Need to add SGMII stuff
619  *
620  */
621 
622 static struct phy_info phy_info_M88E1111S = {
623 	0x01410cc,
624 	"Marvell 88E1111S",
625 	4,
626 	(struct phy_cmd[]){	/* config */
627 			   /* Reset and configure the PHY */
628 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
629 			   {MIIM_88E1111_PHY_EXT_SR, 0x848f,
630 			    &mii_m88e1111s_setmode_sr},
631 			   /* Delay RGMII TX and RX */
632 			   {MIIM_88E1111_PHY_EXT_CR, 0x0cd2,
633 			    &mii_m88e1111s_setmode_cr},
634 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
635 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
636 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
637 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
638 			   {miim_end,}
639 			   },
640 	(struct phy_cmd[]){	/* startup */
641 			   /* Status is read once to clear old link state */
642 			   {MIIM_STATUS, miim_read, NULL},
643 			   /* Auto-negotiate */
644 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
645 			   /* Read the status */
646 			   {MIIM_88E1011_PHY_STATUS, miim_read,
647 			    &mii_parse_88E1011_psr},
648 			   {miim_end,}
649 			   },
650 	(struct phy_cmd[]){	/* shutdown */
651 			   {miim_end,}
652 			   },
653 };
654 
655 /* a generic flavor.  */
656 static struct phy_info phy_info_generic = {
657 	0,
658 	"Unknown/Generic PHY",
659 	32,
660 	(struct phy_cmd[]){	/* config */
661 			   {MII_BMCR, BMCR_RESET, NULL},
662 			   {MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART, NULL},
663 			   {miim_end,}
664 			   },
665 	(struct phy_cmd[]){	/* startup */
666 			   {MII_BMSR, miim_read, NULL},
667 			   {MII_BMSR, miim_read, &mii_parse_sr},
668 			   {miim_end,}
669 			   },
670 	(struct phy_cmd[]){	/* shutdown */
671 			   {miim_end,}
672 			   }
673 };
674 
675 static struct phy_info *phy_info[] = {
676 	&phy_info_M88E1111S,
677 	NULL
678 };
679 
680  /* Grab the identifier of the device's PHY, and search through
681   * all of the known PHYs to see if one matches.	 If so, return
682   * it, if not, return NULL
683   */
684 static struct phy_info *get_phy_info(struct eth_device *dev)
685 {
686 	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
687 	uint phy_reg, phy_ID;
688 	int i;
689 	struct phy_info *theInfo = NULL;
690 
691 	/* Grab the bits from PHYIR1, and put them in the upper half */
692 	phy_reg = tse_mdio_read(priv, MIIM_PHYIR1);
693 	phy_ID = (phy_reg & 0xffff) << 16;
694 
695 	/* Grab the bits from PHYIR2, and put them in the lower half */
696 	phy_reg = tse_mdio_read(priv, MIIM_PHYIR2);
697 	phy_ID |= (phy_reg & 0xffff);
698 
699 	/* loop through all the known PHY types, and find one that */
700 	/* matches the ID we read from the PHY. */
701 	for (i = 0; phy_info[i]; i++) {
702 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
703 			theInfo = phy_info[i];
704 			break;
705 		}
706 	}
707 
708 	if (theInfo == NULL) {
709 		theInfo = &phy_info_generic;
710 		debug("%s: No support for PHY id %x; assuming generic\n",
711 		      dev->name, phy_ID);
712 	} else
713 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
714 
715 	return theInfo;
716 }
717 
718 /* Execute the given series of commands on the given device's
719  * PHY, running functions as necessary
720  */
721 static void phy_run_commands(struct altera_tse_priv *priv, struct phy_cmd *cmd)
722 {
723 	int i;
724 	uint result;
725 
726 	for (i = 0; cmd->mii_reg != miim_end; i++) {
727 		if (cmd->mii_data == miim_read) {
728 			result = tse_mdio_read(priv, cmd->mii_reg);
729 
730 			if (cmd->funct != NULL)
731 				(*(cmd->funct)) (result, priv);
732 
733 		} else {
734 			if (cmd->funct != NULL)
735 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
736 			else
737 				result = cmd->mii_data;
738 
739 			tse_mdio_write(priv, cmd->mii_reg, result);
740 
741 		}
742 		cmd++;
743 	}
744 }
745 
746 /* Phy init code */
747 static int init_phy(struct eth_device *dev)
748 {
749 	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
750 	struct phy_info *curphy;
751 
752 	/* Get the cmd structure corresponding to the attached
753 	 * PHY */
754 	curphy = get_phy_info(dev);
755 
756 	if (curphy == NULL) {
757 		priv->phyinfo = NULL;
758 		debug("%s: No PHY found\n", dev->name);
759 
760 		return 0;
761 	} else
762 		debug("%s found\n", curphy->name);
763 	priv->phyinfo = curphy;
764 
765 	phy_run_commands(priv, priv->phyinfo->config);
766 
767 	return 1;
768 }
769 
770 static int tse_set_mac_address(struct eth_device *dev)
771 {
772 	struct altera_tse_priv *priv = dev->priv;
773 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
774 
775 	debug("Setting MAC address to 0x%02x%02x%02x%02x%02x%02x\n",
776 	      dev->enetaddr[5], dev->enetaddr[4],
777 	      dev->enetaddr[3], dev->enetaddr[2],
778 	      dev->enetaddr[1], dev->enetaddr[0]);
779 	mac_dev->mac_addr_0 = ((dev->enetaddr[3]) << 24 |
780 			       (dev->enetaddr[2]) << 16 |
781 			       (dev->enetaddr[1]) << 8 | (dev->enetaddr[0]));
782 
783 	mac_dev->mac_addr_1 = ((dev->enetaddr[5] << 8 |
784 				(dev->enetaddr[4])) & 0xFFFF);
785 
786 	/* Set the MAC address */
787 	mac_dev->supp_mac_addr_0_0 = mac_dev->mac_addr_0;
788 	mac_dev->supp_mac_addr_0_1 = mac_dev->mac_addr_1;
789 
790 	/* Set the MAC address */
791 	mac_dev->supp_mac_addr_1_0 = mac_dev->mac_addr_0;
792 	mac_dev->supp_mac_addr_1_1 = mac_dev->mac_addr_1;
793 
794 	/* Set the MAC address */
795 	mac_dev->supp_mac_addr_2_0 = mac_dev->mac_addr_0;
796 	mac_dev->supp_mac_addr_2_1 = mac_dev->mac_addr_1;
797 
798 	/* Set the MAC address */
799 	mac_dev->supp_mac_addr_3_0 = mac_dev->mac_addr_0;
800 	mac_dev->supp_mac_addr_3_1 = mac_dev->mac_addr_1;
801 	return 0;
802 }
803 
804 static int tse_eth_init(struct eth_device *dev, bd_t * bd)
805 {
806 	int dat;
807 	struct altera_tse_priv *priv = dev->priv;
808 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
809 	volatile struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
810 	volatile struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
811 	volatile struct alt_sgdma_descriptor *rx_desc_cur =
812 	    (volatile struct alt_sgdma_descriptor *)&rx_desc[0];
813 
814 	/* stop controller */
815 	debug("Reseting TSE & SGDMAs\n");
816 	tse_eth_reset(dev);
817 
818 	/* start the phy */
819 	debug("Configuring PHY\n");
820 	phy_run_commands(priv, priv->phyinfo->startup);
821 
822 	/* need to create sgdma */
823 	debug("Configuring tx desc\n");
824 	alt_sgdma_construct_descriptor_burst(
825 		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
826 		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
827 		(unsigned int *)NULL,	/* read addr */
828 		(unsigned int *)0,
829 		0,	/* length or EOP ,will change for each tx */
830 		0x1,	/* gen eop */
831 		0x0,	/* read fixed */
832 		0x1,	/* write fixed or sop */
833 		0x0,	/* read burst */
834 		0x0,	/* write burst */
835 		0x0	/* channel */
836 		);
837 	debug("Configuring rx desc\n");
838 	flush_dcache_range((unsigned long)(NetRxPackets[0]),
839 			(unsigned long)(NetRxPackets[0]) + PKTSIZE_ALIGN);
840 	alt_sgdma_construct_descriptor_burst(
841 		(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
842 		(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
843 		(unsigned int)0x0,	/* read addr */
844 		(unsigned int *)NetRxPackets[0],
845 		0x0,	/* length or EOP */
846 		0x0,	/* gen eop */
847 		0x0,	/* read fixed */
848 		0x0,	/* write fixed or sop */
849 		0x0,	/* read burst */
850 		0x0,	/* write burst */
851 		0x0	/* channel */
852 		);
853 	/* start rx async transfer */
854 	debug("Starting rx sgdma\n");
855 	alt_sgdma_do_async_transfer(priv->sgdma_rx, rx_desc_cur);
856 
857 	/* start TSE */
858 	debug("Configuring TSE Mac\n");
859 	/* Initialize MAC registers */
860 	mac_dev->max_frame_length = PKTSIZE_ALIGN;
861 	mac_dev->rx_almost_empty_threshold = 8;
862 	mac_dev->rx_almost_full_threshold = 8;
863 	mac_dev->tx_almost_empty_threshold = 8;
864 	mac_dev->tx_almost_full_threshold = 3;
865 	mac_dev->tx_sel_empty_threshold =
866 	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
867 	mac_dev->tx_sel_full_threshold = 0;
868 	mac_dev->rx_sel_empty_threshold =
869 	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
870 	mac_dev->rx_sel_full_threshold = 0;
871 
872 	/* NO Shift */
873 	mac_dev->rx_cmd_stat.bits.rx_shift16 = 0;
874 	mac_dev->tx_cmd_stat.bits.tx_shift16 = 0;
875 
876 	/* enable MAC */
877 	dat = 0;
878 	dat = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;
879 
880 	mac_dev->command_config.image = dat;
881 
882 	/* configure the TSE core  */
883 	/*  -- output clocks,  */
884 	/*  -- and later config stuff for SGMII */
885 	if (priv->link) {
886 		debug("Adjusting TSE to link speed\n");
887 		tse_adjust_link(priv);
888 	}
889 
890 	return priv->link ? 0 : -1;
891 }
892 
893 /* TSE init code */
894 int altera_tse_initialize(u8 dev_num, int mac_base,
895 			  int sgdma_rx_base, int sgdma_tx_base,
896 			  u32 sgdma_desc_base, u32 sgdma_desc_size)
897 {
898 	struct altera_tse_priv *priv;
899 	struct eth_device *dev;
900 	struct alt_sgdma_descriptor *rx_desc;
901 	struct alt_sgdma_descriptor *tx_desc;
902 	unsigned long dma_handle;
903 
904 	dev = (struct eth_device *)malloc(sizeof *dev);
905 
906 	if (NULL == dev)
907 		return 0;
908 
909 	memset(dev, 0, sizeof *dev);
910 
911 	priv = malloc(sizeof(*priv));
912 
913 	if (!priv) {
914 		free(dev);
915 		return 0;
916 	}
917 	if (sgdma_desc_size) {
918 		if (sgdma_desc_size < (sizeof(*tx_desc) * (3 + PKTBUFSRX))) {
919 			printf("ALTERA_TSE-%hu: "
920 			       "descriptor memory is too small\n", dev_num);
921 			free(priv);
922 			free(dev);
923 			return 0;
924 		}
925 		tx_desc = (struct alt_sgdma_descriptor *)sgdma_desc_base;
926 	} else {
927 		tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX),
928 					     &dma_handle);
929 	}
930 
931 	rx_desc = tx_desc + 2;
932 	debug("tx desc: address = 0x%x\n", (unsigned int)tx_desc);
933 	debug("rx desc: address = 0x%x\n", (unsigned int)rx_desc);
934 
935 	if (!tx_desc) {
936 		free(priv);
937 		free(dev);
938 		return 0;
939 	}
940 	memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
941 	memset(tx_desc, 0, (sizeof *tx_desc) * 2);
942 
943 	/* initialize tse priv */
944 	priv->mac_dev = (volatile struct alt_tse_mac *)mac_base;
945 	priv->sgdma_rx = (volatile struct alt_sgdma_registers *)sgdma_rx_base;
946 	priv->sgdma_tx = (volatile struct alt_sgdma_registers *)sgdma_tx_base;
947 	priv->phyaddr = CONFIG_SYS_ALTERA_TSE_PHY_ADDR;
948 	priv->flags = CONFIG_SYS_ALTERA_TSE_FLAGS;
949 	priv->rx_desc = rx_desc;
950 	priv->tx_desc = tx_desc;
951 
952 	/* init eth structure */
953 	dev->priv = priv;
954 	dev->init = tse_eth_init;
955 	dev->halt = tse_eth_halt;
956 	dev->send = tse_eth_send;
957 	dev->recv = tse_eth_rx;
958 	dev->write_hwaddr = tse_set_mac_address;
959 	sprintf(dev->name, "%s-%hu", "ALTERA_TSE", dev_num);
960 
961 	eth_register(dev);
962 
963 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
964 	miiphy_register(dev->name, altera_tse_miiphy_read,
965 			altera_tse_miiphy_write);
966 #endif
967 
968 	init_phy(dev);
969 
970 	return 1;
971 }
972