xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision 50752790bc9285c0c1c5235e88f3a4ef2eec1e72)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling unit.
23  *
24  * This unit is responsible for wear-leveling. It works in terms of physical
25  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26  * volumes, etc. From this unit's perspective all physical eraseblocks are of
27  * two types - used and free. Used physical eraseblocks are those that were
28  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29  * those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only 0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL unit by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL unit.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL unit may pick a free physical eraseblock with low erase counter, and
47  * so forth.
48  *
49  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
50  *
51  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52  * physical eraseblock, it has to be moved. Technically this is the same as
53  * moving it for wear-leveling reasons.
54  *
55  * As it was said, for the UBI unit all physical eraseblocks are either "free"
56  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57  * eraseblocks are kept in a set of different RB-trees: @wl->used,
58  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
59  *
60  * Note, in this implementation, we keep a small in-RAM object for each physical
61  * eraseblock. This is surely not a scalable solution. But it appears to be good
62  * enough for moderately large flashes and it is simple. In future, one may
63  * re-work this unit and make it more scalable.
64  *
65  * At the moment this unit does not utilize the sequence number, which was
66  * introduced relatively recently. But it would be wise to do this because the
67  * sequence number of a logical eraseblock characterizes how old is it. For
68  * example, when we move a PEB with low erase counter, and we need to pick the
69  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70  * pick target PEB with an average EC if our PEB is not very "old". This is a
71  * room for future re-works of the WL unit.
72  *
73  * FIXME: looks too complex, should be simplified (later).
74  */
75 
76 #ifdef UBI_LINUX
77 #include <linux/slab.h>
78 #include <linux/crc32.h>
79 #include <linux/freezer.h>
80 #include <linux/kthread.h>
81 #endif
82 
83 #include <ubi_uboot.h>
84 #include "ubi.h"
85 
86 /* Number of physical eraseblocks reserved for wear-leveling purposes */
87 #define WL_RESERVED_PEBS 1
88 
89 /*
90  * How many erase cycles are short term, unknown, and long term physical
91  * eraseblocks protected.
92  */
93 #define ST_PROTECTION 16
94 #define U_PROTECTION  10
95 #define LT_PROTECTION 4
96 
97 /*
98  * Maximum difference between two erase counters. If this threshold is
99  * exceeded, the WL unit starts moving data from used physical eraseblocks with
100  * low erase counter to free physical eraseblocks with high erase counter.
101  */
102 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
103 
104 /*
105  * When a physical eraseblock is moved, the WL unit has to pick the target
106  * physical eraseblock to move to. The simplest way would be just to pick the
107  * one with the highest erase counter. But in certain workloads this could lead
108  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
109  * situation when the picked physical eraseblock is constantly erased after the
110  * data is written to it. So, we have a constant which limits the highest erase
111  * counter of the free physical eraseblock to pick. Namely, the WL unit does
112  * not pick eraseblocks with erase counter greater then the lowest erase
113  * counter plus %WL_FREE_MAX_DIFF.
114  */
115 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
116 
117 /*
118  * Maximum number of consecutive background thread failures which is enough to
119  * switch to read-only mode.
120  */
121 #define WL_MAX_FAILURES 32
122 
123 /**
124  * struct ubi_wl_prot_entry - PEB protection entry.
125  * @rb_pnum: link in the @wl->prot.pnum RB-tree
126  * @rb_aec: link in the @wl->prot.aec RB-tree
127  * @abs_ec: the absolute erase counter value when the protection ends
128  * @e: the wear-leveling entry of the physical eraseblock under protection
129  *
130  * When the WL unit returns a physical eraseblock, the physical eraseblock is
131  * protected from being moved for some "time". For this reason, the physical
132  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
133  * tree. There is one more tree in between where this physical eraseblock is
134  * temporarily stored (@wl->prot).
135  *
136  * All this protection stuff is needed because:
137  *  o we don't want to move physical eraseblocks just after we have given them
138  *    to the user; instead, we first want to let users fill them up with data;
139  *
140  *  o there is a chance that the user will put the physical eraseblock very
141  *    soon, so it makes sense not to move it for some time, but wait; this is
142  *    especially important in case of "short term" physical eraseblocks.
143  *
144  * Physical eraseblocks stay protected only for limited time. But the "time" is
145  * measured in erase cycles in this case. This is implemented with help of the
146  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
147  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
148  * the @wl->used tree.
149  *
150  * Protected physical eraseblocks are searched by physical eraseblock number
151  * (when they are put) and by the absolute erase counter (to check if it is
152  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
153  * storing the protected physical eraseblocks: @wl->prot.pnum and
154  * @wl->prot.aec. They are referred to as the "protection" trees. The
155  * first one is indexed by the physical eraseblock number. The second one is
156  * indexed by the absolute erase counter. Both trees store
157  * &struct ubi_wl_prot_entry objects.
158  *
159  * Each physical eraseblock has 2 main states: free and used. The former state
160  * corresponds to the @wl->free tree. The latter state is split up on several
161  * sub-states:
162  * o the WL movement is allowed (@wl->used tree);
163  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
164  * @wl->prot.aec trees);
165  * o scrubbing is needed (@wl->scrub tree).
166  *
167  * Depending on the sub-state, wear-leveling entries of the used physical
168  * eraseblocks may be kept in one of those trees.
169  */
170 struct ubi_wl_prot_entry {
171 	struct rb_node rb_pnum;
172 	struct rb_node rb_aec;
173 	unsigned long long abs_ec;
174 	struct ubi_wl_entry *e;
175 };
176 
177 /**
178  * struct ubi_work - UBI work description data structure.
179  * @list: a link in the list of pending works
180  * @func: worker function
181  * @priv: private data of the worker function
182  *
183  * @e: physical eraseblock to erase
184  * @torture: if the physical eraseblock has to be tortured
185  *
186  * The @func pointer points to the worker function. If the @cancel argument is
187  * not zero, the worker has to free the resources and exit immediately. The
188  * worker has to return zero in case of success and a negative error code in
189  * case of failure.
190  */
191 struct ubi_work {
192 	struct list_head list;
193 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
194 	/* The below fields are only relevant to erasure works */
195 	struct ubi_wl_entry *e;
196 	int torture;
197 };
198 
199 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
200 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
201 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
202 				     struct rb_root *root);
203 #else
204 #define paranoid_check_ec(ubi, pnum, ec) 0
205 #define paranoid_check_in_wl_tree(e, root)
206 #endif
207 
208 /**
209  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
210  * @e: the wear-leveling entry to add
211  * @root: the root of the tree
212  *
213  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
214  * the @ubi->used and @ubi->free RB-trees.
215  */
216 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
217 {
218 	struct rb_node **p, *parent = NULL;
219 
220 	p = &root->rb_node;
221 	while (*p) {
222 		struct ubi_wl_entry *e1;
223 
224 		parent = *p;
225 		e1 = rb_entry(parent, struct ubi_wl_entry, rb);
226 
227 		if (e->ec < e1->ec)
228 			p = &(*p)->rb_left;
229 		else if (e->ec > e1->ec)
230 			p = &(*p)->rb_right;
231 		else {
232 			ubi_assert(e->pnum != e1->pnum);
233 			if (e->pnum < e1->pnum)
234 				p = &(*p)->rb_left;
235 			else
236 				p = &(*p)->rb_right;
237 		}
238 	}
239 
240 	rb_link_node(&e->rb, parent, p);
241 	rb_insert_color(&e->rb, root);
242 }
243 
244 /**
245  * do_work - do one pending work.
246  * @ubi: UBI device description object
247  *
248  * This function returns zero in case of success and a negative error code in
249  * case of failure.
250  */
251 static int do_work(struct ubi_device *ubi)
252 {
253 	int err;
254 	struct ubi_work *wrk;
255 
256 	cond_resched();
257 
258 	/*
259 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
260 	 * it in read mode, so many of them may be doing works at a time. But
261 	 * the queue flush code has to be sure the whole queue of works is
262 	 * done, and it takes the mutex in write mode.
263 	 */
264 	down_read(&ubi->work_sem);
265 	spin_lock(&ubi->wl_lock);
266 	if (list_empty(&ubi->works)) {
267 		spin_unlock(&ubi->wl_lock);
268 		up_read(&ubi->work_sem);
269 		return 0;
270 	}
271 
272 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
273 	list_del(&wrk->list);
274 	ubi->works_count -= 1;
275 	ubi_assert(ubi->works_count >= 0);
276 	spin_unlock(&ubi->wl_lock);
277 
278 	/*
279 	 * Call the worker function. Do not touch the work structure
280 	 * after this call as it will have been freed or reused by that
281 	 * time by the worker function.
282 	 */
283 	err = wrk->func(ubi, wrk, 0);
284 	if (err)
285 		ubi_err("work failed with error code %d", err);
286 	up_read(&ubi->work_sem);
287 
288 	return err;
289 }
290 
291 /**
292  * produce_free_peb - produce a free physical eraseblock.
293  * @ubi: UBI device description object
294  *
295  * This function tries to make a free PEB by means of synchronous execution of
296  * pending works. This may be needed if, for example the background thread is
297  * disabled. Returns zero in case of success and a negative error code in case
298  * of failure.
299  */
300 static int produce_free_peb(struct ubi_device *ubi)
301 {
302 	int err;
303 
304 	spin_lock(&ubi->wl_lock);
305 	while (!ubi->free.rb_node) {
306 		spin_unlock(&ubi->wl_lock);
307 
308 		dbg_wl("do one work synchronously");
309 		err = do_work(ubi);
310 		if (err)
311 			return err;
312 
313 		spin_lock(&ubi->wl_lock);
314 	}
315 	spin_unlock(&ubi->wl_lock);
316 
317 	return 0;
318 }
319 
320 /**
321  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
322  * @e: the wear-leveling entry to check
323  * @root: the root of the tree
324  *
325  * This function returns non-zero if @e is in the @root RB-tree and zero if it
326  * is not.
327  */
328 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
329 {
330 	struct rb_node *p;
331 
332 	p = root->rb_node;
333 	while (p) {
334 		struct ubi_wl_entry *e1;
335 
336 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
337 
338 		if (e->pnum == e1->pnum) {
339 			ubi_assert(e == e1);
340 			return 1;
341 		}
342 
343 		if (e->ec < e1->ec)
344 			p = p->rb_left;
345 		else if (e->ec > e1->ec)
346 			p = p->rb_right;
347 		else {
348 			ubi_assert(e->pnum != e1->pnum);
349 			if (e->pnum < e1->pnum)
350 				p = p->rb_left;
351 			else
352 				p = p->rb_right;
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 /**
360  * prot_tree_add - add physical eraseblock to protection trees.
361  * @ubi: UBI device description object
362  * @e: the physical eraseblock to add
363  * @pe: protection entry object to use
364  * @abs_ec: absolute erase counter value when this physical eraseblock has
365  * to be removed from the protection trees.
366  *
367  * @wl->lock has to be locked.
368  */
369 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
370 			  struct ubi_wl_prot_entry *pe, int abs_ec)
371 {
372 	struct rb_node **p, *parent = NULL;
373 	struct ubi_wl_prot_entry *pe1;
374 
375 	pe->e = e;
376 	pe->abs_ec = ubi->abs_ec + abs_ec;
377 
378 	p = &ubi->prot.pnum.rb_node;
379 	while (*p) {
380 		parent = *p;
381 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
382 
383 		if (e->pnum < pe1->e->pnum)
384 			p = &(*p)->rb_left;
385 		else
386 			p = &(*p)->rb_right;
387 	}
388 	rb_link_node(&pe->rb_pnum, parent, p);
389 	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
390 
391 	p = &ubi->prot.aec.rb_node;
392 	parent = NULL;
393 	while (*p) {
394 		parent = *p;
395 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
396 
397 		if (pe->abs_ec < pe1->abs_ec)
398 			p = &(*p)->rb_left;
399 		else
400 			p = &(*p)->rb_right;
401 	}
402 	rb_link_node(&pe->rb_aec, parent, p);
403 	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
404 }
405 
406 /**
407  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
408  * @root: the RB-tree where to look for
409  * @max: highest possible erase counter
410  *
411  * This function looks for a wear leveling entry with erase counter closest to
412  * @max and less then @max.
413  */
414 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
415 {
416 	struct rb_node *p;
417 	struct ubi_wl_entry *e;
418 
419 	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
420 	max += e->ec;
421 
422 	p = root->rb_node;
423 	while (p) {
424 		struct ubi_wl_entry *e1;
425 
426 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
427 		if (e1->ec >= max)
428 			p = p->rb_left;
429 		else {
430 			p = p->rb_right;
431 			e = e1;
432 		}
433 	}
434 
435 	return e;
436 }
437 
438 /**
439  * ubi_wl_get_peb - get a physical eraseblock.
440  * @ubi: UBI device description object
441  * @dtype: type of data which will be stored in this physical eraseblock
442  *
443  * This function returns a physical eraseblock in case of success and a
444  * negative error code in case of failure. Might sleep.
445  */
446 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
447 {
448 	int err, protect, medium_ec;
449 	struct ubi_wl_entry *e, *first, *last;
450 	struct ubi_wl_prot_entry *pe;
451 
452 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
453 		   dtype == UBI_UNKNOWN);
454 
455 	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
456 	if (!pe)
457 		return -ENOMEM;
458 
459 retry:
460 	spin_lock(&ubi->wl_lock);
461 	if (!ubi->free.rb_node) {
462 		if (ubi->works_count == 0) {
463 			ubi_assert(list_empty(&ubi->works));
464 			ubi_err("no free eraseblocks");
465 			spin_unlock(&ubi->wl_lock);
466 			kfree(pe);
467 			return -ENOSPC;
468 		}
469 		spin_unlock(&ubi->wl_lock);
470 
471 		err = produce_free_peb(ubi);
472 		if (err < 0) {
473 			kfree(pe);
474 			return err;
475 		}
476 		goto retry;
477 	}
478 
479 	switch (dtype) {
480 		case UBI_LONGTERM:
481 			/*
482 			 * For long term data we pick a physical eraseblock
483 			 * with high erase counter. But the highest erase
484 			 * counter we can pick is bounded by the the lowest
485 			 * erase counter plus %WL_FREE_MAX_DIFF.
486 			 */
487 			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
488 			protect = LT_PROTECTION;
489 			break;
490 		case UBI_UNKNOWN:
491 			/*
492 			 * For unknown data we pick a physical eraseblock with
493 			 * medium erase counter. But we by no means can pick a
494 			 * physical eraseblock with erase counter greater or
495 			 * equivalent than the lowest erase counter plus
496 			 * %WL_FREE_MAX_DIFF.
497 			 */
498 			first = rb_entry(rb_first(&ubi->free),
499 					 struct ubi_wl_entry, rb);
500 			last = rb_entry(rb_last(&ubi->free),
501 					struct ubi_wl_entry, rb);
502 
503 			if (last->ec - first->ec < WL_FREE_MAX_DIFF)
504 				e = rb_entry(ubi->free.rb_node,
505 						struct ubi_wl_entry, rb);
506 			else {
507 				medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
508 				e = find_wl_entry(&ubi->free, medium_ec);
509 			}
510 			protect = U_PROTECTION;
511 			break;
512 		case UBI_SHORTTERM:
513 			/*
514 			 * For short term data we pick a physical eraseblock
515 			 * with the lowest erase counter as we expect it will
516 			 * be erased soon.
517 			 */
518 			e = rb_entry(rb_first(&ubi->free),
519 				     struct ubi_wl_entry, rb);
520 			protect = ST_PROTECTION;
521 			break;
522 		default:
523 			protect = 0;
524 			e = NULL;
525 			BUG();
526 	}
527 
528 	/*
529 	 * Move the physical eraseblock to the protection trees where it will
530 	 * be protected from being moved for some time.
531 	 */
532 	paranoid_check_in_wl_tree(e, &ubi->free);
533 	rb_erase(&e->rb, &ubi->free);
534 	prot_tree_add(ubi, e, pe, protect);
535 
536 	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
537 	spin_unlock(&ubi->wl_lock);
538 
539 	return e->pnum;
540 }
541 
542 /**
543  * prot_tree_del - remove a physical eraseblock from the protection trees
544  * @ubi: UBI device description object
545  * @pnum: the physical eraseblock to remove
546  *
547  * This function returns PEB @pnum from the protection trees and returns zero
548  * in case of success and %-ENODEV if the PEB was not found in the protection
549  * trees.
550  */
551 static int prot_tree_del(struct ubi_device *ubi, int pnum)
552 {
553 	struct rb_node *p;
554 	struct ubi_wl_prot_entry *pe = NULL;
555 
556 	p = ubi->prot.pnum.rb_node;
557 	while (p) {
558 
559 		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
560 
561 		if (pnum == pe->e->pnum)
562 			goto found;
563 
564 		if (pnum < pe->e->pnum)
565 			p = p->rb_left;
566 		else
567 			p = p->rb_right;
568 	}
569 
570 	return -ENODEV;
571 
572 found:
573 	ubi_assert(pe->e->pnum == pnum);
574 	rb_erase(&pe->rb_aec, &ubi->prot.aec);
575 	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
576 	kfree(pe);
577 	return 0;
578 }
579 
580 /**
581  * sync_erase - synchronously erase a physical eraseblock.
582  * @ubi: UBI device description object
583  * @e: the the physical eraseblock to erase
584  * @torture: if the physical eraseblock has to be tortured
585  *
586  * This function returns zero in case of success and a negative error code in
587  * case of failure.
588  */
589 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
590 {
591 	int err;
592 	struct ubi_ec_hdr *ec_hdr;
593 	unsigned long long ec = e->ec;
594 
595 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
596 
597 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
598 	if (err > 0)
599 		return -EINVAL;
600 
601 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
602 	if (!ec_hdr)
603 		return -ENOMEM;
604 
605 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
606 	if (err < 0)
607 		goto out_free;
608 
609 	ec += err;
610 	if (ec > UBI_MAX_ERASECOUNTER) {
611 		/*
612 		 * Erase counter overflow. Upgrade UBI and use 64-bit
613 		 * erase counters internally.
614 		 */
615 		ubi_err("erase counter overflow at PEB %d, EC %llu",
616 			e->pnum, ec);
617 		err = -EINVAL;
618 		goto out_free;
619 	}
620 
621 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
622 
623 	ec_hdr->ec = cpu_to_be64(ec);
624 
625 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
626 	if (err)
627 		goto out_free;
628 
629 	e->ec = ec;
630 	spin_lock(&ubi->wl_lock);
631 	if (e->ec > ubi->max_ec)
632 		ubi->max_ec = e->ec;
633 	spin_unlock(&ubi->wl_lock);
634 
635 out_free:
636 	kfree(ec_hdr);
637 	return err;
638 }
639 
640 /**
641  * check_protection_over - check if it is time to stop protecting some
642  * physical eraseblocks.
643  * @ubi: UBI device description object
644  *
645  * This function is called after each erase operation, when the absolute erase
646  * counter is incremented, to check if some physical eraseblock  have not to be
647  * protected any longer. These physical eraseblocks are moved from the
648  * protection trees to the used tree.
649  */
650 static void check_protection_over(struct ubi_device *ubi)
651 {
652 	struct ubi_wl_prot_entry *pe;
653 
654 	/*
655 	 * There may be several protected physical eraseblock to remove,
656 	 * process them all.
657 	 */
658 	while (1) {
659 		spin_lock(&ubi->wl_lock);
660 		if (!ubi->prot.aec.rb_node) {
661 			spin_unlock(&ubi->wl_lock);
662 			break;
663 		}
664 
665 		pe = rb_entry(rb_first(&ubi->prot.aec),
666 			      struct ubi_wl_prot_entry, rb_aec);
667 
668 		if (pe->abs_ec > ubi->abs_ec) {
669 			spin_unlock(&ubi->wl_lock);
670 			break;
671 		}
672 
673 		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
674 		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
675 		rb_erase(&pe->rb_aec, &ubi->prot.aec);
676 		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
677 		wl_tree_add(pe->e, &ubi->used);
678 		spin_unlock(&ubi->wl_lock);
679 
680 		kfree(pe);
681 		cond_resched();
682 	}
683 }
684 
685 /**
686  * schedule_ubi_work - schedule a work.
687  * @ubi: UBI device description object
688  * @wrk: the work to schedule
689  *
690  * This function enqueues a work defined by @wrk to the tail of the pending
691  * works list.
692  */
693 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
694 {
695 	spin_lock(&ubi->wl_lock);
696 	list_add_tail(&wrk->list, &ubi->works);
697 	ubi_assert(ubi->works_count >= 0);
698 	ubi->works_count += 1;
699 	if (ubi->thread_enabled)
700 		wake_up_process(ubi->bgt_thread);
701 	spin_unlock(&ubi->wl_lock);
702 }
703 
704 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
705 			int cancel);
706 
707 /**
708  * schedule_erase - schedule an erase work.
709  * @ubi: UBI device description object
710  * @e: the WL entry of the physical eraseblock to erase
711  * @torture: if the physical eraseblock has to be tortured
712  *
713  * This function returns zero in case of success and a %-ENOMEM in case of
714  * failure.
715  */
716 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
717 			  int torture)
718 {
719 	struct ubi_work *wl_wrk;
720 
721 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
722 	       e->pnum, e->ec, torture);
723 
724 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
725 	if (!wl_wrk)
726 		return -ENOMEM;
727 
728 	wl_wrk->func = &erase_worker;
729 	wl_wrk->e = e;
730 	wl_wrk->torture = torture;
731 
732 	schedule_ubi_work(ubi, wl_wrk);
733 	return 0;
734 }
735 
736 /**
737  * wear_leveling_worker - wear-leveling worker function.
738  * @ubi: UBI device description object
739  * @wrk: the work object
740  * @cancel: non-zero if the worker has to free memory and exit
741  *
742  * This function copies a more worn out physical eraseblock to a less worn out
743  * one. Returns zero in case of success and a negative error code in case of
744  * failure.
745  */
746 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
747 				int cancel)
748 {
749 	int err, put = 0, scrubbing = 0, protect = 0;
750 	struct ubi_wl_prot_entry *uninitialized_var(pe);
751 	struct ubi_wl_entry *e1, *e2;
752 	struct ubi_vid_hdr *vid_hdr;
753 
754 	kfree(wrk);
755 
756 	if (cancel)
757 		return 0;
758 
759 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
760 	if (!vid_hdr)
761 		return -ENOMEM;
762 
763 	mutex_lock(&ubi->move_mutex);
764 	spin_lock(&ubi->wl_lock);
765 	ubi_assert(!ubi->move_from && !ubi->move_to);
766 	ubi_assert(!ubi->move_to_put);
767 
768 	if (!ubi->free.rb_node ||
769 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
770 		/*
771 		 * No free physical eraseblocks? Well, they must be waiting in
772 		 * the queue to be erased. Cancel movement - it will be
773 		 * triggered again when a free physical eraseblock appears.
774 		 *
775 		 * No used physical eraseblocks? They must be temporarily
776 		 * protected from being moved. They will be moved to the
777 		 * @ubi->used tree later and the wear-leveling will be
778 		 * triggered again.
779 		 */
780 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
781 		       !ubi->free.rb_node, !ubi->used.rb_node);
782 		goto out_cancel;
783 	}
784 
785 	if (!ubi->scrub.rb_node) {
786 		/*
787 		 * Now pick the least worn-out used physical eraseblock and a
788 		 * highly worn-out free physical eraseblock. If the erase
789 		 * counters differ much enough, start wear-leveling.
790 		 */
791 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
792 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
793 
794 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
795 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
796 			       e1->ec, e2->ec);
797 			goto out_cancel;
798 		}
799 		paranoid_check_in_wl_tree(e1, &ubi->used);
800 		rb_erase(&e1->rb, &ubi->used);
801 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
802 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
803 	} else {
804 		/* Perform scrubbing */
805 		scrubbing = 1;
806 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
807 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
808 		paranoid_check_in_wl_tree(e1, &ubi->scrub);
809 		rb_erase(&e1->rb, &ubi->scrub);
810 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
811 	}
812 
813 	paranoid_check_in_wl_tree(e2, &ubi->free);
814 	rb_erase(&e2->rb, &ubi->free);
815 	ubi->move_from = e1;
816 	ubi->move_to = e2;
817 	spin_unlock(&ubi->wl_lock);
818 
819 	/*
820 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
821 	 * We so far do not know which logical eraseblock our physical
822 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
823 	 * header first.
824 	 *
825 	 * Note, we are protected from this PEB being unmapped and erased. The
826 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
827 	 * which is being moved was unmapped.
828 	 */
829 
830 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
831 	if (err && err != UBI_IO_BITFLIPS) {
832 		if (err == UBI_IO_PEB_FREE) {
833 			/*
834 			 * We are trying to move PEB without a VID header. UBI
835 			 * always write VID headers shortly after the PEB was
836 			 * given, so we have a situation when it did not have
837 			 * chance to write it down because it was preempted.
838 			 * Just re-schedule the work, so that next time it will
839 			 * likely have the VID header in place.
840 			 */
841 			dbg_wl("PEB %d has no VID header", e1->pnum);
842 			goto out_not_moved;
843 		}
844 
845 		ubi_err("error %d while reading VID header from PEB %d",
846 			err, e1->pnum);
847 		if (err > 0)
848 			err = -EIO;
849 		goto out_error;
850 	}
851 
852 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
853 	if (err) {
854 
855 		if (err < 0)
856 			goto out_error;
857 		if (err == 1)
858 			goto out_not_moved;
859 
860 		/*
861 		 * For some reason the LEB was not moved - it might be because
862 		 * the volume is being deleted. We should prevent this PEB from
863 		 * being selected for wear-levelling movement for some "time",
864 		 * so put it to the protection tree.
865 		 */
866 
867 		dbg_wl("cancelled moving PEB %d", e1->pnum);
868 		pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
869 		if (!pe) {
870 			err = -ENOMEM;
871 			goto out_error;
872 		}
873 
874 		protect = 1;
875 	}
876 
877 	ubi_free_vid_hdr(ubi, vid_hdr);
878 	spin_lock(&ubi->wl_lock);
879 	if (protect)
880 		prot_tree_add(ubi, e1, pe, protect);
881 	if (!ubi->move_to_put)
882 		wl_tree_add(e2, &ubi->used);
883 	else
884 		put = 1;
885 	ubi->move_from = ubi->move_to = NULL;
886 	ubi->move_to_put = ubi->wl_scheduled = 0;
887 	spin_unlock(&ubi->wl_lock);
888 
889 	if (put) {
890 		/*
891 		 * Well, the target PEB was put meanwhile, schedule it for
892 		 * erasure.
893 		 */
894 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
895 		err = schedule_erase(ubi, e2, 0);
896 		if (err)
897 			goto out_error;
898 	}
899 
900 	if (!protect) {
901 		err = schedule_erase(ubi, e1, 0);
902 		if (err)
903 			goto out_error;
904 	}
905 
906 
907 	dbg_wl("done");
908 	mutex_unlock(&ubi->move_mutex);
909 	return 0;
910 
911 	/*
912 	 * For some reasons the LEB was not moved, might be an error, might be
913 	 * something else. @e1 was not changed, so return it back. @e2 might
914 	 * be changed, schedule it for erasure.
915 	 */
916 out_not_moved:
917 	ubi_free_vid_hdr(ubi, vid_hdr);
918 	spin_lock(&ubi->wl_lock);
919 	if (scrubbing)
920 		wl_tree_add(e1, &ubi->scrub);
921 	else
922 		wl_tree_add(e1, &ubi->used);
923 	ubi->move_from = ubi->move_to = NULL;
924 	ubi->move_to_put = ubi->wl_scheduled = 0;
925 	spin_unlock(&ubi->wl_lock);
926 
927 	err = schedule_erase(ubi, e2, 0);
928 	if (err)
929 		goto out_error;
930 
931 	mutex_unlock(&ubi->move_mutex);
932 	return 0;
933 
934 out_error:
935 	ubi_err("error %d while moving PEB %d to PEB %d",
936 		err, e1->pnum, e2->pnum);
937 
938 	ubi_free_vid_hdr(ubi, vid_hdr);
939 	spin_lock(&ubi->wl_lock);
940 	ubi->move_from = ubi->move_to = NULL;
941 	ubi->move_to_put = ubi->wl_scheduled = 0;
942 	spin_unlock(&ubi->wl_lock);
943 
944 	kmem_cache_free(ubi_wl_entry_slab, e1);
945 	kmem_cache_free(ubi_wl_entry_slab, e2);
946 	ubi_ro_mode(ubi);
947 
948 	mutex_unlock(&ubi->move_mutex);
949 	return err;
950 
951 out_cancel:
952 	ubi->wl_scheduled = 0;
953 	spin_unlock(&ubi->wl_lock);
954 	mutex_unlock(&ubi->move_mutex);
955 	ubi_free_vid_hdr(ubi, vid_hdr);
956 	return 0;
957 }
958 
959 /**
960  * ensure_wear_leveling - schedule wear-leveling if it is needed.
961  * @ubi: UBI device description object
962  *
963  * This function checks if it is time to start wear-leveling and schedules it
964  * if yes. This function returns zero in case of success and a negative error
965  * code in case of failure.
966  */
967 static int ensure_wear_leveling(struct ubi_device *ubi)
968 {
969 	int err = 0;
970 	struct ubi_wl_entry *e1;
971 	struct ubi_wl_entry *e2;
972 	struct ubi_work *wrk;
973 
974 	spin_lock(&ubi->wl_lock);
975 	if (ubi->wl_scheduled)
976 		/* Wear-leveling is already in the work queue */
977 		goto out_unlock;
978 
979 	/*
980 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
981 	 * the WL worker has to be scheduled anyway.
982 	 */
983 	if (!ubi->scrub.rb_node) {
984 		if (!ubi->used.rb_node || !ubi->free.rb_node)
985 			/* No physical eraseblocks - no deal */
986 			goto out_unlock;
987 
988 		/*
989 		 * We schedule wear-leveling only if the difference between the
990 		 * lowest erase counter of used physical eraseblocks and a high
991 		 * erase counter of free physical eraseblocks is greater then
992 		 * %UBI_WL_THRESHOLD.
993 		 */
994 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
995 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
996 
997 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
998 			goto out_unlock;
999 		dbg_wl("schedule wear-leveling");
1000 	} else
1001 		dbg_wl("schedule scrubbing");
1002 
1003 	ubi->wl_scheduled = 1;
1004 	spin_unlock(&ubi->wl_lock);
1005 
1006 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1007 	if (!wrk) {
1008 		err = -ENOMEM;
1009 		goto out_cancel;
1010 	}
1011 
1012 	wrk->func = &wear_leveling_worker;
1013 	schedule_ubi_work(ubi, wrk);
1014 	return err;
1015 
1016 out_cancel:
1017 	spin_lock(&ubi->wl_lock);
1018 	ubi->wl_scheduled = 0;
1019 out_unlock:
1020 	spin_unlock(&ubi->wl_lock);
1021 	return err;
1022 }
1023 
1024 /**
1025  * erase_worker - physical eraseblock erase worker function.
1026  * @ubi: UBI device description object
1027  * @wl_wrk: the work object
1028  * @cancel: non-zero if the worker has to free memory and exit
1029  *
1030  * This function erases a physical eraseblock and perform torture testing if
1031  * needed. It also takes care about marking the physical eraseblock bad if
1032  * needed. Returns zero in case of success and a negative error code in case of
1033  * failure.
1034  */
1035 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1036 			int cancel)
1037 {
1038 	struct ubi_wl_entry *e = wl_wrk->e;
1039 	int pnum = e->pnum, err, need;
1040 
1041 	if (cancel) {
1042 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1043 		kfree(wl_wrk);
1044 		kmem_cache_free(ubi_wl_entry_slab, e);
1045 		return 0;
1046 	}
1047 
1048 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1049 
1050 	err = sync_erase(ubi, e, wl_wrk->torture);
1051 	if (!err) {
1052 		/* Fine, we've erased it successfully */
1053 		kfree(wl_wrk);
1054 
1055 		spin_lock(&ubi->wl_lock);
1056 		ubi->abs_ec += 1;
1057 		wl_tree_add(e, &ubi->free);
1058 		spin_unlock(&ubi->wl_lock);
1059 
1060 		/*
1061 		 * One more erase operation has happened, take care about protected
1062 		 * physical eraseblocks.
1063 		 */
1064 		check_protection_over(ubi);
1065 
1066 		/* And take care about wear-leveling */
1067 		err = ensure_wear_leveling(ubi);
1068 		return err;
1069 	}
1070 
1071 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1072 	kfree(wl_wrk);
1073 	kmem_cache_free(ubi_wl_entry_slab, e);
1074 
1075 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1076 	    err == -EBUSY) {
1077 		int err1;
1078 
1079 		/* Re-schedule the LEB for erasure */
1080 		err1 = schedule_erase(ubi, e, 0);
1081 		if (err1) {
1082 			err = err1;
1083 			goto out_ro;
1084 		}
1085 		return err;
1086 	} else if (err != -EIO) {
1087 		/*
1088 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1089 		 * this physical eraseblock for erasure again would cause
1090 		 * errors again and again. Well, lets switch to RO mode.
1091 		 */
1092 		goto out_ro;
1093 	}
1094 
1095 	/* It is %-EIO, the PEB went bad */
1096 
1097 	if (!ubi->bad_allowed) {
1098 		ubi_err("bad physical eraseblock %d detected", pnum);
1099 		goto out_ro;
1100 	}
1101 
1102 	spin_lock(&ubi->volumes_lock);
1103 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1104 	if (need > 0) {
1105 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1106 		ubi->avail_pebs -= need;
1107 		ubi->rsvd_pebs += need;
1108 		ubi->beb_rsvd_pebs += need;
1109 		if (need > 0)
1110 			ubi_msg("reserve more %d PEBs", need);
1111 	}
1112 
1113 	if (ubi->beb_rsvd_pebs == 0) {
1114 		spin_unlock(&ubi->volumes_lock);
1115 		ubi_err("no reserved physical eraseblocks");
1116 		goto out_ro;
1117 	}
1118 
1119 	spin_unlock(&ubi->volumes_lock);
1120 	ubi_msg("mark PEB %d as bad", pnum);
1121 
1122 	err = ubi_io_mark_bad(ubi, pnum);
1123 	if (err)
1124 		goto out_ro;
1125 
1126 	spin_lock(&ubi->volumes_lock);
1127 	ubi->beb_rsvd_pebs -= 1;
1128 	ubi->bad_peb_count += 1;
1129 	ubi->good_peb_count -= 1;
1130 	ubi_calculate_reserved(ubi);
1131 	if (ubi->beb_rsvd_pebs == 0)
1132 		ubi_warn("last PEB from the reserved pool was used");
1133 	spin_unlock(&ubi->volumes_lock);
1134 
1135 	return err;
1136 
1137 out_ro:
1138 	ubi_ro_mode(ubi);
1139 	return err;
1140 }
1141 
1142 /**
1143  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
1144  * @ubi: UBI device description object
1145  * @pnum: physical eraseblock to return
1146  * @torture: if this physical eraseblock has to be tortured
1147  *
1148  * This function is called to return physical eraseblock @pnum to the pool of
1149  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1150  * occurred to this @pnum and it has to be tested. This function returns zero
1151  * in case of success, and a negative error code in case of failure.
1152  */
1153 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1154 {
1155 	int err;
1156 	struct ubi_wl_entry *e;
1157 
1158 	dbg_wl("PEB %d", pnum);
1159 	ubi_assert(pnum >= 0);
1160 	ubi_assert(pnum < ubi->peb_count);
1161 
1162 retry:
1163 	spin_lock(&ubi->wl_lock);
1164 	e = ubi->lookuptbl[pnum];
1165 	if (e == ubi->move_from) {
1166 		/*
1167 		 * User is putting the physical eraseblock which was selected to
1168 		 * be moved. It will be scheduled for erasure in the
1169 		 * wear-leveling worker.
1170 		 */
1171 		dbg_wl("PEB %d is being moved, wait", pnum);
1172 		spin_unlock(&ubi->wl_lock);
1173 
1174 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1175 		mutex_lock(&ubi->move_mutex);
1176 		mutex_unlock(&ubi->move_mutex);
1177 		goto retry;
1178 	} else if (e == ubi->move_to) {
1179 		/*
1180 		 * User is putting the physical eraseblock which was selected
1181 		 * as the target the data is moved to. It may happen if the EBA
1182 		 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
1183 		 * the WL unit has not put the PEB to the "used" tree yet, but
1184 		 * it is about to do this. So we just set a flag which will
1185 		 * tell the WL worker that the PEB is not needed anymore and
1186 		 * should be scheduled for erasure.
1187 		 */
1188 		dbg_wl("PEB %d is the target of data moving", pnum);
1189 		ubi_assert(!ubi->move_to_put);
1190 		ubi->move_to_put = 1;
1191 		spin_unlock(&ubi->wl_lock);
1192 		return 0;
1193 	} else {
1194 		if (in_wl_tree(e, &ubi->used)) {
1195 			paranoid_check_in_wl_tree(e, &ubi->used);
1196 			rb_erase(&e->rb, &ubi->used);
1197 		} else if (in_wl_tree(e, &ubi->scrub)) {
1198 			paranoid_check_in_wl_tree(e, &ubi->scrub);
1199 			rb_erase(&e->rb, &ubi->scrub);
1200 		} else {
1201 			err = prot_tree_del(ubi, e->pnum);
1202 			if (err) {
1203 				ubi_err("PEB %d not found", pnum);
1204 				ubi_ro_mode(ubi);
1205 				spin_unlock(&ubi->wl_lock);
1206 				return err;
1207 			}
1208 		}
1209 	}
1210 	spin_unlock(&ubi->wl_lock);
1211 
1212 	err = schedule_erase(ubi, e, torture);
1213 	if (err) {
1214 		spin_lock(&ubi->wl_lock);
1215 		wl_tree_add(e, &ubi->used);
1216 		spin_unlock(&ubi->wl_lock);
1217 	}
1218 
1219 	return err;
1220 }
1221 
1222 /**
1223  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1224  * @ubi: UBI device description object
1225  * @pnum: the physical eraseblock to schedule
1226  *
1227  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1228  * needs scrubbing. This function schedules a physical eraseblock for
1229  * scrubbing which is done in background. This function returns zero in case of
1230  * success and a negative error code in case of failure.
1231  */
1232 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1233 {
1234 	struct ubi_wl_entry *e;
1235 
1236 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1237 
1238 retry:
1239 	spin_lock(&ubi->wl_lock);
1240 	e = ubi->lookuptbl[pnum];
1241 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1242 		spin_unlock(&ubi->wl_lock);
1243 		return 0;
1244 	}
1245 
1246 	if (e == ubi->move_to) {
1247 		/*
1248 		 * This physical eraseblock was used to move data to. The data
1249 		 * was moved but the PEB was not yet inserted to the proper
1250 		 * tree. We should just wait a little and let the WL worker
1251 		 * proceed.
1252 		 */
1253 		spin_unlock(&ubi->wl_lock);
1254 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1255 		yield();
1256 		goto retry;
1257 	}
1258 
1259 	if (in_wl_tree(e, &ubi->used)) {
1260 		paranoid_check_in_wl_tree(e, &ubi->used);
1261 		rb_erase(&e->rb, &ubi->used);
1262 	} else {
1263 		int err;
1264 
1265 		err = prot_tree_del(ubi, e->pnum);
1266 		if (err) {
1267 			ubi_err("PEB %d not found", pnum);
1268 			ubi_ro_mode(ubi);
1269 			spin_unlock(&ubi->wl_lock);
1270 			return err;
1271 		}
1272 	}
1273 
1274 	wl_tree_add(e, &ubi->scrub);
1275 	spin_unlock(&ubi->wl_lock);
1276 
1277 	/*
1278 	 * Technically scrubbing is the same as wear-leveling, so it is done
1279 	 * by the WL worker.
1280 	 */
1281 	return ensure_wear_leveling(ubi);
1282 }
1283 
1284 /**
1285  * ubi_wl_flush - flush all pending works.
1286  * @ubi: UBI device description object
1287  *
1288  * This function returns zero in case of success and a negative error code in
1289  * case of failure.
1290  */
1291 int ubi_wl_flush(struct ubi_device *ubi)
1292 {
1293 	int err;
1294 
1295 	/*
1296 	 * Erase while the pending works queue is not empty, but not more then
1297 	 * the number of currently pending works.
1298 	 */
1299 	dbg_wl("flush (%d pending works)", ubi->works_count);
1300 	while (ubi->works_count) {
1301 		err = do_work(ubi);
1302 		if (err)
1303 			return err;
1304 	}
1305 
1306 	/*
1307 	 * Make sure all the works which have been done in parallel are
1308 	 * finished.
1309 	 */
1310 	down_write(&ubi->work_sem);
1311 	up_write(&ubi->work_sem);
1312 
1313 	/*
1314 	 * And in case last was the WL worker and it cancelled the LEB
1315 	 * movement, flush again.
1316 	 */
1317 	while (ubi->works_count) {
1318 		dbg_wl("flush more (%d pending works)", ubi->works_count);
1319 		err = do_work(ubi);
1320 		if (err)
1321 			return err;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * tree_destroy - destroy an RB-tree.
1329  * @root: the root of the tree to destroy
1330  */
1331 static void tree_destroy(struct rb_root *root)
1332 {
1333 	struct rb_node *rb;
1334 	struct ubi_wl_entry *e;
1335 
1336 	rb = root->rb_node;
1337 	while (rb) {
1338 		if (rb->rb_left)
1339 			rb = rb->rb_left;
1340 		else if (rb->rb_right)
1341 			rb = rb->rb_right;
1342 		else {
1343 			e = rb_entry(rb, struct ubi_wl_entry, rb);
1344 
1345 			rb = rb_parent(rb);
1346 			if (rb) {
1347 				if (rb->rb_left == &e->rb)
1348 					rb->rb_left = NULL;
1349 				else
1350 					rb->rb_right = NULL;
1351 			}
1352 
1353 			kmem_cache_free(ubi_wl_entry_slab, e);
1354 		}
1355 	}
1356 }
1357 
1358 /**
1359  * ubi_thread - UBI background thread.
1360  * @u: the UBI device description object pointer
1361  */
1362 int ubi_thread(void *u)
1363 {
1364 	int failures = 0;
1365 	struct ubi_device *ubi = u;
1366 
1367 	ubi_msg("background thread \"%s\" started, PID %d",
1368 		ubi->bgt_name, task_pid_nr(current));
1369 
1370 	set_freezable();
1371 	for (;;) {
1372 		int err;
1373 
1374 		if (kthread_should_stop())
1375 			break;
1376 
1377 		if (try_to_freeze())
1378 			continue;
1379 
1380 		spin_lock(&ubi->wl_lock);
1381 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1382 			       !ubi->thread_enabled) {
1383 			set_current_state(TASK_INTERRUPTIBLE);
1384 			spin_unlock(&ubi->wl_lock);
1385 			schedule();
1386 			continue;
1387 		}
1388 		spin_unlock(&ubi->wl_lock);
1389 
1390 		err = do_work(ubi);
1391 		if (err) {
1392 			ubi_err("%s: work failed with error code %d",
1393 				ubi->bgt_name, err);
1394 			if (failures++ > WL_MAX_FAILURES) {
1395 				/*
1396 				 * Too many failures, disable the thread and
1397 				 * switch to read-only mode.
1398 				 */
1399 				ubi_msg("%s: %d consecutive failures",
1400 					ubi->bgt_name, WL_MAX_FAILURES);
1401 				ubi_ro_mode(ubi);
1402 				break;
1403 			}
1404 		} else
1405 			failures = 0;
1406 
1407 		cond_resched();
1408 	}
1409 
1410 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1411 	return 0;
1412 }
1413 
1414 /**
1415  * cancel_pending - cancel all pending works.
1416  * @ubi: UBI device description object
1417  */
1418 static void cancel_pending(struct ubi_device *ubi)
1419 {
1420 	while (!list_empty(&ubi->works)) {
1421 		struct ubi_work *wrk;
1422 
1423 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1424 		list_del(&wrk->list);
1425 		wrk->func(ubi, wrk, 1);
1426 		ubi->works_count -= 1;
1427 		ubi_assert(ubi->works_count >= 0);
1428 	}
1429 }
1430 
1431 /**
1432  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1433  * information.
1434  * @ubi: UBI device description object
1435  * @si: scanning information
1436  *
1437  * This function returns zero in case of success, and a negative error code in
1438  * case of failure.
1439  */
1440 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1441 {
1442 	int err;
1443 	struct rb_node *rb1, *rb2;
1444 	struct ubi_scan_volume *sv;
1445 	struct ubi_scan_leb *seb, *tmp;
1446 	struct ubi_wl_entry *e;
1447 
1448 
1449 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1450 	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1451 	spin_lock_init(&ubi->wl_lock);
1452 	mutex_init(&ubi->move_mutex);
1453 	init_rwsem(&ubi->work_sem);
1454 	ubi->max_ec = si->max_ec;
1455 	INIT_LIST_HEAD(&ubi->works);
1456 
1457 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1458 
1459 	err = -ENOMEM;
1460 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1461 	if (!ubi->lookuptbl)
1462 		return err;
1463 
1464 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1465 		cond_resched();
1466 
1467 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1468 		if (!e)
1469 			goto out_free;
1470 
1471 		e->pnum = seb->pnum;
1472 		e->ec = seb->ec;
1473 		ubi->lookuptbl[e->pnum] = e;
1474 		if (schedule_erase(ubi, e, 0)) {
1475 			kmem_cache_free(ubi_wl_entry_slab, e);
1476 			goto out_free;
1477 		}
1478 	}
1479 
1480 	list_for_each_entry(seb, &si->free, u.list) {
1481 		cond_resched();
1482 
1483 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1484 		if (!e)
1485 			goto out_free;
1486 
1487 		e->pnum = seb->pnum;
1488 		e->ec = seb->ec;
1489 		ubi_assert(e->ec >= 0);
1490 		wl_tree_add(e, &ubi->free);
1491 		ubi->lookuptbl[e->pnum] = e;
1492 	}
1493 
1494 	list_for_each_entry(seb, &si->corr, u.list) {
1495 		cond_resched();
1496 
1497 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1498 		if (!e)
1499 			goto out_free;
1500 
1501 		e->pnum = seb->pnum;
1502 		e->ec = seb->ec;
1503 		ubi->lookuptbl[e->pnum] = e;
1504 		if (schedule_erase(ubi, e, 0)) {
1505 			kmem_cache_free(ubi_wl_entry_slab, e);
1506 			goto out_free;
1507 		}
1508 	}
1509 
1510 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1511 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1512 			cond_resched();
1513 
1514 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1515 			if (!e)
1516 				goto out_free;
1517 
1518 			e->pnum = seb->pnum;
1519 			e->ec = seb->ec;
1520 			ubi->lookuptbl[e->pnum] = e;
1521 			if (!seb->scrub) {
1522 				dbg_wl("add PEB %d EC %d to the used tree",
1523 				       e->pnum, e->ec);
1524 				wl_tree_add(e, &ubi->used);
1525 			} else {
1526 				dbg_wl("add PEB %d EC %d to the scrub tree",
1527 				       e->pnum, e->ec);
1528 				wl_tree_add(e, &ubi->scrub);
1529 			}
1530 		}
1531 	}
1532 
1533 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1534 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1535 			ubi->avail_pebs, WL_RESERVED_PEBS);
1536 		goto out_free;
1537 	}
1538 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1539 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1540 
1541 	/* Schedule wear-leveling if needed */
1542 	err = ensure_wear_leveling(ubi);
1543 	if (err)
1544 		goto out_free;
1545 
1546 	return 0;
1547 
1548 out_free:
1549 	cancel_pending(ubi);
1550 	tree_destroy(&ubi->used);
1551 	tree_destroy(&ubi->free);
1552 	tree_destroy(&ubi->scrub);
1553 	kfree(ubi->lookuptbl);
1554 	return err;
1555 }
1556 
1557 /**
1558  * protection_trees_destroy - destroy the protection RB-trees.
1559  * @ubi: UBI device description object
1560  */
1561 static void protection_trees_destroy(struct ubi_device *ubi)
1562 {
1563 	struct rb_node *rb;
1564 	struct ubi_wl_prot_entry *pe;
1565 
1566 	rb = ubi->prot.aec.rb_node;
1567 	while (rb) {
1568 		if (rb->rb_left)
1569 			rb = rb->rb_left;
1570 		else if (rb->rb_right)
1571 			rb = rb->rb_right;
1572 		else {
1573 			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1574 
1575 			rb = rb_parent(rb);
1576 			if (rb) {
1577 				if (rb->rb_left == &pe->rb_aec)
1578 					rb->rb_left = NULL;
1579 				else
1580 					rb->rb_right = NULL;
1581 			}
1582 
1583 			kmem_cache_free(ubi_wl_entry_slab, pe->e);
1584 			kfree(pe);
1585 		}
1586 	}
1587 }
1588 
1589 /**
1590  * ubi_wl_close - close the wear-leveling unit.
1591  * @ubi: UBI device description object
1592  */
1593 void ubi_wl_close(struct ubi_device *ubi)
1594 {
1595 	dbg_wl("close the UBI wear-leveling unit");
1596 
1597 	cancel_pending(ubi);
1598 	protection_trees_destroy(ubi);
1599 	tree_destroy(&ubi->used);
1600 	tree_destroy(&ubi->free);
1601 	tree_destroy(&ubi->scrub);
1602 	kfree(ubi->lookuptbl);
1603 }
1604 
1605 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1606 
1607 /**
1608  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1609  * is correct.
1610  * @ubi: UBI device description object
1611  * @pnum: the physical eraseblock number to check
1612  * @ec: the erase counter to check
1613  *
1614  * This function returns zero if the erase counter of physical eraseblock @pnum
1615  * is equivalent to @ec, %1 if not, and a negative error code if an error
1616  * occurred.
1617  */
1618 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1619 {
1620 	int err;
1621 	long long read_ec;
1622 	struct ubi_ec_hdr *ec_hdr;
1623 
1624 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1625 	if (!ec_hdr)
1626 		return -ENOMEM;
1627 
1628 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1629 	if (err && err != UBI_IO_BITFLIPS) {
1630 		/* The header does not have to exist */
1631 		err = 0;
1632 		goto out_free;
1633 	}
1634 
1635 	read_ec = be64_to_cpu(ec_hdr->ec);
1636 	if (ec != read_ec) {
1637 		ubi_err("paranoid check failed for PEB %d", pnum);
1638 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1639 		ubi_dbg_dump_stack();
1640 		err = 1;
1641 	} else
1642 		err = 0;
1643 
1644 out_free:
1645 	kfree(ec_hdr);
1646 	return err;
1647 }
1648 
1649 /**
1650  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1651  * in a WL RB-tree.
1652  * @e: the wear-leveling entry to check
1653  * @root: the root of the tree
1654  *
1655  * This function returns zero if @e is in the @root RB-tree and %1 if it
1656  * is not.
1657  */
1658 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1659 				     struct rb_root *root)
1660 {
1661 	if (in_wl_tree(e, root))
1662 		return 0;
1663 
1664 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1665 		e->pnum, e->ec, root);
1666 	ubi_dbg_dump_stack();
1667 	return 1;
1668 }
1669 
1670 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1671