xref: /openbmc/u-boot/drivers/mtd/ubi/upd.c (revision ae9996c806e15b68b97fe7a7242c44e713345269)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Author: Artem Bityutskiy (Битюцкий Артём)
8  *
9  * Jan 2007: Alexander Schmidt, hacked per-volume update.
10  */
11 
12 /*
13  * This file contains implementation of the volume update and atomic LEB change
14  * functionality.
15  *
16  * The update operation is based on the per-volume update marker which is
17  * stored in the volume table. The update marker is set before the update
18  * starts, and removed after the update has been finished. So if the update was
19  * interrupted by an unclean re-boot or due to some other reasons, the update
20  * marker stays on the flash media and UBI finds it when it attaches the MTD
21  * device next time. If the update marker is set for a volume, the volume is
22  * treated as damaged and most I/O operations are prohibited. Only a new update
23  * operation is allowed.
24  *
25  * Note, in general it is possible to implement the update operation as a
26  * transaction with a roll-back capability.
27  */
28 
29 #ifndef __UBOOT__
30 #include <linux/uaccess.h>
31 #else
32 #include <div64.h>
33 #include <ubi_uboot.h>
34 #endif
35 #include <linux/err.h>
36 #include <linux/math64.h>
37 
38 #include "ubi.h"
39 
40 /**
41  * set_update_marker - set update marker.
42  * @ubi: UBI device description object
43  * @vol: volume description object
44  *
45  * This function sets the update marker flag for volume @vol. Returns zero
46  * in case of success and a negative error code in case of failure.
47  */
48 static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
49 {
50 	int err;
51 	struct ubi_vtbl_record vtbl_rec;
52 
53 	dbg_gen("set update marker for volume %d", vol->vol_id);
54 
55 	if (vol->upd_marker) {
56 		ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
57 		dbg_gen("already set");
58 		return 0;
59 	}
60 
61 	vtbl_rec = ubi->vtbl[vol->vol_id];
62 	vtbl_rec.upd_marker = 1;
63 
64 	mutex_lock(&ubi->device_mutex);
65 	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
66 	vol->upd_marker = 1;
67 	mutex_unlock(&ubi->device_mutex);
68 	return err;
69 }
70 
71 /**
72  * clear_update_marker - clear update marker.
73  * @ubi: UBI device description object
74  * @vol: volume description object
75  * @bytes: new data size in bytes
76  *
77  * This function clears the update marker for volume @vol, sets new volume
78  * data size and clears the "corrupted" flag (static volumes only). Returns
79  * zero in case of success and a negative error code in case of failure.
80  */
81 static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
82 			       long long bytes)
83 {
84 	int err;
85 	struct ubi_vtbl_record vtbl_rec;
86 
87 	dbg_gen("clear update marker for volume %d", vol->vol_id);
88 
89 	vtbl_rec = ubi->vtbl[vol->vol_id];
90 	ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
91 	vtbl_rec.upd_marker = 0;
92 
93 	if (vol->vol_type == UBI_STATIC_VOLUME) {
94 		vol->corrupted = 0;
95 		vol->used_bytes = bytes;
96 		vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
97 					    &vol->last_eb_bytes);
98 		if (vol->last_eb_bytes)
99 			vol->used_ebs += 1;
100 		else
101 			vol->last_eb_bytes = vol->usable_leb_size;
102 	}
103 
104 	mutex_lock(&ubi->device_mutex);
105 	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
106 	vol->upd_marker = 0;
107 	mutex_unlock(&ubi->device_mutex);
108 	return err;
109 }
110 
111 /**
112  * ubi_start_update - start volume update.
113  * @ubi: UBI device description object
114  * @vol: volume description object
115  * @bytes: update bytes
116  *
117  * This function starts volume update operation. If @bytes is zero, the volume
118  * is just wiped out. Returns zero in case of success and a negative error code
119  * in case of failure.
120  */
121 int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
122 		     long long bytes)
123 {
124 	int i, err;
125 
126 	dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
127 	ubi_assert(!vol->updating && !vol->changing_leb);
128 	vol->updating = 1;
129 
130 	vol->upd_buf = vmalloc(ubi->leb_size);
131 	if (!vol->upd_buf)
132 		return -ENOMEM;
133 
134 	err = set_update_marker(ubi, vol);
135 	if (err)
136 		return err;
137 
138 	/* Before updating - wipe out the volume */
139 	for (i = 0; i < vol->reserved_pebs; i++) {
140 		err = ubi_eba_unmap_leb(ubi, vol, i);
141 		if (err)
142 			return err;
143 	}
144 
145 	if (bytes == 0) {
146 		err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
147 		if (err)
148 			return err;
149 
150 		err = clear_update_marker(ubi, vol, 0);
151 		if (err)
152 			return err;
153 
154 		vfree(vol->upd_buf);
155 		vol->updating = 0;
156 		return 0;
157 	}
158 
159 	vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
160 			       vol->usable_leb_size);
161 	vol->upd_bytes = bytes;
162 	vol->upd_received = 0;
163 	return 0;
164 }
165 
166 /**
167  * ubi_start_leb_change - start atomic LEB change.
168  * @ubi: UBI device description object
169  * @vol: volume description object
170  * @req: operation request
171  *
172  * This function starts atomic LEB change operation. Returns zero in case of
173  * success and a negative error code in case of failure.
174  */
175 int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
176 			 const struct ubi_leb_change_req *req)
177 {
178 	ubi_assert(!vol->updating && !vol->changing_leb);
179 
180 	dbg_gen("start changing LEB %d:%d, %u bytes",
181 		vol->vol_id, req->lnum, req->bytes);
182 	if (req->bytes == 0)
183 		return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0);
184 
185 	vol->upd_bytes = req->bytes;
186 	vol->upd_received = 0;
187 	vol->changing_leb = 1;
188 	vol->ch_lnum = req->lnum;
189 
190 	vol->upd_buf = vmalloc(req->bytes);
191 	if (!vol->upd_buf)
192 		return -ENOMEM;
193 
194 	return 0;
195 }
196 
197 /**
198  * write_leb - write update data.
199  * @ubi: UBI device description object
200  * @vol: volume description object
201  * @lnum: logical eraseblock number
202  * @buf: data to write
203  * @len: data size
204  * @used_ebs: how many logical eraseblocks will this volume contain (static
205  * volumes only)
206  *
207  * This function writes update data to corresponding logical eraseblock. In
208  * case of dynamic volume, this function checks if the data contains 0xFF bytes
209  * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
210  * buffer contains only 0xFF bytes, the LEB is left unmapped.
211  *
212  * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
213  * that we want to make sure that more data may be appended to the logical
214  * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
215  * this PEB won't be writable anymore. So if one writes the file-system image
216  * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
217  * space is writable after the update.
218  *
219  * We do not do this for static volumes because they are read-only. But this
220  * also cannot be done because we have to store per-LEB CRC and the correct
221  * data length.
222  *
223  * This function returns zero in case of success and a negative error code in
224  * case of failure.
225  */
226 static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
227 		     void *buf, int len, int used_ebs)
228 {
229 	int err;
230 
231 	if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
232 		int l = ALIGN(len, ubi->min_io_size);
233 
234 		memset(buf + len, 0xFF, l - len);
235 		len = ubi_calc_data_len(ubi, buf, l);
236 		if (len == 0) {
237 			dbg_gen("all %d bytes contain 0xFF - skip", len);
238 			return 0;
239 		}
240 
241 		err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len);
242 	} else {
243 		/*
244 		 * When writing static volume, and this is the last logical
245 		 * eraseblock, the length (@len) does not have to be aligned to
246 		 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
247 		 * function accepts exact (unaligned) length and stores it in
248 		 * the VID header. And it takes care of proper alignment by
249 		 * padding the buffer. Here we just make sure the padding will
250 		 * contain zeros, not random trash.
251 		 */
252 		memset(buf + len, 0, vol->usable_leb_size - len);
253 		err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, used_ebs);
254 	}
255 
256 	return err;
257 }
258 
259 /**
260  * ubi_more_update_data - write more update data.
261  * @ubi: UBI device description object
262  * @vol: volume description object
263  * @buf: write data (user-space memory buffer)
264  * @count: how much bytes to write
265  *
266  * This function writes more data to the volume which is being updated. It may
267  * be called arbitrary number of times until all the update data arriveis. This
268  * function returns %0 in case of success, number of bytes written during the
269  * last call if the whole volume update has been successfully finished, and a
270  * negative error code in case of failure.
271  */
272 int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
273 			 const void __user *buf, int count)
274 {
275 #ifndef __UBOOT__
276 	int lnum, offs, err = 0, len, to_write = count;
277 #else
278 	int lnum, err = 0, len, to_write = count;
279 	u32 offs;
280 #endif
281 
282 	dbg_gen("write %d of %lld bytes, %lld already passed",
283 		count, vol->upd_bytes, vol->upd_received);
284 
285 	if (ubi->ro_mode)
286 		return -EROFS;
287 
288 	lnum = div_u64_rem(vol->upd_received,  vol->usable_leb_size, &offs);
289 	if (vol->upd_received + count > vol->upd_bytes)
290 		to_write = count = vol->upd_bytes - vol->upd_received;
291 
292 	/*
293 	 * When updating volumes, we accumulate whole logical eraseblock of
294 	 * data and write it at once.
295 	 */
296 	if (offs != 0) {
297 		/*
298 		 * This is a write to the middle of the logical eraseblock. We
299 		 * copy the data to our update buffer and wait for more data or
300 		 * flush it if the whole eraseblock is written or the update
301 		 * is finished.
302 		 */
303 
304 		len = vol->usable_leb_size - offs;
305 		if (len > count)
306 			len = count;
307 
308 		err = copy_from_user(vol->upd_buf + offs, buf, len);
309 		if (err)
310 			return -EFAULT;
311 
312 		if (offs + len == vol->usable_leb_size ||
313 		    vol->upd_received + len == vol->upd_bytes) {
314 			int flush_len = offs + len;
315 
316 			/*
317 			 * OK, we gathered either the whole eraseblock or this
318 			 * is the last chunk, it's time to flush the buffer.
319 			 */
320 			ubi_assert(flush_len <= vol->usable_leb_size);
321 			err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
322 					vol->upd_ebs);
323 			if (err)
324 				return err;
325 		}
326 
327 		vol->upd_received += len;
328 		count -= len;
329 		buf += len;
330 		lnum += 1;
331 	}
332 
333 	/*
334 	 * If we've got more to write, let's continue. At this point we know we
335 	 * are starting from the beginning of an eraseblock.
336 	 */
337 	while (count) {
338 		if (count > vol->usable_leb_size)
339 			len = vol->usable_leb_size;
340 		else
341 			len = count;
342 
343 		err = copy_from_user(vol->upd_buf, buf, len);
344 		if (err)
345 			return -EFAULT;
346 
347 		if (len == vol->usable_leb_size ||
348 		    vol->upd_received + len == vol->upd_bytes) {
349 			err = write_leb(ubi, vol, lnum, vol->upd_buf,
350 					len, vol->upd_ebs);
351 			if (err)
352 				break;
353 		}
354 
355 		vol->upd_received += len;
356 		count -= len;
357 		lnum += 1;
358 		buf += len;
359 	}
360 
361 	ubi_assert(vol->upd_received <= vol->upd_bytes);
362 	if (vol->upd_received == vol->upd_bytes) {
363 		err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
364 		if (err)
365 			return err;
366 		/* The update is finished, clear the update marker */
367 		err = clear_update_marker(ubi, vol, vol->upd_bytes);
368 		if (err)
369 			return err;
370 		vol->updating = 0;
371 		err = to_write;
372 		vfree(vol->upd_buf);
373 	}
374 
375 	return err;
376 }
377 
378 /**
379  * ubi_more_leb_change_data - accept more data for atomic LEB change.
380  * @ubi: UBI device description object
381  * @vol: volume description object
382  * @buf: write data (user-space memory buffer)
383  * @count: how much bytes to write
384  *
385  * This function accepts more data to the volume which is being under the
386  * "atomic LEB change" operation. It may be called arbitrary number of times
387  * until all data arrives. This function returns %0 in case of success, number
388  * of bytes written during the last call if the whole "atomic LEB change"
389  * operation has been successfully finished, and a negative error code in case
390  * of failure.
391  */
392 int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
393 			     const void __user *buf, int count)
394 {
395 	int err;
396 
397 	dbg_gen("write %d of %lld bytes, %lld already passed",
398 		count, vol->upd_bytes, vol->upd_received);
399 
400 	if (ubi->ro_mode)
401 		return -EROFS;
402 
403 	if (vol->upd_received + count > vol->upd_bytes)
404 		count = vol->upd_bytes - vol->upd_received;
405 
406 	err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
407 	if (err)
408 		return -EFAULT;
409 
410 	vol->upd_received += count;
411 
412 	if (vol->upd_received == vol->upd_bytes) {
413 		int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
414 
415 		memset(vol->upd_buf + vol->upd_bytes, 0xFF,
416 		       len - vol->upd_bytes);
417 		len = ubi_calc_data_len(ubi, vol->upd_buf, len);
418 		err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
419 						vol->upd_buf, len);
420 		if (err)
421 			return err;
422 	}
423 
424 	ubi_assert(vol->upd_received <= vol->upd_bytes);
425 	if (vol->upd_received == vol->upd_bytes) {
426 		vol->changing_leb = 0;
427 		err = count;
428 		vfree(vol->upd_buf);
429 	}
430 
431 	return err;
432 }
433