xref: /openbmc/u-boot/drivers/mtd/ubi/eba.c (revision a2ac68fb2b35e57cd483e7d6fb30b9d9331acc01)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * The UBI Eraseblock Association (EBA) unit.
11  *
12  * This unit is responsible for I/O to/from logical eraseblock.
13  *
14  * Although in this implementation the EBA table is fully kept and managed in
15  * RAM, which assumes poor scalability, it might be (partially) maintained on
16  * flash in future implementations.
17  *
18  * The EBA unit implements per-logical eraseblock locking. Before accessing a
19  * logical eraseblock it is locked for reading or writing. The per-logical
20  * eraseblock locking is implemented by means of the lock tree. The lock tree
21  * is an RB-tree which refers all the currently locked logical eraseblocks. The
22  * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
23  * (@vol_id, @lnum) pairs.
24  *
25  * EBA also maintains the global sequence counter which is incremented each
26  * time a logical eraseblock is mapped to a physical eraseblock and it is
27  * stored in the volume identifier header. This means that each VID header has
28  * a unique sequence number. The sequence number is only increased an we assume
29  * 64 bits is enough to never overflow.
30  */
31 
32 #ifdef UBI_LINUX
33 #include <linux/slab.h>
34 #include <linux/crc32.h>
35 #include <linux/err.h>
36 #endif
37 
38 #include <ubi_uboot.h>
39 #include "ubi.h"
40 
41 /* Number of physical eraseblocks reserved for atomic LEB change operation */
42 #define EBA_RESERVED_PEBS 1
43 
44 /**
45  * next_sqnum - get next sequence number.
46  * @ubi: UBI device description object
47  *
48  * This function returns next sequence number to use, which is just the current
49  * global sequence counter value. It also increases the global sequence
50  * counter.
51  */
52 static unsigned long long next_sqnum(struct ubi_device *ubi)
53 {
54 	unsigned long long sqnum;
55 
56 	spin_lock(&ubi->ltree_lock);
57 	sqnum = ubi->global_sqnum++;
58 	spin_unlock(&ubi->ltree_lock);
59 
60 	return sqnum;
61 }
62 
63 /**
64  * ubi_get_compat - get compatibility flags of a volume.
65  * @ubi: UBI device description object
66  * @vol_id: volume ID
67  *
68  * This function returns compatibility flags for an internal volume. User
69  * volumes have no compatibility flags, so %0 is returned.
70  */
71 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
72 {
73 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
74 		return UBI_LAYOUT_VOLUME_COMPAT;
75 	return 0;
76 }
77 
78 /**
79  * ltree_lookup - look up the lock tree.
80  * @ubi: UBI device description object
81  * @vol_id: volume ID
82  * @lnum: logical eraseblock number
83  *
84  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
85  * object if the logical eraseblock is locked and %NULL if it is not.
86  * @ubi->ltree_lock has to be locked.
87  */
88 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
89 					    int lnum)
90 {
91 	struct rb_node *p;
92 
93 	p = ubi->ltree.rb_node;
94 	while (p) {
95 		struct ubi_ltree_entry *le;
96 
97 		le = rb_entry(p, struct ubi_ltree_entry, rb);
98 
99 		if (vol_id < le->vol_id)
100 			p = p->rb_left;
101 		else if (vol_id > le->vol_id)
102 			p = p->rb_right;
103 		else {
104 			if (lnum < le->lnum)
105 				p = p->rb_left;
106 			else if (lnum > le->lnum)
107 				p = p->rb_right;
108 			else
109 				return le;
110 		}
111 	}
112 
113 	return NULL;
114 }
115 
116 /**
117  * ltree_add_entry - add new entry to the lock tree.
118  * @ubi: UBI device description object
119  * @vol_id: volume ID
120  * @lnum: logical eraseblock number
121  *
122  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
123  * lock tree. If such entry is already there, its usage counter is increased.
124  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
125  * failed.
126  */
127 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
128 					       int vol_id, int lnum)
129 {
130 	struct ubi_ltree_entry *le, *le1, *le_free;
131 
132 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
133 	if (!le)
134 		return ERR_PTR(-ENOMEM);
135 
136 	le->users = 0;
137 	init_rwsem(&le->mutex);
138 	le->vol_id = vol_id;
139 	le->lnum = lnum;
140 
141 	spin_lock(&ubi->ltree_lock);
142 	le1 = ltree_lookup(ubi, vol_id, lnum);
143 
144 	if (le1) {
145 		/*
146 		 * This logical eraseblock is already locked. The newly
147 		 * allocated lock entry is not needed.
148 		 */
149 		le_free = le;
150 		le = le1;
151 	} else {
152 		struct rb_node **p, *parent = NULL;
153 
154 		/*
155 		 * No lock entry, add the newly allocated one to the
156 		 * @ubi->ltree RB-tree.
157 		 */
158 		le_free = NULL;
159 
160 		p = &ubi->ltree.rb_node;
161 		while (*p) {
162 			parent = *p;
163 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
164 
165 			if (vol_id < le1->vol_id)
166 				p = &(*p)->rb_left;
167 			else if (vol_id > le1->vol_id)
168 				p = &(*p)->rb_right;
169 			else {
170 				ubi_assert(lnum != le1->lnum);
171 				if (lnum < le1->lnum)
172 					p = &(*p)->rb_left;
173 				else
174 					p = &(*p)->rb_right;
175 			}
176 		}
177 
178 		rb_link_node(&le->rb, parent, p);
179 		rb_insert_color(&le->rb, &ubi->ltree);
180 	}
181 	le->users += 1;
182 	spin_unlock(&ubi->ltree_lock);
183 
184 	if (le_free)
185 		kfree(le_free);
186 
187 	return le;
188 }
189 
190 /**
191  * leb_read_lock - lock logical eraseblock for reading.
192  * @ubi: UBI device description object
193  * @vol_id: volume ID
194  * @lnum: logical eraseblock number
195  *
196  * This function locks a logical eraseblock for reading. Returns zero in case
197  * of success and a negative error code in case of failure.
198  */
199 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
200 {
201 	struct ubi_ltree_entry *le;
202 
203 	le = ltree_add_entry(ubi, vol_id, lnum);
204 	if (IS_ERR(le))
205 		return PTR_ERR(le);
206 	down_read(&le->mutex);
207 	return 0;
208 }
209 
210 /**
211  * leb_read_unlock - unlock logical eraseblock.
212  * @ubi: UBI device description object
213  * @vol_id: volume ID
214  * @lnum: logical eraseblock number
215  */
216 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
217 {
218 	int _free = 0;
219 	struct ubi_ltree_entry *le;
220 
221 	spin_lock(&ubi->ltree_lock);
222 	le = ltree_lookup(ubi, vol_id, lnum);
223 	le->users -= 1;
224 	ubi_assert(le->users >= 0);
225 	if (le->users == 0) {
226 		rb_erase(&le->rb, &ubi->ltree);
227 		_free = 1;
228 	}
229 	spin_unlock(&ubi->ltree_lock);
230 
231 	up_read(&le->mutex);
232 	if (_free)
233 		kfree(le);
234 }
235 
236 /**
237  * leb_write_lock - lock logical eraseblock for writing.
238  * @ubi: UBI device description object
239  * @vol_id: volume ID
240  * @lnum: logical eraseblock number
241  *
242  * This function locks a logical eraseblock for writing. Returns zero in case
243  * of success and a negative error code in case of failure.
244  */
245 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
246 {
247 	struct ubi_ltree_entry *le;
248 
249 	le = ltree_add_entry(ubi, vol_id, lnum);
250 	if (IS_ERR(le))
251 		return PTR_ERR(le);
252 	down_write(&le->mutex);
253 	return 0;
254 }
255 
256 /**
257  * leb_write_lock - lock logical eraseblock for writing.
258  * @ubi: UBI device description object
259  * @vol_id: volume ID
260  * @lnum: logical eraseblock number
261  *
262  * This function locks a logical eraseblock for writing if there is no
263  * contention and does nothing if there is contention. Returns %0 in case of
264  * success, %1 in case of contention, and and a negative error code in case of
265  * failure.
266  */
267 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
268 {
269 	int _free;
270 	struct ubi_ltree_entry *le;
271 
272 	le = ltree_add_entry(ubi, vol_id, lnum);
273 	if (IS_ERR(le))
274 		return PTR_ERR(le);
275 	if (down_write_trylock(&le->mutex))
276 		return 0;
277 
278 	/* Contention, cancel */
279 	spin_lock(&ubi->ltree_lock);
280 	le->users -= 1;
281 	ubi_assert(le->users >= 0);
282 	if (le->users == 0) {
283 		rb_erase(&le->rb, &ubi->ltree);
284 		_free = 1;
285 	} else
286 		_free = 0;
287 	spin_unlock(&ubi->ltree_lock);
288 	if (_free)
289 		kfree(le);
290 
291 	return 1;
292 }
293 
294 /**
295  * leb_write_unlock - unlock logical eraseblock.
296  * @ubi: UBI device description object
297  * @vol_id: volume ID
298  * @lnum: logical eraseblock number
299  */
300 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
301 {
302 	int _free;
303 	struct ubi_ltree_entry *le;
304 
305 	spin_lock(&ubi->ltree_lock);
306 	le = ltree_lookup(ubi, vol_id, lnum);
307 	le->users -= 1;
308 	ubi_assert(le->users >= 0);
309 	if (le->users == 0) {
310 		rb_erase(&le->rb, &ubi->ltree);
311 		_free = 1;
312 	} else
313 		_free = 0;
314 	spin_unlock(&ubi->ltree_lock);
315 
316 	up_write(&le->mutex);
317 	if (_free)
318 		kfree(le);
319 }
320 
321 /**
322  * ubi_eba_unmap_leb - un-map logical eraseblock.
323  * @ubi: UBI device description object
324  * @vol: volume description object
325  * @lnum: logical eraseblock number
326  *
327  * This function un-maps logical eraseblock @lnum and schedules corresponding
328  * physical eraseblock for erasure. Returns zero in case of success and a
329  * negative error code in case of failure.
330  */
331 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
332 		      int lnum)
333 {
334 	int err, pnum, vol_id = vol->vol_id;
335 
336 	if (ubi->ro_mode)
337 		return -EROFS;
338 
339 	err = leb_write_lock(ubi, vol_id, lnum);
340 	if (err)
341 		return err;
342 
343 	pnum = vol->eba_tbl[lnum];
344 	if (pnum < 0)
345 		/* This logical eraseblock is already unmapped */
346 		goto out_unlock;
347 
348 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
349 
350 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
351 	err = ubi_wl_put_peb(ubi, pnum, 0);
352 
353 out_unlock:
354 	leb_write_unlock(ubi, vol_id, lnum);
355 	return err;
356 }
357 
358 /**
359  * ubi_eba_read_leb - read data.
360  * @ubi: UBI device description object
361  * @vol: volume description object
362  * @lnum: logical eraseblock number
363  * @buf: buffer to store the read data
364  * @offset: offset from where to read
365  * @len: how many bytes to read
366  * @check: data CRC check flag
367  *
368  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
369  * bytes. The @check flag only makes sense for static volumes and forces
370  * eraseblock data CRC checking.
371  *
372  * In case of success this function returns zero. In case of a static volume,
373  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
374  * returned for any volume type if an ECC error was detected by the MTD device
375  * driver. Other negative error cored may be returned in case of other errors.
376  */
377 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
378 		     void *buf, int offset, int len, int check)
379 {
380 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
381 	struct ubi_vid_hdr *vid_hdr;
382 	uint32_t uninitialized_var(crc);
383 
384 	err = leb_read_lock(ubi, vol_id, lnum);
385 	if (err)
386 		return err;
387 
388 	pnum = vol->eba_tbl[lnum];
389 	if (pnum < 0) {
390 		/*
391 		 * The logical eraseblock is not mapped, fill the whole buffer
392 		 * with 0xFF bytes. The exception is static volumes for which
393 		 * it is an error to read unmapped logical eraseblocks.
394 		 */
395 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
396 			len, offset, vol_id, lnum);
397 		leb_read_unlock(ubi, vol_id, lnum);
398 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
399 		memset(buf, 0xFF, len);
400 		return 0;
401 	}
402 
403 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
404 		len, offset, vol_id, lnum, pnum);
405 
406 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
407 		check = 0;
408 
409 retry:
410 	if (check) {
411 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
412 		if (!vid_hdr) {
413 			err = -ENOMEM;
414 			goto out_unlock;
415 		}
416 
417 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
418 		if (err && err != UBI_IO_BITFLIPS) {
419 			if (err > 0) {
420 				/*
421 				 * The header is either absent or corrupted.
422 				 * The former case means there is a bug -
423 				 * switch to read-only mode just in case.
424 				 * The latter case means a real corruption - we
425 				 * may try to recover data. FIXME: but this is
426 				 * not implemented.
427 				 */
428 				if (err == UBI_IO_BAD_VID_HDR) {
429 					ubi_warn("bad VID header at PEB %d, LEB"
430 						 "%d:%d", pnum, vol_id, lnum);
431 					err = -EBADMSG;
432 				} else
433 					ubi_ro_mode(ubi);
434 			}
435 			goto out_free;
436 		} else if (err == UBI_IO_BITFLIPS)
437 			scrub = 1;
438 
439 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
440 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
441 
442 		crc = be32_to_cpu(vid_hdr->data_crc);
443 		ubi_free_vid_hdr(ubi, vid_hdr);
444 	}
445 
446 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
447 	if (err) {
448 		if (err == UBI_IO_BITFLIPS) {
449 			scrub = 1;
450 			err = 0;
451 		} else if (mtd_is_eccerr(err)) {
452 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
453 				goto out_unlock;
454 			scrub = 1;
455 			if (!check) {
456 				ubi_msg("force data checking");
457 				check = 1;
458 				goto retry;
459 			}
460 		} else
461 			goto out_unlock;
462 	}
463 
464 	if (check) {
465 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
466 		if (crc1 != crc) {
467 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
468 				 crc1, crc);
469 			err = -EBADMSG;
470 			goto out_unlock;
471 		}
472 	}
473 
474 	if (scrub)
475 		err = ubi_wl_scrub_peb(ubi, pnum);
476 
477 	leb_read_unlock(ubi, vol_id, lnum);
478 	return err;
479 
480 out_free:
481 	ubi_free_vid_hdr(ubi, vid_hdr);
482 out_unlock:
483 	leb_read_unlock(ubi, vol_id, lnum);
484 	return err;
485 }
486 
487 /**
488  * recover_peb - recover from write failure.
489  * @ubi: UBI device description object
490  * @pnum: the physical eraseblock to recover
491  * @vol_id: volume ID
492  * @lnum: logical eraseblock number
493  * @buf: data which was not written because of the write failure
494  * @offset: offset of the failed write
495  * @len: how many bytes should have been written
496  *
497  * This function is called in case of a write failure and moves all good data
498  * from the potentially bad physical eraseblock to a good physical eraseblock.
499  * This function also writes the data which was not written due to the failure.
500  * Returns new physical eraseblock number in case of success, and a negative
501  * error code in case of failure.
502  */
503 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
504 		       const void *buf, int offset, int len)
505 {
506 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
507 	struct ubi_volume *vol = ubi->volumes[idx];
508 	struct ubi_vid_hdr *vid_hdr;
509 
510 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
511 	if (!vid_hdr) {
512 		return -ENOMEM;
513 	}
514 
515 	mutex_lock(&ubi->buf_mutex);
516 
517 retry:
518 	new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
519 	if (new_pnum < 0) {
520 		mutex_unlock(&ubi->buf_mutex);
521 		ubi_free_vid_hdr(ubi, vid_hdr);
522 		return new_pnum;
523 	}
524 
525 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
526 
527 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
528 	if (err && err != UBI_IO_BITFLIPS) {
529 		if (err > 0)
530 			err = -EIO;
531 		goto out_put;
532 	}
533 
534 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
535 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
536 	if (err)
537 		goto write_error;
538 
539 	data_size = offset + len;
540 	memset(ubi->peb_buf1 + offset, 0xFF, len);
541 
542 	/* Read everything before the area where the write failure happened */
543 	if (offset > 0) {
544 		err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
545 		if (err && err != UBI_IO_BITFLIPS)
546 			goto out_put;
547 	}
548 
549 	memcpy(ubi->peb_buf1 + offset, buf, len);
550 
551 	err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
552 	if (err)
553 		goto write_error;
554 
555 	mutex_unlock(&ubi->buf_mutex);
556 	ubi_free_vid_hdr(ubi, vid_hdr);
557 
558 	vol->eba_tbl[lnum] = new_pnum;
559 	ubi_wl_put_peb(ubi, pnum, 1);
560 
561 	ubi_msg("data was successfully recovered");
562 	return 0;
563 
564 out_put:
565 	mutex_unlock(&ubi->buf_mutex);
566 	ubi_wl_put_peb(ubi, new_pnum, 1);
567 	ubi_free_vid_hdr(ubi, vid_hdr);
568 	return err;
569 
570 write_error:
571 	/*
572 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
573 	 * get another one.
574 	 */
575 	ubi_warn("failed to write to PEB %d", new_pnum);
576 	ubi_wl_put_peb(ubi, new_pnum, 1);
577 	if (++tries > UBI_IO_RETRIES) {
578 		mutex_unlock(&ubi->buf_mutex);
579 		ubi_free_vid_hdr(ubi, vid_hdr);
580 		return err;
581 	}
582 	ubi_msg("try again");
583 	goto retry;
584 }
585 
586 /**
587  * ubi_eba_write_leb - write data to dynamic volume.
588  * @ubi: UBI device description object
589  * @vol: volume description object
590  * @lnum: logical eraseblock number
591  * @buf: the data to write
592  * @offset: offset within the logical eraseblock where to write
593  * @len: how many bytes to write
594  * @dtype: data type
595  *
596  * This function writes data to logical eraseblock @lnum of a dynamic volume
597  * @vol. Returns zero in case of success and a negative error code in case
598  * of failure. In case of error, it is possible that something was still
599  * written to the flash media, but may be some garbage.
600  */
601 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
602 		      const void *buf, int offset, int len, int dtype)
603 {
604 	int err, pnum, tries = 0, vol_id = vol->vol_id;
605 	struct ubi_vid_hdr *vid_hdr;
606 
607 	if (ubi->ro_mode)
608 		return -EROFS;
609 
610 	err = leb_write_lock(ubi, vol_id, lnum);
611 	if (err)
612 		return err;
613 
614 	pnum = vol->eba_tbl[lnum];
615 	if (pnum >= 0) {
616 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
617 			len, offset, vol_id, lnum, pnum);
618 
619 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
620 		if (err) {
621 			ubi_warn("failed to write data to PEB %d", pnum);
622 			if (err == -EIO && ubi->bad_allowed)
623 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
624 						  offset, len);
625 			if (err)
626 				ubi_ro_mode(ubi);
627 		}
628 		leb_write_unlock(ubi, vol_id, lnum);
629 		return err;
630 	}
631 
632 	/*
633 	 * The logical eraseblock is not mapped. We have to get a free physical
634 	 * eraseblock and write the volume identifier header there first.
635 	 */
636 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
637 	if (!vid_hdr) {
638 		leb_write_unlock(ubi, vol_id, lnum);
639 		return -ENOMEM;
640 	}
641 
642 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
643 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
644 	vid_hdr->vol_id = cpu_to_be32(vol_id);
645 	vid_hdr->lnum = cpu_to_be32(lnum);
646 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
647 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
648 
649 retry:
650 	pnum = ubi_wl_get_peb(ubi, dtype);
651 	if (pnum < 0) {
652 		ubi_free_vid_hdr(ubi, vid_hdr);
653 		leb_write_unlock(ubi, vol_id, lnum);
654 		return pnum;
655 	}
656 
657 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
658 		len, offset, vol_id, lnum, pnum);
659 
660 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
661 	if (err) {
662 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
663 			 vol_id, lnum, pnum);
664 		goto write_error;
665 	}
666 
667 	if (len) {
668 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
669 		if (err) {
670 			ubi_warn("failed to write %d bytes at offset %d of "
671 				 "LEB %d:%d, PEB %d", len, offset, vol_id,
672 				 lnum, pnum);
673 			goto write_error;
674 		}
675 	}
676 
677 	vol->eba_tbl[lnum] = pnum;
678 
679 	leb_write_unlock(ubi, vol_id, lnum);
680 	ubi_free_vid_hdr(ubi, vid_hdr);
681 	return 0;
682 
683 write_error:
684 	if (err != -EIO || !ubi->bad_allowed) {
685 		ubi_ro_mode(ubi);
686 		leb_write_unlock(ubi, vol_id, lnum);
687 		ubi_free_vid_hdr(ubi, vid_hdr);
688 		return err;
689 	}
690 
691 	/*
692 	 * Fortunately, this is the first write operation to this physical
693 	 * eraseblock, so just put it and request a new one. We assume that if
694 	 * this physical eraseblock went bad, the erase code will handle that.
695 	 */
696 	err = ubi_wl_put_peb(ubi, pnum, 1);
697 	if (err || ++tries > UBI_IO_RETRIES) {
698 		ubi_ro_mode(ubi);
699 		leb_write_unlock(ubi, vol_id, lnum);
700 		ubi_free_vid_hdr(ubi, vid_hdr);
701 		return err;
702 	}
703 
704 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
705 	ubi_msg("try another PEB");
706 	goto retry;
707 }
708 
709 /**
710  * ubi_eba_write_leb_st - write data to static volume.
711  * @ubi: UBI device description object
712  * @vol: volume description object
713  * @lnum: logical eraseblock number
714  * @buf: data to write
715  * @len: how many bytes to write
716  * @dtype: data type
717  * @used_ebs: how many logical eraseblocks will this volume contain
718  *
719  * This function writes data to logical eraseblock @lnum of static volume
720  * @vol. The @used_ebs argument should contain total number of logical
721  * eraseblock in this static volume.
722  *
723  * When writing to the last logical eraseblock, the @len argument doesn't have
724  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
725  * to the real data size, although the @buf buffer has to contain the
726  * alignment. In all other cases, @len has to be aligned.
727  *
728  * It is prohibited to write more then once to logical eraseblocks of static
729  * volumes. This function returns zero in case of success and a negative error
730  * code in case of failure.
731  */
732 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
733 			 int lnum, const void *buf, int len, int dtype,
734 			 int used_ebs)
735 {
736 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
737 	struct ubi_vid_hdr *vid_hdr;
738 	uint32_t crc;
739 
740 	if (ubi->ro_mode)
741 		return -EROFS;
742 
743 	if (lnum == used_ebs - 1)
744 		/* If this is the last LEB @len may be unaligned */
745 		len = ALIGN(data_size, ubi->min_io_size);
746 	else
747 		ubi_assert(!(len & (ubi->min_io_size - 1)));
748 
749 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
750 	if (!vid_hdr)
751 		return -ENOMEM;
752 
753 	err = leb_write_lock(ubi, vol_id, lnum);
754 	if (err) {
755 		ubi_free_vid_hdr(ubi, vid_hdr);
756 		return err;
757 	}
758 
759 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
760 	vid_hdr->vol_id = cpu_to_be32(vol_id);
761 	vid_hdr->lnum = cpu_to_be32(lnum);
762 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
763 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
764 
765 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
766 	vid_hdr->vol_type = UBI_VID_STATIC;
767 	vid_hdr->data_size = cpu_to_be32(data_size);
768 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
769 	vid_hdr->data_crc = cpu_to_be32(crc);
770 
771 retry:
772 	pnum = ubi_wl_get_peb(ubi, dtype);
773 	if (pnum < 0) {
774 		ubi_free_vid_hdr(ubi, vid_hdr);
775 		leb_write_unlock(ubi, vol_id, lnum);
776 		return pnum;
777 	}
778 
779 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
780 		len, vol_id, lnum, pnum, used_ebs);
781 
782 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
783 	if (err) {
784 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
785 			 vol_id, lnum, pnum);
786 		goto write_error;
787 	}
788 
789 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
790 	if (err) {
791 		ubi_warn("failed to write %d bytes of data to PEB %d",
792 			 len, pnum);
793 		goto write_error;
794 	}
795 
796 	ubi_assert(vol->eba_tbl[lnum] < 0);
797 	vol->eba_tbl[lnum] = pnum;
798 
799 	leb_write_unlock(ubi, vol_id, lnum);
800 	ubi_free_vid_hdr(ubi, vid_hdr);
801 	return 0;
802 
803 write_error:
804 	if (err != -EIO || !ubi->bad_allowed) {
805 		/*
806 		 * This flash device does not admit of bad eraseblocks or
807 		 * something nasty and unexpected happened. Switch to read-only
808 		 * mode just in case.
809 		 */
810 		ubi_ro_mode(ubi);
811 		leb_write_unlock(ubi, vol_id, lnum);
812 		ubi_free_vid_hdr(ubi, vid_hdr);
813 		return err;
814 	}
815 
816 	err = ubi_wl_put_peb(ubi, pnum, 1);
817 	if (err || ++tries > UBI_IO_RETRIES) {
818 		ubi_ro_mode(ubi);
819 		leb_write_unlock(ubi, vol_id, lnum);
820 		ubi_free_vid_hdr(ubi, vid_hdr);
821 		return err;
822 	}
823 
824 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
825 	ubi_msg("try another PEB");
826 	goto retry;
827 }
828 
829 /*
830  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
831  * @ubi: UBI device description object
832  * @vol: volume description object
833  * @lnum: logical eraseblock number
834  * @buf: data to write
835  * @len: how many bytes to write
836  * @dtype: data type
837  *
838  * This function changes the contents of a logical eraseblock atomically. @buf
839  * has to contain new logical eraseblock data, and @len - the length of the
840  * data, which has to be aligned. This function guarantees that in case of an
841  * unclean reboot the old contents is preserved. Returns zero in case of
842  * success and a negative error code in case of failure.
843  *
844  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
845  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
846  */
847 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
848 			      int lnum, const void *buf, int len, int dtype)
849 {
850 	int err, pnum, tries = 0, vol_id = vol->vol_id;
851 	struct ubi_vid_hdr *vid_hdr;
852 	uint32_t crc;
853 
854 	if (ubi->ro_mode)
855 		return -EROFS;
856 
857 	if (len == 0) {
858 		/*
859 		 * Special case when data length is zero. In this case the LEB
860 		 * has to be unmapped and mapped somewhere else.
861 		 */
862 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
863 		if (err)
864 			return err;
865 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
866 	}
867 
868 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
869 	if (!vid_hdr)
870 		return -ENOMEM;
871 
872 	mutex_lock(&ubi->alc_mutex);
873 	err = leb_write_lock(ubi, vol_id, lnum);
874 	if (err)
875 		goto out_mutex;
876 
877 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
878 	vid_hdr->vol_id = cpu_to_be32(vol_id);
879 	vid_hdr->lnum = cpu_to_be32(lnum);
880 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
881 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
882 
883 	crc = crc32(UBI_CRC32_INIT, buf, len);
884 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
885 	vid_hdr->data_size = cpu_to_be32(len);
886 	vid_hdr->copy_flag = 1;
887 	vid_hdr->data_crc = cpu_to_be32(crc);
888 
889 retry:
890 	pnum = ubi_wl_get_peb(ubi, dtype);
891 	if (pnum < 0) {
892 		err = pnum;
893 		goto out_leb_unlock;
894 	}
895 
896 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
897 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
898 
899 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
900 	if (err) {
901 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
902 			 vol_id, lnum, pnum);
903 		goto write_error;
904 	}
905 
906 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
907 	if (err) {
908 		ubi_warn("failed to write %d bytes of data to PEB %d",
909 			 len, pnum);
910 		goto write_error;
911 	}
912 
913 	if (vol->eba_tbl[lnum] >= 0) {
914 		err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
915 		if (err)
916 			goto out_leb_unlock;
917 	}
918 
919 	vol->eba_tbl[lnum] = pnum;
920 
921 out_leb_unlock:
922 	leb_write_unlock(ubi, vol_id, lnum);
923 out_mutex:
924 	mutex_unlock(&ubi->alc_mutex);
925 	ubi_free_vid_hdr(ubi, vid_hdr);
926 	return err;
927 
928 write_error:
929 	if (err != -EIO || !ubi->bad_allowed) {
930 		/*
931 		 * This flash device does not admit of bad eraseblocks or
932 		 * something nasty and unexpected happened. Switch to read-only
933 		 * mode just in case.
934 		 */
935 		ubi_ro_mode(ubi);
936 		goto out_leb_unlock;
937 	}
938 
939 	err = ubi_wl_put_peb(ubi, pnum, 1);
940 	if (err || ++tries > UBI_IO_RETRIES) {
941 		ubi_ro_mode(ubi);
942 		goto out_leb_unlock;
943 	}
944 
945 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
946 	ubi_msg("try another PEB");
947 	goto retry;
948 }
949 
950 /**
951  * ubi_eba_copy_leb - copy logical eraseblock.
952  * @ubi: UBI device description object
953  * @from: physical eraseblock number from where to copy
954  * @to: physical eraseblock number where to copy
955  * @vid_hdr: VID header of the @from physical eraseblock
956  *
957  * This function copies logical eraseblock from physical eraseblock @from to
958  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
959  * function. Returns:
960  *   o %0  in case of success;
961  *   o %1 if the operation was canceled and should be tried later (e.g.,
962  *     because a bit-flip was detected at the target PEB);
963  *   o %2 if the volume is being deleted and this LEB should not be moved.
964  */
965 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
966 		     struct ubi_vid_hdr *vid_hdr)
967 {
968 	int err, vol_id, lnum, data_size, aldata_size, idx;
969 	struct ubi_volume *vol;
970 	uint32_t crc;
971 
972 	vol_id = be32_to_cpu(vid_hdr->vol_id);
973 	lnum = be32_to_cpu(vid_hdr->lnum);
974 
975 	dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
976 
977 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
978 		data_size = be32_to_cpu(vid_hdr->data_size);
979 		aldata_size = ALIGN(data_size, ubi->min_io_size);
980 	} else
981 		data_size = aldata_size =
982 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
983 
984 	idx = vol_id2idx(ubi, vol_id);
985 	spin_lock(&ubi->volumes_lock);
986 	/*
987 	 * Note, we may race with volume deletion, which means that the volume
988 	 * this logical eraseblock belongs to might be being deleted. Since the
989 	 * volume deletion unmaps all the volume's logical eraseblocks, it will
990 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
991 	 */
992 	vol = ubi->volumes[idx];
993 	if (!vol) {
994 		/* No need to do further work, cancel */
995 		dbg_eba("volume %d is being removed, cancel", vol_id);
996 		spin_unlock(&ubi->volumes_lock);
997 		return 2;
998 	}
999 	spin_unlock(&ubi->volumes_lock);
1000 
1001 	/*
1002 	 * We do not want anybody to write to this logical eraseblock while we
1003 	 * are moving it, so lock it.
1004 	 *
1005 	 * Note, we are using non-waiting locking here, because we cannot sleep
1006 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1007 	 * unmapping the LEB which is mapped to the PEB we are going to move
1008 	 * (@from). This task locks the LEB and goes sleep in the
1009 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1010 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1011 	 * LEB is already locked, we just do not move it and return %1.
1012 	 */
1013 	err = leb_write_trylock(ubi, vol_id, lnum);
1014 	if (err) {
1015 		dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
1016 		return err;
1017 	}
1018 
1019 	/*
1020 	 * The LEB might have been put meanwhile, and the task which put it is
1021 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1022 	 * cancel it.
1023 	 */
1024 	if (vol->eba_tbl[lnum] != from) {
1025 		dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1026 			"PEB %d, cancel", vol_id, lnum, from,
1027 			vol->eba_tbl[lnum]);
1028 		err = 1;
1029 		goto out_unlock_leb;
1030 	}
1031 
1032 	/*
1033 	 * OK, now the LEB is locked and we can safely start moving iy. Since
1034 	 * this function utilizes thie @ubi->peb1_buf buffer which is shared
1035 	 * with some other functions, so lock the buffer by taking the
1036 	 * @ubi->buf_mutex.
1037 	 */
1038 	mutex_lock(&ubi->buf_mutex);
1039 	dbg_eba("read %d bytes of data", aldata_size);
1040 	err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1041 	if (err && err != UBI_IO_BITFLIPS) {
1042 		ubi_warn("error %d while reading data from PEB %d",
1043 			 err, from);
1044 		goto out_unlock_buf;
1045 	}
1046 
1047 	/*
1048 	 * Now we have got to calculate how much data we have to to copy. In
1049 	 * case of a static volume it is fairly easy - the VID header contains
1050 	 * the data size. In case of a dynamic volume it is more difficult - we
1051 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1052 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1053 	 * may have some side-effects. And not only this. It is important not
1054 	 * to include those 0xFFs to CRC because later the they may be filled
1055 	 * by data.
1056 	 */
1057 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1058 		aldata_size = data_size =
1059 			ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1060 
1061 	cond_resched();
1062 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1063 	cond_resched();
1064 
1065 	/*
1066 	 * It may turn out to me that the whole @from physical eraseblock
1067 	 * contains only 0xFF bytes. Then we have to only write the VID header
1068 	 * and do not write any data. This also means we should not set
1069 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1070 	 */
1071 	if (data_size > 0) {
1072 		vid_hdr->copy_flag = 1;
1073 		vid_hdr->data_size = cpu_to_be32(data_size);
1074 		vid_hdr->data_crc = cpu_to_be32(crc);
1075 	}
1076 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1077 
1078 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1079 	if (err)
1080 		goto out_unlock_buf;
1081 
1082 	cond_resched();
1083 
1084 	/* Read the VID header back and check if it was written correctly */
1085 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1086 	if (err) {
1087 		if (err != UBI_IO_BITFLIPS)
1088 			ubi_warn("cannot read VID header back from PEB %d", to);
1089 		else
1090 			err = 1;
1091 		goto out_unlock_buf;
1092 	}
1093 
1094 	if (data_size > 0) {
1095 		err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1096 		if (err)
1097 			goto out_unlock_buf;
1098 
1099 		cond_resched();
1100 
1101 		/*
1102 		 * We've written the data and are going to read it back to make
1103 		 * sure it was written correctly.
1104 		 */
1105 
1106 		err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1107 		if (err) {
1108 			if (err != UBI_IO_BITFLIPS)
1109 				ubi_warn("cannot read data back from PEB %d",
1110 					 to);
1111 			else
1112 				err = 1;
1113 			goto out_unlock_buf;
1114 		}
1115 
1116 		cond_resched();
1117 
1118 		if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1119 			ubi_warn("read data back from PEB %d - it is different",
1120 				 to);
1121 			goto out_unlock_buf;
1122 		}
1123 	}
1124 
1125 	ubi_assert(vol->eba_tbl[lnum] == from);
1126 	vol->eba_tbl[lnum] = to;
1127 
1128 out_unlock_buf:
1129 	mutex_unlock(&ubi->buf_mutex);
1130 out_unlock_leb:
1131 	leb_write_unlock(ubi, vol_id, lnum);
1132 	return err;
1133 }
1134 
1135 /**
1136  * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1137  * @ubi: UBI device description object
1138  * @si: scanning information
1139  *
1140  * This function returns zero in case of success and a negative error code in
1141  * case of failure.
1142  */
1143 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1144 {
1145 	int i, j, err, num_volumes;
1146 	struct ubi_scan_volume *sv;
1147 	struct ubi_volume *vol;
1148 	struct ubi_scan_leb *seb;
1149 	struct rb_node *rb;
1150 
1151 	dbg_eba("initialize EBA unit");
1152 
1153 	spin_lock_init(&ubi->ltree_lock);
1154 	mutex_init(&ubi->alc_mutex);
1155 	ubi->ltree = RB_ROOT;
1156 
1157 	ubi->global_sqnum = si->max_sqnum + 1;
1158 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1159 
1160 	for (i = 0; i < num_volumes; i++) {
1161 		vol = ubi->volumes[i];
1162 		if (!vol)
1163 			continue;
1164 
1165 		cond_resched();
1166 
1167 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1168 				       GFP_KERNEL);
1169 		if (!vol->eba_tbl) {
1170 			err = -ENOMEM;
1171 			goto out_free;
1172 		}
1173 
1174 		for (j = 0; j < vol->reserved_pebs; j++)
1175 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1176 
1177 		sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1178 		if (!sv)
1179 			continue;
1180 
1181 		ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1182 			if (seb->lnum >= vol->reserved_pebs)
1183 				/*
1184 				 * This may happen in case of an unclean reboot
1185 				 * during re-size.
1186 				 */
1187 				ubi_scan_move_to_list(sv, seb, &si->erase);
1188 			vol->eba_tbl[seb->lnum] = seb->pnum;
1189 		}
1190 	}
1191 
1192 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1193 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1194 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1195 		err = -ENOSPC;
1196 		goto out_free;
1197 	}
1198 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1199 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1200 
1201 	if (ubi->bad_allowed) {
1202 		ubi_calculate_reserved(ubi);
1203 
1204 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1205 			/* No enough free physical eraseblocks */
1206 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1207 			ubi_warn("cannot reserve enough PEBs for bad PEB "
1208 				 "handling, reserved %d, need %d",
1209 				 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1210 		} else
1211 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1212 
1213 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1214 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1215 	}
1216 
1217 	dbg_eba("EBA unit is initialized");
1218 	return 0;
1219 
1220 out_free:
1221 	for (i = 0; i < num_volumes; i++) {
1222 		if (!ubi->volumes[i])
1223 			continue;
1224 		kfree(ubi->volumes[i]->eba_tbl);
1225 	}
1226 	return err;
1227 }
1228 
1229 /**
1230  * ubi_eba_close - close EBA unit.
1231  * @ubi: UBI device description object
1232  */
1233 void ubi_eba_close(const struct ubi_device *ubi)
1234 {
1235 	int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1236 
1237 	dbg_eba("close EBA unit");
1238 
1239 	for (i = 0; i < num_volumes; i++) {
1240 		if (!ubi->volumes[i])
1241 			continue;
1242 		kfree(ubi->volumes[i]->eba_tbl);
1243 	}
1244 }
1245